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Summary

Mathematical models developed to price options pose challenges in producing solutions that

can achieve a high level of accuracy and efficiency. In the current research, much attention has

been drawn to numerical methods of pricing options, particularly in the binomial options pricing

model and the Monte Carlo simulation. This project evaluates the two models by calculating

the errors produced from the approximated solutions and verifying that the solutions produced

converges in some way to an analytical solution. A multillevel method for the Monte Carlo

simulation has been introduced to reduce the computational complexity, which we will also

investigate. The results of which show a significant amount of computational savings due to the

multilevel setting.

This project is organised as follows. Chapter 1 outlines the overview of the project, which

includes the aim, project methodology and the problem description. Chapter 2 provides a

background research to options pricing and highlights current research interests in this area. In

this chapter, we also introduce the Black-Scholes model for the valuation of European options to

provide a foundation for the evaluation of other options pricing models. In Chapter 3, we study

the binomial options pricing model through implementation, and then apply a test case. We

then investigate the behaviour of this model by comparing the results from this model with the

solution of the Black-Scholes model. In Chapter 4, we implement another options pricing model:

the Monte Carlo simulation and similarly, we apply a test case and study the behaviour of the

model under certain change of variables. In addition to the standard Monte Carlo simulation,

we also investigate its discretised versions: the Euler and Milstein schemes, both of which are

applied in the next chapter. In Chapter 5, we study the multilevel Monte Carlo simulation for

pricing options in terms of efficiency. In the first section, we implement the method using the

Euler scheme whilst in the second section, we implement the method using the Milstein scheme.

Results show that there is an increased efficiency of using Milstein scheme as compared to using

the Euler scheme. In Chapter 6, we summarise the evaluation that was done on individual

model in the previous chapters and also evaluate the implementation of the models. All models

demonstrated in this report are implemented using Java.

ii



Acknowledgements

First and foremost, my utmost gratitude goes to my project supervisor, Matthew Hubbard,

for his support and insight that steers the direction of the project. His invaluable guidance has

helped me overcome the challenges especially in the later development of the project and his

dedication in the weekly meetings has been motivational. I would sincerely like to thank my

project assessor, Hamish Carr, for providing constructive feedback for my interim report as well

as during the progress meeting.

I would also like to thank Daphne Lai Teck Ching for taking time off her busy schedule to

proofread my report. To my coursemates who helped in one way or another throughout the

course of my project I thank you all. Special thanks are due to Philipp Schroeder for his tips

in making good use of the tool for the write-up. Also, thanks are due to my flatmates for their

inspiration. Finally, my heartfelt thanks go to my family, without their encouragement and

support I couldn’t have gone this far.

iii



Contents

1 Introduction 6

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Aim and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Minimum Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Project Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Project Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Research 9

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Option Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 The Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Risk-Neutral Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 The Black-Scholes PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 The Black-Scholes Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Binomial Options Pricing Model 16

3.1 Valuing the Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Convergence of the binomial OP model to the BS model . . . . . . . . . . . . . . 19

3.3 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Monte Carlo Simulation 22

4.1 Valuing the Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Convergence Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Discretisation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Euler Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Milstein Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Convergence Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.4 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



5 Improving the Monte Carlo Simulation 35

5.1 Multilevel Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Application to the European Option . . . . . . . . . . . . . . . . . . . . . 38

5.1.3 Application to the Asian Option . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Multilevel MC Simulation using Milstein Scheme . . . . . . . . . . . . . . . . . . 42

5.2.1 Application to the European Option . . . . . . . . . . . . . . . . . . . . . 43

6 Evaluation 45

6.1 Evaluation of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Evaluation of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusions 47

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Glossary 49

Bibliography 50

A Personal Reflection 52

B Record of Materials Used 54

C Interim Report 55

C.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.3 Minimum Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.4 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.5 Project Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.6 Proposed research methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.7 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.8 Options pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.8.1 Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.8.2 Binomial Options Pricing Model . . . . . . . . . . . . . . . . . . . . . . . 63

C.8.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



Chapter 1

Introduction

1.1 Overview

Finance is a rapidly developing area in the corporate world today. Thus, new challenges posed

to financial models are inevitably becoming important in order to obtain more accurate results

that is close to real world scenarios. Our interest is in the valuation of options. In particular, we

first study an options pricing (OP) model that produces an analytical solution, and then analyse

two numerical options pricing models in terms of accuracy. Finally, we focus on improving the

efficiency of one of the models.

1.2 Aim and objectives

The original aim was to develop and evaluate a computational tool for simulating the binomial

OP model and the Monte Carlo (MC) simulation for the valuation of European options. How-

ever, as the work progressed and as more background materials are gathered, a need to steer

the project in a different direction came into light for several reasons as summarised below.

1. Current research interests in the area of financial modelling are prominent in finding ways

to improve options pricing models, by introducing alternative mathematical methods to

price options or by modifying current models. A project related to evaluating methods to

improve options pricing models would make a good contribution to this research area.

2. Developing a computational tool requires a programming language that can call a plotting

library or a separate tool for plotting static graphs. This initial set up had already proven

to be time-consuming for the author so there is a risk of not completing the project in

time if an attempt is taken to build a tool to price options.
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Thus, the project took a different direction towards a modelling approach. In the earlier de-

velopment, we aim to investigate several options pricing models and find ways to improve the

models and later on, we focus on improving the MC simulation. Therefore, we present here

the current modified aim of the project, which is to improve the efficiency of the MC options

pricing model by simulating a multilevel MC simulation for different styles of options.

The objectives are to:

• Understand the different models proposed in options pricing and additional extensions or

modifications made to improve the models.

• Implement the algorithms for the binomial OP model and the MC simulation.

• Test and evaluate the accuracies of the binomial and MC simulation relative to the solution

obtained from the BS formula.

• Implement the algorithm for the multilevel MC simulation.

• Apply the multilevel MC simulation to the European option.

• Apply the multilevel MC simulation to the Asian option.

• Evaluate the efficiency of the multilevel MC simulation for the European and Asian op-

tions.

1.3 Minimum Requirements

The following minimum requirements were defined at the beginning of the project:

1. A binomial simulation of the European option.

2. A MC simulation of the European option.

3. A prototype of a static interface to visualize the results.

A further extension to the minimum requirements was added as follows:

1. A multilevel MC simulation.

1.4 Project Methodology

This project is divided into small groups of subprojects, where for each group, we investigate

the behaviour of an options pricing model in terms of how well it approximates a solution or

converges towards one. The project begins with background research on options pricing models,

which includes the Black Scholes (BS) model, binomial OP model and the MC simulation. The

background reading also includes current research in improving these models.
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The next step is to study the behaviour of binomial options pricing model. This includes

implementing the model and providing a test case to test the model. The evaluation is then

done by comparing the accuracy of this model relative to the BS model.

The MC simulation is then investigated. Similarly, the model is implemented and tested with

the same test case for consistency. Again, the evaluation is carried out by showing convergence

of this MC value to the BS value. Two discretised methods are then introduced: Euler and

Milstein schemes, to which implementation, testing and evaluation are carried out.

Finally, an improved MC method in terms of efficiency is investigated. Similarly, the model

is implemented. Testing and evaluation includes finding the computational costs and the root-

mean-square error of the model. As an extension, the Milstein scheme is introduced to this

model to further improve the efficiency. The same methodology applies for this multilevel

Monte Carlo simulation with the Milstein scheme.

1.5 Project Schedule

Revision of the original project schedule is necessary due to the change of project direction. The

original traditional approach (see Appendix C.5) taken at the very early stage is discarded due

to a change in the structure of the methodology. The revised project schedule is shown in the

Gantt chart below. Since the models in this report have already been designed and developed

by researchers, the project focuses on implementing, testing and evaluating these models.

Figure 1.1: A revised Gantt chart outlining the project schedule.
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Chapter 2

Background Research

2.1 Literature Review

In the world of finance, mathematical models can be used as approximations to value complex

real market derivatives. The modelling of financial options gained its popularity when Fisher

Black and Myron Scholes (1973) introduced the BS model, which later became the foundation

of the literature on options pricing where various studies are made on extending the model and

developing alternative approaches to the valuation of options. A recent literature by Broadie

and Detemple (2004) focuses on the trends and development of financial options modelling with

emphasis on the development of models that depart from the assumptions of the classic BS

model, since empirical evidence suggests that the BS prices tend to differ from the market prices

of options due to the assumption that sharp changes in stock prices are negligible (MacBeth

and Merville, 1979; Vasile and Armeanu, 2009). Several modifications of the model have been

made to reduce discrepancies between these assumptions and the real world. Examples are the

extension of the BS model with illiquidity (Cetin et al., 2004), the inclusion of transaction costs

through adjusting the volatility (Leland, 1985), and also extensions to include jump-diffusion

models and stochastic volatility models.

Since financial markets undergo stochastic fluctuations, numerical methods such as MC

methods become useful tools to price options. Alternatively, binomial methods are discrete

numerical approaches that can value options at any point in time until expiration. The literature

has also expanded beyond the basics of these numerical methods, such as Giles (2007)’s work on

improving efficiency by introducing a multilevel approach to the MC method, and most recently,

Kyoung and Hong (2011) presented an improved binomial method that uses cell averages of

payoffs around each node in addition to the standard method. Essentially in this literature, the

goal is to improve both the accuracy and efficiency in approximating values of OP models.
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For the convenience of further discussion, the notations used throughout the paper are summa-

rized below:

S price of underlying asset

K strike or exercise price

C value of the European call option

r risk-free interest rate

t time in years

T maturity date

σ volatility of returns of the underlying asset

µ drift rate

p a probability measure

Common abbreviations used are:

GBM geometric Brownian motion

OP options pricing

BS Black-Scholes

MC Monte Carlo

PDE partial differential equation

SDE stochastic differential equation

2.2 Options

An option is a derivative security that grants the buyer of the option the right, but not the

obligation, to buy or sell an underlying asset, S (such as a stock, a bond or an index portfolio)

on or before an expiration date, T , for an exercise or strike price, K. A call option is the right

to buy, while a put option gives the right to sell. Let’s take an example of a call option. Say a

company holds 100 shares of a stock priced at $20 each. An investor believing the price will go

up in a month’s time enters into a contract with the company to buy the stock at, say $19 after

one month. All the investor needed to pay is the premium of (stock - strike)= 20− 19 = $1 per

share. If the price did go up on the exercise date, the investor will exercise the option and gain

the profit of buying cheap and selling high in the market. If the price goes down, the contract

will expire and becomes worthless so he will only lose the premium price he paid to enter into

the contract in the first place.
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2.2.1 Option Styles

Exercising the options can be of several styles and some common ones are listed below. The

first two are plain vanilla options. The third option is a non-vanilla option and the rest are

exotic options.

• European options: Options that can only be exercised on the expiration date.

• American options: Options that can be exercised on or before the expiration date.

• Bermudan options: Options that can be exercised at any fixed period of time.

• Asian options: Options whose payoff depends on the average underlying asset over a

certain period of time.

• Barrier options: Options either come into existence after a barrier is breached (up-and-in

or down-and-in) or drop out of existence as a result of breaching the barrier (up-and-out

or down-and-out).

• Lookback options: Options that depend on the minimum (for call) or maximum (for put)

value of the stock price over a certain period of time.

• Digital options: Options whose payoff is fixed after the underlying asset exceeds the

exercise price.

2.2.2 The Put-Call Parity

For the European style option, the relationship between call and put options can be derived

from their payoffs when they have the same underlying asset price, strike price and expiration

date. The no-arbitrage assumption, which places a bound on the options, is important for this

principle so that the same payoff is maintained for both the call and put options. The idea

is that if a portfolio containing a call option has the same payoff at expiration as a portfolio

containing a put option, then they must have the same value at any given time before the

expiration. This is known as the put-call parity.

The derivation begins with both options having an equal payoff (Wilmott, Howinson and

Dewynne, 1998). Let C and P be the value of the call and put options at any time t respectively,

and let T be the time at expiration, K the strike price and S the stock price at time t. Then,

the payoffs at expiration are

C = max(S −K, 0), and

P = max(K − S, 0).
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The payoff at expiry is

C − P = max(S −K, 0)−max(K − S, 0)

{
(S −K)− 0 if S ≥ K
(0− (K − S) if S ≤ K

= S −K.

Finally, discounting the value of the portfolio, the put-call parity is defined as

C − P = S −K.e−r(T−t),

where r is the discounted risk-free rate. The basic idea of the put-call parity can be applied to

the Black-Scholes model that values call and put options independently, which we will derive in

2.3.

2.2.3 Risk-Neutral Valuation

A risk-neutral measure is a measure applied to arbitrage-free option valuation where the growth

rate µ is replaced by the risk-free rate r. For example, for a continuous-time measure, we define

a stochastic process, that is, a geometric Brownian motion (GBM) with the following stochastic

differential equation (SDE):

dS = µSdt+ σSdW, (2.1)

where σ is the volatility and W is a Brownian motion. To make the equation risk-neutral, dW

is redefined with a new measure so that we get

dW = dW̃ +
µ− r
σ

dt.

This equation is a result of applying the Girsanov theorem, which calculates the likelihood ratio

of the original measure and the risk-neutral measure (refer Seydel (2005)). Hence, Equation

(2.1) yields

dS = µSdt+ σS

(
dW̃ − µ− r

σ
dt

)
,

= µSdt− (µ− r)Sdt+ σStdW̃ ,

= rSdt+ σSdW̃ .

2.3 The Black-Scholes Model

The BS model is a classic example of an options pricing model that was developed by Fisher

Black and Myron Scholes in their seminal work in 1973. Their approach to options pricing
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problems is to solve a partial differential equation (PDE) with a final condition at t = T to

obtain a unique solution. The fundamental idea is to find a closed-form solution to the Black-

Scholes PDE by first using the Ito’s calculus from Ito’s lemma to obtain the BS equation, then

transform it to the heat equation to get the unique solution, and finally transform the solution

back to find the corresponding solution of the Black-Scholes PDE.

2.3.1 Assumptions

As mentioned earlier, the no-arbitrage assumption is an important assumption in options pric-

ing, but in the world of option valuation, there are several other assumptions to follow. The

assumptions for this model which can be applied to other subsequent models are:

1. There is no arbitrage opportunity so there is a premium price for buying the option.

2. The price follows a GBM with constant drift and volatility.

3. The underlying stock does not pay dividends.

4. There is a constant interest rate.

5. There is no transaction cost and tax.

6. It is possible to buy or sell any amount of options at any given time.

2.3.2 The Black-Scholes PDE

The Black-Scholes PDE is an important part of the BS model. This PDE describes the option

over time and is used to obtain the BS formula for pricing options. The underlying asset is

assumed to follow the GBM with an SDE as defined in Equation (2.1). Itô’s lemma states that

for the SDE defined and any twice differential function, C, of S and t, we have

dC =

(
µS

∂C

∂S
+
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt+ σS

∂C

∂S
dW. (2.2)

The Wiener process dW is random so we want to eliminate this variable in order to obtain

the PDE. This can be achieved by constructing a portfolio Π consisting of a long call for an

option and a short ∆ shares of the underlying asset. A long call is the purchase of a call option

while a short call is the selling of the underlying asset. Therefore, the portfolio is defined as

Π = C −∆S.

A small change in the portfolio for a time period of [t, t+ ∆t] results in

dΠ = dC −∆dS.
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Applying Equations (2.1) and (2.2) into the equation yields

dΠ =

(
µS

∂C

∂S
+
∂C

∂t
+

1

2
σ2S2d

2C

dS2

)
dt+ rS

∂C

∂S
dW −∆(µSdt+ σSdW ). (2.3)

To eliminate any risk of price movement, we apply delta hedging, which simply means that

∆ = ∂C
∂S , to Equation (2.3) to get

dΠ =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt.

The assumption of no-arbitrage defines the rate of return of the portfolio as dΠ = rΠdt. There-

fore, the Black-Scholes PDE is given by

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+
∂C

∂S
rS − rC = 0.

2.3.3 The Black-Scholes Formula

For a call option, the boundary condition is max(S −K, 0). If we set this boundary condition

to the Black-Scholes PDE, we obtain the following BS formula

C = SN(d1)−Ke−rtN(d2), (2.4)

with

d1 =
ln( SK ) + (r + σ2

2 )t

σ
√
t

and

d2 = d1 − σ
√
t,

where N(d1) and N(d2) denote the cumulative distribution functions of the standard normal

distribution for d1 and d2 respectively. The detailed derivation of the BS formula can be found

in many standard books such as Wilmott, Howinson and Dewynne (1998), Ugur (2008) and

Lovelock, Mendel and Wright (2007).

We take a test case for pricing a European call option to illustrate this model. Suppose that

a stock price, S, of a company is currently $250 per share, and that in a year’s time (T = 1),

the price either rises or falls by 20% (σ = 0.2). A European call option is to buy the stock

at an exercise price, K, of $200 at the expiration time with a risk-free rate of 5% (r = 0.05).

To price the call option, we apply the given set of variables into Equation (2.4), and obtain

C = $61.472091898474446. This value was calculated from the implementation of the BS model

in Java. The algorithm for this model is trivial and hence will not be elaborated here. The BS

value obtained is the market value of the call option for the underlying stock. Mathematically, it

is a closed-form solution of the call option that will form the basis of our result for comparisons

with other methods of pricing options, in particular the binomial and Monte Carlo OP models.

14



One of the limitations of the BS model is it can only be used to price European options.

To price American options, numerical methods such as the binomial OP method (Cox, Ross

and Rubenstein, 1979) and finite difference methods (Schwartz, 1977) are required. For exotic

options (e.g. Asian, Lookback and Barrier), the MC method is normally used. We shall focus

on two models in detail: the binomial OP model and the MC simulation. These models are

alternative methods that are approximations to the BS solution for European options. Running

approximations of the BS value help in validating results and reducing errors of the models so

that they can be applied to the valuations of more complex options such as American and Asian

options.
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Chapter 3

Binomial Options Pricing Model

The binomial OP model is a lattice tree model that approximates a continuous random walk in

discrete time with a fixed number of periods. A direct relationship of this model with the BS

model may not be immediately evident but in the case of European options, the binomial value

converges to the BS value as the number of periods increases. This model shares the same basic

assumptions as the BS model and assumes an asset price path that follows a GBM.

3.1 Valuing the Options

In essence, the binomial OP model divides the time line into m equally-spaced intervals, where

for each period δt = T/m, the price either goes up by an up-factor u or down by a down-factor

d. Thus, if the current stock price is S, the stock price at the next period is either Su or Sd.

For the next period, Su goes up to Suu or down to Sud and similarly, Sd goes to Sdu or Sdd.

Notice that the stock price recombines at this stage since Sdu = Sud (see Figure 3.1), therefore

this reduces the number of possible prices so that after m periods, there are only m+ 1 possible

prices. We next define values for the parameters u and d. The Cox, Ross and Rubenstein (1979)

(CRR) method assumes that u and d are determined by the volatility σ, such that

u = eσ
√
δt, and

d =
1

u
= e−σ

√
δt.

Another important assumption is the risk-neutrality measure. Under this assumption, an

investor’s risk preferences are not taken into account so therefore we assume that the return on

the investment is a risk-free interest rate r. The steps involved in finding the option value is

quite straight forward. We shall define the steps for finding a call option C. For a one-period
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Figure 3.1: A binomial tree with m = 5 of possible stock prices.

binomial tree, the option will be Cu if the stock price goes to Su and Cd if the stock price goes

to Sd. Hence, from the intrinsic value formula, we can define Cu and Cd as

Cu = max(0, Su−K), and

Cd = max(0, Sd−K).

Suppose we build a portfolio that stores shares of a stock for investment. Let ∆ be the

number of shares and B be the price invested in the bonds of the stock. The portfolio payoff is

thus ∆S + B. We can equate this to the option payoff, in this case the call option C, so that

the up and down options become

∆Su+ erδtB = Cu, and (3.1)

∆Sd+ erδtB = Cd. (3.2)

Solving Equations (3.1) and (3.2), we find that

∆ =
Cu − Cd
(u− d)S

and B =
uCd − dCu
(u− d)erδt

.

Therefore, the call option is

C = ∆S +B =

[
erδt − d
u− d

Cu +
u− erδt

u− d
Cd

]
/erδt.

17



Figure 3.2: Possible option prices for a 2-period binomial tree.

To simplify the term, we let

p =
erδt − d
u− d

and 1− p =
u− erδt

u− d
,

and hence, we can write the call option as

C = [pCu + (1− p)Cd]e−rδt.

Now we consider a call option with two periods. After the first period, Cu either goes up to Cuu

or down to Cud (see Figure 3.2). Cd is analogous. From the previous derivation, we find that

Cu = [pCuu + (1− p)Cud]e−rδt, and

Cd = [pCdu + (1− p)Cdd]e−rδt.

Algorithm 3.1: An algorithm for a binomial options pricing model.

function BinomialOPM (T, S , K, r , sigma , n) {
deltaT := T/ n ;

up:= exp( sigma∗ sqrt ( deltaT ) ) ;

down:= 1/up ;

cu:= (up∗ exp(−r ∗ deltaT)− exp(−q∗ deltaT ))∗ up/ (upˆ 2− 1 ) ;

cd:= exp(−r ∗ deltaT)− cu ;

for i := 0 to n {
c ( i ):= S∗ upˆ i ∗ downˆ(n−i ) ; i f c ( i )< 0 then c ( i )=0;

}

for j := n−1 to 0 step −1 {
for i := 0 to j {

c ( i ):= cu∗ c ( i )+ cd∗ c ( i +1);

}
}
return c ( 0 ) ; }

Generally for m periods, the equation is given by

C =

 m∑
j=a

(
m!

(m− j)!j!

)
pj(1− p)m−jujdm−jS −K

 e−rδt. (3.3)
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where a is the minimum number of upward moves such that the strike price falls below the stock

price upon expiry so that it can be exercised. In other words, we require that uadm−aS > K

(Cox, Ross and Rubenstein, 1979). In implementing the binomial model, the multi-period

steps are computed recursively where the first step involves calculating the options at the

terminal nodes and then working backwards to obtain the value of the first node. Algorithm

4.1 summarises the steps in obtaining the binomial value of a call option.

We can test the algorithm using the test case from the previous section where S = 250,

K = 200, T = 1, r = 0.05 and σ = 0.2, with an additional parameter m for the number

of periods. If we choose m to be 10 and run the algorithm, we obtain a binomial value of

approximately 61.536162. Now that we have the binomial value, we want to verify that the

result is correct so we compare it with the exact solution found from the BS formula. As it

turns out, the binomial value converges to the BS value as the number of periods increases. We

shall look at this in detail next.

3.2 Convergence of the binomial OP model to the BS model

First, we investigate the relationship between the binomial OP model and the BS model. Equa-

tion (3.3) with m periods can be rewritten as

C = S

 m∑
j=a

m!

(m− j)!j!
pj(1− p)m−j u

jdm−j

erδt

−Ke−rδt
 m∑
j=a

m!

(m− j)!j!
pj(1− p)m−j

 .
Replacing the two parts in parentheses with functions φ(a;m, p′) and φ(a;m, p) respectively, we

obtain a simpler equation of the form

C = S
[
φ(a;m, p′)

]
−Ke−rδt [φ(a;m, p)] ,

where p′ = ue−rδtp. From Cox, Ross and Rubenstein (1979)’s work on the convergence of the

binomial formula to the BS formula, as m tends to infinity,

φ(a;m, p′)→ N(d1) and φ(a;m, p)→ N(d2).

Hence, the BS formula is a limiting case of the binomial OP model (Cox, Ross and Rubenstein,

1979; Lee and Lin, 2010).

Next, we investigate the convergence of the binomial OP model to the BS model. This can

be easily demonstrated with a plot of the number of periods m against the option values found

using the binomial OP model (see Figure 3.3). Cox, Ross and Rubenstein (1979) provided a

proof for the convergence as m tends to infinity. Their proof uses a special case of the central

limit theorem which imposes restrictions on u and d. However, the proof provided is too specific.

Hsia (1983) applied a more general proof for the convergence of the Binomial OP model to the
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BS formula without restricting u and d, using the DeMoivre-Laplace limit theorem with the

only condition being mp → ∞ as m → ∞. Qu (2010) further demonstrated that there is a

direct proof of the Binomial OP model converging to BS formula as m tends to infinity with

the use of direct approximation of binomial probability from the normal distribution.

Figure 3.3: A plot demonstrating the convergence of the binomial model to the BS model as m
increases

Based on Chang and Palmer (2007)’s paper, the rate of convergence from the Binomial OP

model to the BS formula was found to be 1/m. In the evaluation of the binomial OP model,

we verify that this statement is true. Taking the same test case, we test the convergence with

different values of m. Recall that the BS value was found to be 61.472091898474446. For each

value of m, we find the absolute error such that

error = binomial value− BS value.

m Binomial value |error| 1/m ratio = |error|/(1/m)

10 61.53616204233657 0.06407014386210 0.1 1.56078937820459

50 61.443894450462025 0.02819744801241 0.02 0.70928404553492

100 61.48373974924799 0.01164785077350 0.01 0.85852748240485

200 61.468107803401594 0.00398409507290 0.005 1.25499013163825

500 61.47445853544964 0.00236663697520 0.002 0.84508102466116

1000 61.47304425642073 0.00095235794630 0.001 1.05002536482089

5000 61.47232014677787 0.00022824830339 0.0002 0.87623871470794

Table 3.1: Table of absolute errors for different m for a European call option.
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The model is valid if its absolute error is proportional to the convergence rate,

|error| ∝ 1

m
.

The result can be seen in Table 3.1. The absolute error is found to be approximately equal to

the convergence rate of 1/m, since the ratio is roughly 1. Hence, the implementation of this

model is correct.

3.3 Computational Effort

In terms of computational effort, comparisons can be made between this model and the BS model

by computing the execution time when running them on the same machine. The execution time

for the BS model earlier was 0.000775551 seconds, which is relatively fast compare to those of

the binomial model (see Table 3.2). Furthermore, we observe that as m increases, the execution

time also increases. For example, a 1000-period binomial model takes about 10 times longer to

run than a 10-period binomial model.

m execution time (s)

10 0.000831498

50 0.001185654

100 0.001634766

200 0.003117604

500 0.004586584

1000 0.008521827

5000 0.14583653

Table 3.2: Table of execution time for different m for a European call option.

We have applied the simplest option style to this model so that the validity of this model

can be verified since we can compare the results with the exact solution obtained from the BS

model for the European call option. With the assurance that this model is valid, we can then

apply it to other option styles such as the American option where early exercises of the options

are possible. In the next chapter, we shall look at another OP model that uses random numbers

to generate option values after a fixed number of simulation runs.
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Chapter 4

Monte Carlo Simulation

Valuing of options is not limited to European and American options, which are the most basic

styles of options. There are also exotic options with complicated features, such as the Asian

option that takes the average underlying asset price over a predetermined period of time, and

they cannot be easily valued using binomial OP model or the BS model due to their inflexibility

in implementation. Therefore, in this chapter, we present another popular approach to valuing

these options: the Monte Carlo simulation. This technique can easily simulate the stochastic

process using random numbers and is flexible in terms of combining multiple sources of uncer-

tainties. Hence, it is practical for options that suffer from the curse of dimensionality, such as

the real option. For the interest of this report, we will only apply the standard Monte Carlo

simulation to European-style option to demonstrate its convergence to the BS model. Then, we

will introduce the discretisation methods in this chapter as a preparation for the chapter that

follows.

4.1 Valuing the Options

The MC simulation, which was first proposed by Boyle (1977), uses pseudorandom numbers to

simulate price paths. It is a useful method to price options that has multiple uncertainties. We

shall derive a sample path for the MC simulation. Recall in Equation (2.1) that the underlying

asset is assumed to follow the GBM given by the SDE,

dS = µSdt+ σSdW,

where µ is the drift rate and σ is the volatility. Since the risk-neutrality assumption also applies

here, we let µ = r, where r is the risk-free interest rate. To obtain the sample path, we need to

use the Itô’s formula in Equation (2.2).
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Algorithm 4.1: An algorithm for a standard Monte Carlo simulation.

1 function MonteCarlo {
2 % m −−> number o f t imes t eps

3 % n −−> number o f s imu la t ion paths

4 t imestep := T/m;

5 sum:= 0 ;

6 for i := 1 to n {
7 for j := 1 to m {
8 S = S ∗ exp [ ( r−0.5∗ sigma ˆ2)∗ t imestep+

9 sigma∗sqrt ( t imestep )∗rand ] ;

10 }
11 sum := sum + max(S−K, 0 ) ;

12 }
13 value := sum/n∗exp(−r ∗ t imestep ) ;

14 return value ;

15 }

Using the properties of lognormal distribution, we let C = logS(t) and apply it to the Itô’s

formula to get

dlogS(t) = (r − 1

2
σ2)dt+ σdW

S(t) = S(t− 1)exp

[(
r − σ2

2

)
δt+ σdW

]
.

We generate the sample path for m periods by dividing the time period [0, T ] into m intervals

of δt to produce a sample path of

S(tj) = S(tj−1)exp

[(
r − σ2

2

)
δt+ σ

√
δtZj

]
, Zj ∼ N(0, 1) and j = 1, ...,m.

The payoff, X(ω), for a European call option is max(S(t) − K, 0) for a sample path ω. To

sample n stock price paths, we find the sample mean of the payoffs discounted to present using

the risk free rate, r, to obtain

X =
1

n

n∑
i=1

X(ωi)e
−rδt. (4.1)

This simple iteration can be seen in Algorithm 4.1. The pseudorandom number used for this

implementation is a normally distributed value from the normal distribution N ∼ (0, 1).
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Figure 4.1: A plot comparing the Monte Carlo simulation and the BS model for n = 100.

We begin our test with the test case we used in the earlier example. Setting the parameters

S = 250, K = 200, r = 0.05 and σ = 0.2, we can generate a MC value with predetermined n

and m. We demonstrate the results obtained from this simulation by plotting a graph of stock

price against the option price. Figure 4.1 shows this result for n = 100 and m = 100, with

comparison to the BS values. However, because this simulation returns a random value with

every run, we want to set the seed so that we can control the outcome when we run it with

different values of n and m. As part of the evaluation, we will investigate the effect of changing

n in the next section.

4.2 Convergence Test

Table 4.1 shows the effect of increasing n which was tested with three seeds. Standard textbook’s

convergence test suggests that the MC values tend to the BS closed-form solution when n

increases. Although the convergence in Table 4.1 does not seem conclusive, there is an indication

that the values are getting closer to the BS value of 61.4720918984744 (see Figure 4.2). For

example, for n = 102, the difference between the highest and the lowest MC values within the

three seeds are approximately 9.494630, whereas for n = 106, the difference is approximately

0.099661, indicating that there is a significant decrease in the standard deviation of the MC

values as n increases.
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MC value
n Seed 1 Seed 2 Seed 3

102 59.1854875330700 55.66077308258579 65.15540374696462
103 62.3879080724478 60.420893879950015 60.806343515915735
104 61.3979056884734 60.716972462469144 61.06141350337705
105 61.5693015528772 61.44086461566363 61.612622484545696
106 61.5366498823280 61.43698915939219 61.502473728570706

Table 4.1: A table of mean MC values with m = 1000 and different values of n.

To find the approximation error, we first need to calculate the estimated variance. Let

a = E(X) and b2 = V arX be the expectation of X and the variance respectively. If we obtain

n samples Xi for i = 1, 2, ..., n, then the approximation of a is

â =
1

n

n∑
i−1

Xi.

Therefore, the estimated variance is

b̂2 =

∑n
i=1(Xi − â)2

n− 1
.

Figure 4.2: A plot of the Monte Carlo simulations for different values of n.

The central limit theorem implies that the error is approximately normally distributed with

mean 0 and variance b2

n , that is with a standard deviation of b/
√
n. Therefore, the rate of

convergence is 1√
n

. Based on the confidence interval built in Palczewski (2009), the expected
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value a should lie in the 95% interval[
â− 1.96b̂√

n
, â+

1.96b̂√
n

]
.

1.96b̂/
√
n is the measure of the error of the MC simulation. We observe in Table 5.2 that

the error bound decreases at a rate of 1/
√
n as n increases, therefore ideally we want an n big

enough to reduce the error.

n 1.96b̂/
√
n execution time (s)

101 12.5621587068127 0.008329864
102 9.8028069826697 0.038385436
103 3.0804327504420 0.300104554
104 0.9358969040374 2.913556035
105 0.2987591240892 29.08993831
106 0.0940535776040 289.7469993

Table 4.2: The error bound and execution time in seconds for different n.

However, the simulation becomes computationally slower as the number of paths increases

as seen in Table 5.2. Moreover, when we compare this model to the binomial OP model, for

the same number of intervals of 1000 and the same computational time of roughly 0.008s, the

error for the binomial OP model is ∼ 0.0095236 while the approximate standard deviation for

the MC simulation is ∼ 12.5621587 for 10 simulation paths, indicating that the MC simulation

requires many runs in order to reach the level of accuracy of a binomial OP model. The model

is nevertheless useful especially for option styles where the binomial OP model is not practical.

Various methods have been proposed to improve the MC simulation; examples are variance

reduction techniques and quasi-MC methods. In the next section, we introduce approximations

of the MC simulation through discretisation. The next chapter will be built based on the

discretisation methods analysed here.

4.3 Discretisation Methods

Discretisation is a method of approximating solutions to SDEs, which can be done in several

ways, for example the use of Taylor series expansion to get time-discretised solutions. The

approximate solution to a stochastic process X is assumed to follow the SDE

dXt = a(Xt)dt+ b(Xt)dWt, (4.2)

where a and b are coefficient functions satisfying the conditions for the existence and uniqueness

of a solution to the SDE (see B.2 Glasserman (2004)). The solution X is approximated over a

time interval of [0, tm] with a time step of h = ti/i for i = 0, 1, ...m. Integrating Equation (4.2)
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from t to t+ h produces

Xt+h = Xt +

∫ t+h

t
a(Xu)du+

∫ t+h

t
b(Xu)dWu. (4.3)

4.3.1 Euler Scheme

The simplest discretisation method is the Euler scheme. In this scheme, the integrals of Equation

(4.3) are approximated as products of the integrands at time t and the size of the integration

domain from t to t+ h. The approximations are therefore given by∫ t+h

t
a(Xu)du ≈ a(Xt)

∫ t+h

t
du

= a(Xt)h

and ∫ t+h

t
b(Xu)dWu ≈ b(Xt)

∫ t+h

t
dWu

= b(Xt)(Wt+h −Wt)

= b(Xt)
√
hZ,

where Z is the standard normal distribution. Thus, the Euler scheme can be written as

Xt+h ≈ Xt + a(Xt)h+ b(Xt)
√
hZ.

In the MC path simulation that follows a GBM for generating a stock price, S, set Xt = St,

h = δt, a(Xt) = rS and b(Xt) = σS. Hence, the Euler scheme is

St+δt ≈ St + rSδt+ σS
√
δtZ.

Algorithm 4.2: A standard Euler Scheme to obtain the payoff of the option.

1 func t i on EulerScheme {
2 T := 1 , S:= 250 , K := 200 , r := 0 .05 , sigma := 0 . 2 ;

3 m := 100 , n := 100 , sum:=0 , t imestep := T/m;

4

5 for i :=1 to n {
6 for j :=1 to m{
7 S = S+r ∗S∗ t imestep + sigma∗S∗ s q r t ( t imestep )∗Z ;

8 }
9 sum := sum + max(S − K, 0 ) ;

10 }
11 value = sum/n∗exp(−r ∗T) ;

12 return value ;

13 }
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4.3.2 Milstein Scheme

An alternative method of discretisation that improves the speed of convergence from a strong

order of 0.5 for the Euler scheme to 1 is the Milstein scheme, which was derived by Milshtein

(1976). This scheme adds a correction term to the Euler scheme. To derive the Milstein scheme

with a general setting X, we begin with the two integral terms of the Euler scheme, given by∫ t+h

t
a(Xu)du ≈ a(Xt)h, and

∫ t+h

t
b(Xu)dWu ≈ b(Xt)(Wt+h −Wt).

The idea is to improve the accuracy of the discretisation by considering expansions of order

O(h) to the last term of the Euler scheme. This can be achieved by applying Itô’s formula to

that term. The Itô ’s formula yields

db(Xt) = b
′
(Xt)dXt +

1

2
b
′′
(Xt)b

2(Xt)dt

= b
′
(Xt)[a(Xt)dt+ b(Xt)dWt] +

1

2
b
′′
(Xt)b

2(Xt)dt

= [b
′
(Xt)a(Xt) +

1

2
b
′′
(Xt)b

2(Xt)]dt+ b
′
(Xt)b(Xt)dWt

Applying the Euler approximation to b(Xt) in approximation of b(Xu) where t < u < t+ h by

b(Xu) ≈ b(Xt) + [b
′
(Xt)a(Xt) +

1

2
b
′′
(Xt)b

2(Xt)](u− t) + [b
′
(Xt)b(Xt)][Wu −Wt].

The order for Wu −Wt is O(
√
u− t) whereas (u− t) has a higher order. We remove the higher

order term, we get a simpler approximation

b(Xu) = b(Xt) + [b
′
(Xt)b(Xt)][Wu −Wt] (4.4)

Integrating Equation (4.4) with respect to Wu, we get∫ t+h

t
b(Xu)dWu ≈

∫ t+h

t
(b(Xt) + [b

′
(Xt)b(Xt)][Wu −Wt])dWu

≈ b(Xt)[Wt+h −Wt] + b
′
(Xt)b(Xt)

∫ t+h

t
(Wu −Wt)dWu

Simplifying the remaining integral, we get∫ t+h

t
(Wu −Wt)dWu =

∫ t+h

t
(Wu)dWu −

∫ t+h

t
(Wt)dWu (4.5)
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Let Yt =
∫ t
0 WtdWt with Y0 = 0, so that dYt = WtdWt. To obtain a solution to this SDE, we

apply Ito’s formula and get

Yt =
1

2
W 2
t −

1

2
t.

Applying this back to Equation (4.5) yields∫ t+h

t
(Wu)dWu −

∫ t+h

t
(Wt)dWu = Yt+h − Yt −Wt(Wt+h −Wt)

=
1

2
W 2
t+h −

1

2
(t+ h)− 1

2
W 2
t +

1

2
t−Wt(Wt+h −Wt)

=
1

2
W 2
t+h −WtWt+h +

1

2
W 2
t −

1

2
h

=
1

2
[Wt+h −Wt]

2 − 1

2
h

Now we substitute it back into the equation,∫ t+h

t
b(Xu)dWu ≈ b(Xt)[Wt+h −Wt] + b

′
(Xt)b(Xt)

1

2
[Wt+h −Wt]

2 − 1

2
h (4.6)

Finally, substituting Equation (4.6) into Equation (4.3) yields the Milstein approximation

Xt+h ≈ Xt + a(Xt)h+ b(Xt)(Wt+h −Wt) +
1

2
b
′
(Xt)b(Xt)[(Wt+h −Wt)

2 − h],

where Wt+h −Wt = ∆W =
√
hZ with Z ∼ N (0, 1). Again, for a Monte Carlo path simulation

that follows a geometric Brownian motion for generating a stock price, S, set Xt = St, h = δt,

a(Xt) = rS and b(Xt) = σS. Hence,

St+δt ≈ St + rSδt+ σS
√
δtZ +

1

2
σ2S

[
(
√
δtZ)2 − δt

]
.

Algorithm 4.3: A standard Milstein Scheme to obtain the payoff of the option.

1 func t i on Milste inScheme {
2 T := 1 , S:= 250 , K := 200 , r := 0 .05 , sigma := 0 . 2 ;

3 m := 100 , n := 100 , sum:=0 , t imestep := T/m;

4

5 for i :=1 to n {
6 for j :=1 to m{
7 S = S+r ∗S∗ t imestep + sigma∗S∗ s q r t ( t imestep )∗Z

8 +0.5∗ sigma∗ sigma∗S ∗ ( ( s q r t ( t imestep )∗Z)ˆ2− t imestep ) ;

9 }
10 sum := sum + max(S − K, 0 ) ;

11 }
12 value = sum/n∗exp(−r ∗T) ;

13 return value ;

14 }
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Figure 4.3: A comparison of the Milstein and Euler Scheme as a function of stock (S) for n=100.

Using the same iterative algorithm applied in the standard MC simulation, we generate

iteration of St+δt at δt, 2δt, ... for the Milstein scheme (see Algorithm 4.3) as well as the Euler

scheme (see Algorithm 4.2) for comparison later on. The algorithms return discretised approx-

imations of the option value for the SDE. In contrast, a standard Monte Carlo simulation gives

an exact solution of the stochastic process, S. To compare the results of the Euler and Milstein

schemes, a simulation of 100 runs is generated, as shown in Figure 4.3. An improvement of the

Milstein scheme to the Euler scheme may not be obvious from this graph because the accuracy

depends on how the error is measured. Hence the errors obtained from discretising the SDE

need to be calculated.

4.3.3 Convergence Order

Two types of errors associated with dicretisation methods are considered: the sampling error

and the bias obtained from discretising the continuous process. For the sampling error, consider

a stochastic process St+δt of a standard MC simulation. St+δt has a solution of the form

St+δt = Stexp

[(
r − σ2

2

)
δt+ σ

√
δtZ

]
.

We have earlier defined the convergence rate for the MC simulation, which is 1/
√
n. This applies

to its discretised method as well. So increasing the number of simulation paths n decreases the

sampling error at this convergence rate. However, due to discretisation, another error called

the bias emerges. Assume that Ŝ is the estimator of S. We define the bias as

bias(Ŝ) ≈ E(Ŝ)− S 6= 0.
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The expected mean square error (MSE) is the sum of the sampling error Var(Ŝ) and the square

of the bias, that is

MSE ≈ Var(Ŝ) + (bias(Ŝ))2

= c1
1

n
+ c2(δt)

2,

where c1, c2 are positive constants and δt = T
m for m-steps. To calculate the bias, take the mean

absolute error of St+δt − Sδtt+δt for each simulated path, where Sδtt+δt is the solution obtained

from the Euler scheme with a step size of δt (see Algorithm 4.4). A discrete measure of the

absolute error (Seydel, 2005) is

ε̃(δt) =
1

n

n∑
i=1

|St+δt,i − Sδtt+δt,i|.

The convergence order can be defined for strong and weak convergence. The scheme is said to

be strongly convergent with order γ > 0 if

E(|St+δt − Sδtt+δt|) = O((δt)γ), (4.7)

and weakly convergent with respect to polynomials g with order γ > 0 if

|E(g(St+δt))− E(g(Sδtt+δt))| = O((δt)γ). (4.8)

Algorithm 4.4: An algorithm to obtain the mean absolute error of the Euler scheme.

1 function EulerSchemeError{
2 sum := 0 , e := 0 ;

3

4 for i :=1 to n {
5 for j :=1 to m {
6 S := S+r ∗S∗ t imestep + sigma∗S∗sqrt ( t imestep )∗Z ;

7

8 % std S i s the exac t s o l u t i o n genera ted by

9 % a standard MC s imu la t i on

10 std S := std S ∗exp ( ( r−0.5∗ sigma∗ sigma )∗ t imestep

11 + sigma∗sqrt ( t imestep )∗Z ) ;

12 }
13 e := e + abs ( std S−S ) ;

14 }
15 error := e/n ;

16 return error ;

17 }

The Euler scheme has a weak convergence of order 1 and strong convergence of order 0.5. The

Milstein scheme, on the other hand, has the same weak convergence but with an improved

31



strong convergence of order 1 (Palczewski, 2009). This implies that, for the strong convergence,

the error for Euler scheme is

ε ≈ O
(
T

m

)0.5

= O

(
1

m

)0.5

. (4.9)

Error m = 100 m = 1000 m = 10000

Seed 1 0.597312767636658 0.178602797821815 0.0614883837645385
Seed 2 0.713334963844081 0.170026343577513 0.0571792534279899
Seed 3 0.535792622477826 0.192392546740131 0.0599758175936207

execution time (s) 0.026315263 0.123001487 0.875772804

Error m = 100000 m = 1000000 m = 10000000

Seed 1 0.01670048913320240 0.00568751863932249 0.00209911765693703
Seed 2 0.01817524350137770 0.00562403830202470 0.00186398490448908
Seed 3 0.02066917988648350 0.00567992441663136 0.00185721847860463

execution time (s) 8.355924078 84.05672546 836.446252838

Table 4.3: Table of mean absolute error of the Euler scheme

m (1/m)0.5 mean abs error ratio

100 0.10000 0.59731276763665800 5.97312767636658
1000 0.03162 0.17860279782181500 5.64791637595495
10000 0.01000 0.06148838376453850 6.14883837645385
100000 0.00316 0.01670048913320240 5.28115836998107
1000000 0.00100 0.00568751863932249 5.68751863932249
10000000 0.00032 0.00209911765693703 6.63799287259696

Table 4.4: Table of the ratio of mean absolute error and ε for the Euler scheme

The convergence is tested for different m-steps on three seeds and the result can be seen in

Table 4.3. As expected, increasing m reduces the error. The result obtained is checked against

ε from the strong order convergence of Equation (4.9). The result from Table 4.3 should be

consistent with the ε value and to verify, the ratio between the mean absolute error and ε is

found (see Table 4.4). The ratio shows consistency in the mean absolute errors obtained from

Algorithm 4.4 with the equation of the strong convergence. In a similar fashion, for the Milstein

scheme, the additional correction term is added to Algorithm 4.4 to produce the mean absolute

errors and from Equation (4.7), we have

ε ≈ O
(
T

m

)1

= O

(
1

m

)1

. (4.10)
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Error m = 100 m = 1000 m = 10000

Seed 1 0.02272292010973670 0.00221953267967961 0.00020831336164974
Seed 2 0.01986182858192390 0.00214778291577914 0.00023217745088317
Seed 3 0.02138403075735730 0.00203093795191222 0.00018211846211557

execution time (s) 0.026315263 0.123001487 0.875772804

Error m = 100000 m = 1000000 m = 10000000

Seed 1 0.00001980099067197 0.00000244459023406 0.00000024554289610
Seed 2 0.00002353406093249 0.00000231741006814 0.00000021906750192
Seed 3 0.00002433720133524 0.00000198317872702 0.00000020873203255

execution time (s) 8.355924078 84.05672546 836.446252838

Table 4.5: Table of mean absolute error of the Milstein scheme

m (1/m)1 mean abs error ratio

100 0.0100000 0.02272292010973670 2.27229201097367
1000 0.0010000 0.00221953267967961 2.21953267967961
10000 0.0001000 0.00020831336164974 2.08313361649743
100000 0.0000100 0.00001980099067197 1.98009906719676
1000000 0.0000010 0.00000244459023406 2.44459023406307
10000000 0.0000001 0.00000024554289610 2.45542896095685

Table 4.6: Table of the ratio of mean absolute error and ε for the Milstein scheme

We test the convergence with the same three seeds for different m (see Table 4.5) and then

find their corresponding ratios (see Table 4.6). The result also shows consistency where the ratio

across different m remains relatively the same. This scheme converges at a faster rate than the

Euler scheme, therefore the additional correction term produces a higher order of convergence

O(h) which in essence is an improvement to the Euler scheme.

4.3.4 Runge-Kutta Methods

One problem of applying Taylor series methods is the use of the derivative b′ as seen in the

Milstein scheme. In this section, we will discuss in theory an alternative method that eliminate

the use of that derivative. The second order Runge-Kutta (RK2) method, considered as a

refinement of the Euler scheme, takes a trial step at the midpoint of a time-step interval. We

will discuss this method in a general setting. Consider an initial value problem of

y′ = f(t, y), y(t0) = y0.

This technique begins by first finding the initial derivative of y at the initial step, set to k1. Then,

using k1, we find the midpoint between this step and the next step, and calculate the derivative

of y at this point. Finally, we use this value to estimate y at the next step, yn+1 = yn + k2.
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Therefore, the RK2 method produces the following equations:

k1 = hf(xn, yn),

k2 = hf(xn +
1

2
h, yn +

1

2
k1),

yn+1 = yn + k2 +O(h3).

Figure 4.4: An illustration of the 2nd-order Runge Kutta method.

The advantage of using this method is the error associated with estimating yn+1 decreases

due to a more accurate slope (see Figure 4.4). In addition, the first-order error is eliminated

since this method is of second order. Applying this method to the factor b′ of the Milstein

scheme, Schaffter (2010) found that the RK2 method for the stochastic process X is

Xt+h ≈ Xt + ah+ b∆Wt +
1

2
√
h

[b(X̄t)− b(Xt)][(∆Wt)
2 − h].

where X̄t = Xt + ah + b
√
h is an approximate solution to X. In fact, X̄t is the Euler scheme.

This method has the same strong order of convergence as the Milstein scheme, which is an order

of 1. Implementation of the RK2 method was not carried out due to the limited time available.

This method would reduce the computational cost because only evaluates a and b and not their

derivatives.
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Chapter 5

Improving the Monte Carlo

Simulation

In this chapter, we consider a method to improve the efficiency of the MC simulations, which

is the multilevel method introduced by Giles (2008) and applied to discretised versions of the

SDEs. We first introduce the multilevel method to the MC simulation using the Euler scheme

and test the complexity and evaluate the root-mean-square (RMS) error. Then, we apply the

Milstein scheme to the multilevel method to get a better strong convergence.

5.1 Multilevel Monte Carlo Simulation

The multilevel MC approach is a result of the work by Giles (2008), which is based on the multi-

grid idea for finding iterative solutions of PDEs. The objective is to reduce the computational

cost of estimating the payoff value obtained using MC simulations from O(ε−3) to O
(
ε−2(logε)2

)
for the Euler discretisation with an RMS accuracy ε.

In a standard MC simulation, the timestep is fixed at h = TM−1, where M is the refinement

factor. For the multilevel MC simulation, consider MC simulations with different timesteps

hl = TM−l for different levels of refinements, l = 0, ..., L, with L being the finest refinement.

Let P be the payoff and P̂l the approximation of the payoff on level l. According to Giles (2008),

the expectation for P̂L is

E[P̂L] = E[P̂0] +

L∑
l=1

E[P̂l − P̂l−1]. (5.1)
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Algorithm 5.1: An algorithm for a multilevel Monte Carlo simulation.

1 function mlmc (M, eps , mlmc l ) {
2 % L = the f i n e s t l e v e l

3 % Vl = the var iance at l e v e l l

4 % Pf = the payo f f a t the f i n e r l e v e l ( l )

5 % Pc = the payo f f a t the coarser l e v e l ( l −1)
6 % N = i n i t i a l number o f s imu la t i on paths

7 % Nl = opt iomal number o f s imu la t i on paths

8 % mlmc l = a func t i on to c a l c u l a t e Pf and Pc at l ,

9 % re turns 4 s e t s o f sums

10 L := −1, converged := 0 ;

11

12 while ˜ conver {
13 % Sta r t s from L=0 and i t e r a t e wh i l e convergence i s f a l s e .

14 L := L+1;

15

16 sums := mlmc l (M, L ,N) ;

17 N[ L+1] := 10ˆ4 ;

18 sum1 [ L+1] := sums [ 0 ] ;

19 sum2 [ L+1] := sums [ 1 ] ;

20

21 % Estimate Vl and f i nd opt imal Nl .

22 for i := 1 to L+1 {
23 Vl := sum2 [ L+1]/N[ L+1]− sum1 [ L+1]/N[ L+1])ˆ2 ;

24 Nl := ce i l (2∗ sqrt ( Vl/MˆL)∗sum( sqrt ( Vl∗MˆL)/eps ˆ 2 ) ) ; }
25

26 % Compare Nl wi th the number o f samples used in the current l e v e l l .

27 % I f Nl i s l a r ge r , then the a d d i t i o n a l number o f samples dNl

28 % i s c a l c u l a t e d .

29 for l := 1 to L {
30 dNl := Nl−N[ l +1] ;

31 sums := mlmc l (M, L , dNl ) ;

32 N[ l +1] := N[ l +1] + dNl ;

33 sum1 [ l +1] := sums [ 0 ] ;

34 sum2 [ l +1] := sums [ 1 ] ; }
35

36 % Test f o r convergence i f L>=2.

37 i f L > 1 && MˆL >= 16 {
38 con1 := Mˆ(−1)∗ suml1 [ L ] /N[ L ] ;

39 con2 := suml1 [ L+1]/N[ L+1] ;

40 converged := max( con1 , con2 ) ;

41 i f ( converged < (M−1)∗eps/sqrt (2 ) | | MˆL>1024) {
42 conver := true ;

43 } else conver := f a l s e ;

44 }
45 P := P + sum1 [ L+1] / N[ L+1] ;

46 }
47 return [P, Nl ] ; }
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In other words, the expectation of the finest level is equal to the expectation of the coarsest

level with an additional sum of the difference between expectations with different levels. The

expectation E[P̂l − P̂l−1] is a result obtained from two discrete approximations that follow the

same GBM path. Now we want to estimate the payoff value in a way that will minimise the

variance for a given computational cost. Let Ŷl be the estimator of E[P̂l − P̂l−1] for l > 0 using

Nl samples. The simplest estimator is to take the mean of these independent samples, which is

Ŷl = N−1l

Nl∑
i=1

(
P̂

(i)
l − P̂

(i)
l−1

)
.

Once we obtain the estimator, the variance is calculated. This estimator has a variance

V [Ŷl] = N−1l Vl where Vl is the variance of a single sample. The combined variance for the

combined estimator Ŷ =
∑L

l=0 Ŷl is therefore

V [Ŷ ] =
L∑
l=0

N−1l Vl. (5.2)

Next, the value of the estimator is tested for convergence. The criterion for convergence is

max
{
M−1

∣∣∣ŶL−1∣∣∣ , ∣∣∣ŶL∣∣∣} < 1√
2

(M − 1)ε. (5.3)

To minimise the variance, we must choose an optimal number of samples Nl to be propor-

tional to
√
Vlhl. Hence, the equation to determine optimal Nl (Giles, 2008) is given by

Nl =

⌈
2ε−2

√
Vlhl

(
L∑
l=0

√
Vl
hl

)⌉
. (5.4)

This optimal Nl takes into account the effect of the computational cost across all levels. The

accuracy is chosen in such a way to ensure that the variance of the combined estimator in

Equation (5.2) is less than 1
2ε

2. Equation (5.3) makes sure that the bias is less than 1√
2
ε so

that the combined error should be less than ε2. The numerical algorithm for the multilevel MC

method is summarised in Algorithm 5.1. The algorithm begins by initially setting L = 0 and

N = 104. Then we estimate V l and find the optimal Nl using Equation (5.4). This optimal Nl

is compared to the number of sample paths at that current level and if Nl is larger, then the

extra samples are calculated. Then, we test for convergence. If L < 2, then go to the next level

L = L + 1 and repeat the steps. If L ≥ 2, then we take the convergence test which has the

condition in Equation (5.3). If the condition for convergence is not met, go to the next level

and repeat the steps. Finally, when L converges, we calculate the estimated payoff P̂ . This is

generally how the multilevel MC method works and it is applicable to different types of option

styles.
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5.1.1 Computational Complexity

In order to increase efficiency in estimating the expected option value, a certain level of compu-

tational savings needs to be achieved. The computational complexity measure is governed by

the complexity theorem, as stated by Giles (2008) in a general setting so that it can be applied

to different option styles including path-dependent styles. The theorem gives bounds to the

mean-square-error (MSE) and the computational complexity C of the multilevel estimator Ŷ .

This theorem states that there exists a positive constant c1 such that for any ε < e−1, we have

the bounds

MSE < ε2 and C ≤ c1ε−2(logε)2. (5.5)

The computational cost is proportional to
∑L

l=0Nlh
−1
l . Therefore, the cost is calculated as

the total number of timesteps across all the levels, with each level performing the coarser and

finer timesteps. Thus, we can write the computational cost as

C = N0 +
L∑
l=1

Nl(M
l +M l−1). (5.6)

For the standard MC simulation, the computational cost is defined as

C∗ =
L∑
l=1

N∗l Ml, (5.7)

where N∗l = 2ε−2V [Pl]. This is chosen so that the variance of the estimator is 1
2ε

2 similar to

that of the multilevel MC simulation. To calculate the accuracy, we find the RMS error. The

error is the difference between the estimated payoff obtained from the multilevel algorithm and

an exact payoff value obtained from the BS formula. This RMS error is then compared to the

desired accuracy ε.

5.1.2 Application to the European Option

Figure 5.1 shows the numerical results for parameters S(0) = 1, K = 1, T = 1, σ = 0.2 and

r = 0.05 for a geometric Brownian motion with European option, which has a payoff value of

P = e−rTmax(S −K, 0).

The top left shows the behaviour of the logarithm base M variance of P̂l and P̂l − P̂l+1 at

different grid levels. The slope log|P̂l − P̂l+1| has a gradient of −1, which indicates that the

variance is proportional to M−1, therefore Vl = O(hl). The top right is a plot of the log of

mean at different levels. The mean E[P̂l − P̂l+1] has a slope of −1, which again indicates a

convergence of O(hl).
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Figure 5.1: Geometric Brownian Motion with European Option (option value ≈ 0.104632)

ε2C (logε)2 ratio

0.181524 47.71708299430558 0.003804172187592912
0.2264535 57.773718199472874 0.003919662903089145
0.50385836 72.54257985990712 0.006945691219874478
0.59348669 84.83036976765435 0.006996158234669104
0.61589781 98.07906570323802 0.006279605189791959

Table 5.1: Table showing the ratio ε2C/(logε)2.

The plot at the bottom is a result of obtaining five sets of multilevel calculations for dif-

ferent user-specified accuracies, ε. By observation, we can see a significant decrease in the

computational cost for the multilevel MC method as compared to the standard MC method.
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The computational cost is calculated as ε2C because from the complexity theorem, C is pro-

portional to ε−2(logε)2, which means that ε2C should be proportional to (logε)2. We check this

by calculating the ratio ε2C/(logε)2 for the multilevel method as seen in Table 5.1. The table

shows consistency in the ratio. The reason for the slight difference in ratio between the first two

values and the last three is due to the different number of L calculated at each ε. For ε values

of 0.001 and 0.0005, L = 2, while for ε = 0.0002, 0.0001, 0.00005, L = 3. From the the plot in

Figure 5.1, it can be observed that there is a slow decrease in ε2C as the accuracy increases for

the multilevel method. On the other hand, for the standard MC method, ε2C is approximately

proportional to ε−1. The significant decrease from the third ε value to the fourth is again due

to the fact that L = 3 for the first three accuracies and L = 2 for the last two accuracies as

seen in the plot.

eps std cost mlmc cost savings

0.001 901779.6278575546 181524.0 4.967825895515494
0.0005 4508898.1392877735 905814.0 4.9777306812301125
0.0002 9.640097101142982E7 1.2596459E7 7.653021457175371
0.0001 4.63969262499998E8 5.9348669E7 7.817686063018498
0.00005 1.9342424284542708E9 2.46359124E8 7.851312332374874

Table 5.2: Table of standard MC costs, multilevel MC (mlmc) costs and their subsequent
savings.

Table 5.2 shows the computational savings achieved from calculating the computational costs

for the standard MC simulation and the multilevel MC simulation (from Equations (5.7) and

(5.6) respectively), that is, savings = standard cost / multilevel cost. As the accuracy increases,

the computational savings increases. At the highest accuracy, ε = 0.00005, the multilevel MC

method is roughly 8 times more efficient than the standard MC method.

5.1.3 Application to the Asian Option

The Asian option is an option style where the payoff is determined by the average asset price

over a fixed period of time, unlike the European option where the payoff is determined by the

asset price at the expiration date. Therefore, the Asian option has a payoff of

P = e−rTmax(S̄ −K, 0),

where S̄ = T−1
∫ T
0 S(t)dt. The simplest approximation of S̄ is given by Giles (2008) as

S̄ ≈ T−1
nT∑
n=1

1

2
h(Ŝn + Ŝn+1),

where nT = T/h is the number of timesteps. This approximation takes the average value of the

coarser and finer values of the approximated prices found with the Euler discretisation. In the

numerical calculation, the option prices for the coarser and finer grids are found separately and
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Figure 5.2: Geometric Brownian Motion with Asian Option (option value ≈ 0.0576613)

then the final payoff is found by subtracting the payoff at the finer grid and the payoff at the

coarser grid discounted at e−rT .

ε2C (logε)2 ratio

0.14595 47.71708299430558 0.0030586530198716726
0.282945 57.773718199472874 0.004897469105642253
0.2915706 72.54257985990712 0.004019302877883248
0.3193017 84.83036976765435 0.003764002218480829
0.32615585 98.07906570323802 0.0033254379786494255

Table 5.3: Table showing the ratio ε2C/(logε)2 for the Asian option.

Figure 5.2 presents results from the multilevel MC simulation for the Asian option with
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Euler discretisation. The behaviours of the variance and the mean E[P̂l − P̂l+1] are similar to

those of the European option. The slopes for the two plots at the top for log|P̂l− P̂l+1| are both

equal to −1, hence the convergence is O(hl) in both cases. The bottom plot shows the result

of ε2C against ε. Similar to the European option, ε2C should be proportional to (logε)2. We

demonstrate this in Table 5.3.

eps std cost mlmc cost savings

0.001 264281.929053998 145950.0 1.8107703258238987
0.0005 4576876.039467748 1131780.0 4.043962642446189
0.0002 3.1530589229553685E7 7289265.0 4.325619829921629
0.0001 1.3934544198989743E8 3.193017E7 4.364068277428445
0.00005 5.706048530312724E8 1.3046234E8 4.373713157615235

Table 5.4: Table of standard MC costs, mlmc costs and their savings.

Similarly, the savings for the Asian option are also calculated as standard cost/multilevel

cost. The results indicate that there is a significant amount of savings as ε decreases (see Table

5.4).

5.2 Multilevel MC Simulation using Milstein Scheme

In the multilevel MC simulation, Giles (2008) has shown that the computational cost can be

reduced from O(ε−3 to O(ε−2(logε)2). In his next paper, he showed that the Milstein scheme

can be used to further improve the computational cost to O(ε−2), which we will examine in this

section. However, the paper addresses the more complex exotic options such as Asian, lookback

and barrier options while this section only investigates the European option because of time

constraint. Recall that the approximation for X using the Milstein scheme is

Xt+h ≈ Xt + a(Xt)h+ b(Xt)(Wt+h −Wt) +
1

2
b
′
(Xt)b(Xt)[(Wt+h −Wt)

2 − h].

We apply this scheme with the correction term to the multilevel MC simulation implemented

earlier, therefore we apply the same algorithm for this method (see Algorithm ??). The re-

finement factor is chosen as M = 2, meaning that the next level is has twice the number of

timesteps as the current level.

The complexity theorem from Giles (2007) defines a bound for the computational complexity

C of a multilevel method using a Milstein scheme such that for any ε < e−1, there exists a

positive constant c2 such that

C ≤ c2ε−2.
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5.2.1 Application to the European Option

Figure 5.3: Geometric Brownian Motion with European Option (option value ≈ 0.145465)

Similar to the previous multilevel method, the test case supplied has the parameters S = 1,

K = 1, r = 0.05, σ = 0.2 and T = 1. Figure 5.3 shows the plots of the results from the multilevel

MC simulation using the Milstein scheme. The top left is a plot of log base M variance versus

the level l. The slope for log|P̂l − P̂l−1| is observed to be approximately −2, which indicates

that Vl = O(h2l ). The top right shows a plot of the absolute mean in log base M against l. At

l = 8 and l = 4, we observe that the slope for log|P̂l − P̂l−1| is approximately −1, indicating

that the mean E[P̂l − P̂l+1] converges at O(hl).

The bottom plot shows results from five sets of accuracies, ε. As expected, the computational

cost for the multilevel method is much lower. For example, for the finest accuracy, ε = 0.00005,
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the computational cost for the multilevel method is reduced to almost 8 times compare to the

standard method. From the complexity theorem stated earlier, the computational cost for the

Milstein scheme is O(ε−2), therefore ε2C should be proportional to 1. Table 5.5 shows that the

results of ε2C for different accuracies are approximately equal, indicating that the convergence

order of C is ε−2.

ε ε2C

0.001 0.15372
0.0005 0.10935225
0.0002 0.0885906
0.0001 0.09317259
0.00005 0.0943719525

Table 5.5: Table showing the values of ε2C for the European option.

Also, if we compare this plot with that of the Euler scheme in Figure 5.1, we observe that

for the most accurate case, ε = 0.00005, the computational cost for the multilevel method using

the Milstein scheme is reduced by almost 7 times. Table 5.6 shows that there is a significant

amount of computational savings attained for the multilevel MC simulation.

eps std cost mlmc cost savings

0.001 5926783.0 153720.0 38.555705178246164
0.0005 2.9633798E7 437409.0 67.74848711389112
0.0002 1.77802467E8 2214765.0 80.28051147638689
0.0001 7.70477004E8 9317259.0 82.69352649743878
0.00005 5.3.141175009E9 3.7748781E7 83.21262106450537

Table 5.6: Table of standard MC costs, mlmc costs and their savings.

The numerical results demonstrated here is only for the most basic option style. Application

to other option styles has not been implemented. More option styles should be applied in order

to investigate the extent to which the efficiency of the Milstein scheme can be achieved.
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Chapter 6

Evaluation

In this chapter, two types of evaluation will be discussed. They are: the evaluation of the

models and the evaluation of the implementation. The first part gives a brief summary of all

the evaluations of the models explained in earlier chapters. The next part explores the more

technical side of the evaluation, giving insights on the choice of programming language used

and then discussing the implementation of the algorithms.

6.1 Evaluation of Models

Both the solutions obtained from the BS model and the binomial OP model can be easily

verified by comparing them against option calculators available on the internet. The MC sim-

ulation is much harder to compare since the model generates random values. For the BS

model, we can take, for example, the following website with a BS calculator, which returns

call and put values accurate to 4 decimal places: http://www.money-zine.com/Calculators/

Investment-Calculators/Black-Scholes-Calculator/. Different test cases can simply be

applied on our implementation of the BS model and that of the BS calculator to verify that

the results are the same. The only problem is that this BS calculator is only accurate up to 4

decimal places, while our result is accurate up to 15 decimal places. For the binomial OP model,

the following interactive website is used: http://jpja.net/interactive/binomial.php. This

calculator prints the entire binomial tree, hence is it is possible to verify that all values in our

binomial tree are correct. Again, the result from this calculator is accurate up to 3 decimal

places. However, a 3-decimal place accuracy of a result for comparison should provide enough

information to verify that our model returns the correct result.

Now, referring to the evaluation in earlier chapters, we verified that the binomial OP value

converges to the BS value with an increased in the number of periods, as demonstrated in
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Section 3.2.

For the MC simulation, we rely on the BS model, which was found to produce correct results,

to verify that the MC value is correct. The result is seen in Section 4.2, which explores the effect

of increasing the number of simulation paths. For the Milstein and Euler schemes, we verify

their results by calculating their mean absolute errors relative to the MC simulation. We found

that they indeed converge strongly at their orders 1 and 0.5 respectively (see Section 4.3.3).

The evaluation for the multilevel method involves verifying that efficiency is achieved by

calculating the computational costs for different accuracies (see Sections 5.1.2, 5.1.3 and 5.2.1).

6.2 Evaluation of Implementation

All implementation of the models are executed on the same machine to eliminate any error in

the variation of the performances of different machines. The test cases are also kept consistent

so that comparisons of results can be made between the models. For the choice of programming

language, we do not require a fast language since we want to compare the performance of

different models through observations of their execution times. Therefore, although slower than

C, Java is chosen as the programming language because it is substantial, robust and is platform-

independent. It is also interoperable as extensions or bridges to other programming languages

can be easily added. For producing the graphical results seen in this report, a Java library was

added called the JMathPlot. This tool provides interactive 2D and 3D plots and is simple to

import and use.

A round off issue may emerge especially in implementations where calculations are required

in many runs. We rely on the precision of the double values used in the implementation,

although roundoff errors cannot be completely eliminated.

The codes implemented in this project are not fully tested, each only having one test case

since they are only used for analysing. Nevertheless, the results from the test case are verified.
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Chapter 7

Conclusions

In this report, we first outline two standard options pricing models and evaluate them based

on their accuracy and efficiency, and then apply the multilevel MC simulation as a method

to improve the efficiency of the MC simulation. The result for the binomial options pricing

model shows that the accuracy relative to the BS model can be achieved with a large number

of periods, m. The convergence rate from this result is verified as 1/m, which is a theoretical

convergence rate presented by Chang and Palmer (2007).

The MC OP model is the next model to be investigated. We test the standard MC simulation

by initially running a simulation of n paths for three seeds. This three seeds are taken to show

how the result varies when they are run on different number of paths n. Due to its random

nature, there is a sampling error associated with taking random variables to estimate the payoff,

which we want to minimise. The result shows that increasing the number of paths will reduce

the sampling error at a rate of 1/
√
n. However, to achieve the level of accuracy of a binomial

OP model takes a much greater computational effort for the MC simulation.

Since discretised methods are applied in the multilevel MC simulation, a study of these

methods is necessary. The convergence order takes into account the bias due to discretisation.

The result from the Euler scheme shows a strong convergence order of 1/2. To improve the

strong convergence, a correction term is added to the Euler scheme. This refinement is the

Milstein scheme and the result of this scheme has a strong convergence order of 1. The error is

thus significantly reduced.

The results presented for the improved MC simulation show an increased in the efficiency

of the model. The computational cost of estimating the payoff is observed to be O(ε−2(logε)2)

for the Euler scheme. An even better computational saving can be observed for the Milstein
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scheme, with O(ε−2).

7.1 Future Work

Due to time constraint, several problems that have been originally planned were not carried

out. These are thus set as the future work. We have investigated two discretisation methods

for the MC simulation. Another method we could consider is the Runge-Kutta method that

simplifies calculation of the asset price by replacing the derivative term of the Milstein scheme

with a simpler term while still keeping the same convergence order.

Application of the multilevel MC simulation to the Bermudan option proved to be quite a

challenge since this option style is path-dependent. In addition, the multilevel method adds to

the complexity of pricing the American option so it is also wise to price the American option

using the standard MC simulation. One method to price options of this style is to use the

Longstaff-Schwartz’s least square approach (Longstaff and Schwartz, 2001).

For the multilevel MC simulation, application to other exotic option styles such as barrier

and look back options can be tested to observe the behaviour of this method in estimating

payoffs of different option styles.

Here, we also present ideas on potential areas of options pricing for future work. We have

seen two standard models that price options numerically. We may use another popular numer-

ical method, finite-difference methods, to compare its performance with the other models. In

addition, we could take a different direction and look at extensions to the models. For example,

we can reduce the assumptions of the models and introduce much complex methods to price

the options.

In conclusion, the models presented in this project are standard models that can be readily

applied in the real world. The binomial options pricing model proves to converge faster to the

BS model compare to the MC simulation, although it is much less flexible due to the assumption

that there are only two possible price movements. The multilevel methods introduced to the

MC simulation shows an increased efficiency, albeit not by much, but with promising results.

The application of the Bermudan option would make for an interesting case for future work.

48



Glossary

arbitrage The simultaneous buying and selling of securities from two dif-

ferent markets in order to take advantage of a price discrepancy.

call option An option that grants the buyer the right, but not the obliga-

tion, to buy an underlying asset at a strike price on or before an

expiration date.

dividend A portion of a company’s profit paid out to shareholders.

drift rate The average rate of increase of a value in a stochastic process.

illiquidity The condition in which an asset is difficult to buy or sell.

intrinsic value An absolute value of the difference between the stock price and

the strike price of an option.

option A financial derivative whose price is derived from an underlying

asset such as a stock.

portfolio An investment that includes a collection of several assets in order

to reduce risk.

premium The amount per share that an option buyer pays to the seller in

order to enter the option contract.

put option An option that grants the seller the right, but not the obliga-

tion, to sell an underlying asset at a strike price on or before an

expiration date.

risk-free bond A theoretical bond that pays out interest and principal in a given

period of time with certainty.

risk-free interest rate A rate of return of an investment with zero risk.

risk-neutral measure A probability measure for an underlying asset that is discounted

at a risk-free rate.

stock price The current price of a security that represents a claim on part of

the company’s assets and earnings.

strike price A fixed price at which a derivative contract can be exercised.

transaction cost A fee for buying or selling options or stocks.

vanilla options Options that are not exotic.

volatility A measure for the variation of price of an underlying asset over

time.
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Appendix A

Personal Reflection

This project has been quite a challenge for me, especially in terms of giving a clear context of

what it is I want to achieve from an early stage. The project started off well in early February

when I began with the background research, albeit still not having a clear direction. By the

time the interim report was due, I had successfully implemented two options pricing models.

However, the problem was I only had a fairly vague aim and I needed an element that will

push this project to the desired master’s level. The exact term that my supervisor used was

to ”broaden and focus”. Hence, there was a slight change in the project direction, although I

still keep my earlier work which eventually became Chapter 3 and the first half of Chapter 4

of this report. The second half of the project period involves more intensive programming and

evaluation as I started to work on the main model that reflects the project aim. It is therefore

advisable to have a clear aim from day one because a change in the project direction especially

midway through the project can be a risky affair.

Methodology-wise, the structure of this project is not the usual methodology that you see

in many other projects. Basically, I work on one model at a time and for each of these models,

I did some background research, implement the model, then test and evaluate it. The reason

for this choice of methodology is due to the way this report is structured. It would be difficult

to introduce all the models in one section and then have separate sections to discuss their

implementations and evaluations because it can get very messy. Hence, I decided to keep it

simple by working on one model at a time while still maintaining a good balance between the

breadth and the depth of the project.

The supervisor’s guidance throughout the course of the project has been extremely helpful

and as a result, I’ve overcome many challenges. The weekly meetings were consistent and the

advises given were invaluable. The opportunity to get the assessor’s feedback is also important
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because not only will the assessor mark the report, it is also a golden opportunity to get a

third person’s perspective on the project. The feedback given by the assessor has been very

constructive, and it gave me the opportunity to properly structure this report.

Towards the end of the project, time became really precious and my original plan of com-

pleting the implementation part for the last section well before the deadline fell apart as I had

some trouble with the implementation, thus allowing little time for the final evaluation. A word

of advise for students looking to work on this area is to keep a good time management schedule

and to start early as soon as the opportunity arise, because errors and bugs in implementation

can throw you off guard when you least expected them to. You will be surprised at what you

can achieve if you plan your project well.

Another advise that you constantly hear from lecturers and seniors alike is to choose a project

that you are genuinely interested in, and I couldn’t agree more. I found myself naturally drawn

to this area of computing and I can’t imagine myself working on a different area now, although

if given the opportunity, I would no doubt take up the challenge. Successful delivery of your

project is just as important as finding your passion working on it.

Finally, the knowledge and experience I have gained through working on this project is

rewarding. I thoroughly enjoy my time spent on it.
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Appendix B

Record of Materials Used

For the multilevel Monte Carlo simulation, the algorithms are obtained from Giles (2008)’s

”Multilevel Monte Carlo path simulation” and Giles (2007)’s ”Improved multilevel Monte Carlo

convergence using the Milstein Scheme”. In this project, however, all the work done is in Java

so the implementation of the multilevel method in Java is based on the MATLAB code provided

by Mike Giles, which can be found in http://people.maths.ox.ac.uk/gilesm/mlmc.html.
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Appendix C

Interim Report
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 Supervisor's and Assessor's comments overleaf  

School of Computing, University of Leeds 

MSC INTERIM PROJECT REPORT 

All MSc students must submit an interim report on their project to the CSO by 9 am 

Friday 17
th

 June.  Note that it may require two or three iterations to agree a suitable 

report with your supervisor, so you should let him/her have an initial draft well in 

advance of the deadline. The report should be a maximum of 15 pages long and be 

attached to this header sheet.  It should include: 

 the overall aim of the project 

 the objectives of the project 

 the minimum requirements of the project and further enhancements 

 a list of deliverables 

 resources required 

 project schedule and progress report 

 proposed research methods 

 a draft chapter on the literature review and/or an evaluation of tools/techniques 

 

The report will be commented upon both by the supervisor and the assessor in order to 

provide you with feedback on your approach and progress so far.  

 

Student: Pei Yuen Lee 

Programme of Study: MSc Computing and Management 

Title of project: Modelling and Simulation of Options Pricing 

 

Supervisor: Matthew Hubbard 

External Company (if 

appropriate): 

- 

 

 

 

Signature of student: Date: 14/06/2011 
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C.1 Aim

The aim of the project is to study several options pricing models to determine areas where

improvements in pricing options can be made, and then to develop an efficient method to price

options.

C.2 Objectives

The objectives of the project are to:

• Design and implement the algorithms for binomial and Monte Carlo models.

• Test the algorithms with different test cases by changing parameters.

• Visualize the models from the results obtained.

• Develop a method to improve these models.

C.3 Minimum Requirements

The original minimum requirements are:

1. A binomial simulation of the European option.

2. A Monte Carlo simulation of the European option.

3. A prototype of a static interface to visualize the results.

Further extensions of the minimum requirements are:

1. A modified options pricing model.

2. An implied volatility surface of the European option.

C.4 Deliverables

The deliverable for this project will be the written report and the modified options pricing

model.

C.5 Project Schedule

The original project schedule is laid out in the Gantt chart below.
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The progress at the current stage includes the continuous literature research on two option

pricing models: binomial and Monte Carlo, and also the Black-Scholes formula which is used for

validating the results from the two models. Algorithms for the two models were then designed

and successfully implemented with Java.

Since the original aim was to develop a tool that can visualize the behaviour of the two

models, a graph plotting tool or extension was needed. JMathPlot is an essential Java library

that can plot 2D and 3D graphs so it is used for this project. As of this writing, graphs that

have been successfully plotted include the stock-option graph, the option pricing surface and

the graph of convergence of the binomial model to the Black-Scholes model.

C.6 Proposed research methods

The research method begins with background research on financial modelling to determine

current research interests on options pricing, including the different styles of options, the Black-

Scholes model, the binomial options pricing model and the Monte Carlo option pricing model.

Next, the basic algorithms for binomial OPM and Monte Carlo OPM will be desinged to prepare

for implementation and testing. Java will be the primary programming language of choice to

draw on the programming experience gained from related modules. Currently, the JMathPlot

package for Java is used as the graphical extension for visualizing the models but other possible

tools such as MATLAB will be considered if there is a need for visualizing more complex models.

A further extension to the project would be a method to improve the current option pricing

models.

C.7 Literature Review

The modelling of financial options became significant in the early seventies when Fischer Black

and Myron Scholes [1973] published a paper on pricing European call and put options using

stochastic differential equations which subsequently led to the founding of the Chicago Board

of Options Exchange (CBOE) in 1973. Since then, various studies on extending the model and
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developing alternative approaches to the valuation of options have emerged, including numerical

approaches such as finite difference methods, Monte Carlo methods and binomial methods. A

recent literature by (Broadie and Detemple, 2004) focuses on the trends and development of

financial options modelling with emphasis on the development of models that depart from the

assumptions of the classic Black-Scholes (BS) model, since empirical evidence suggests that the

BS prices tend to differ from the market prices of options due to the assumption that sharp

changes in stock prices are negligible (MacBeth and Merville, 1979; Vasile and Armeanu, 2009).

Several modifications of the model have been made to reduce discrepancies between these

assumptions and the real world. Examples are the extension of the Black-Scholes model with

illiquidity (Cetin et al., 2004), the inclusion of transaction costs through adjusting the volatility

(Leland, 1985), and also extensions to include jump-diffusion models and stochastic volatility

models. In terms of option styles, the Black-Scholes model can only be used to price European

options, where exercising can only take place at the expiration date. American options, on the

other hand, can be exercised on or before the expiration date. Hence, the binomial lattice model

is suitable for valuing this type of options (for example, the Cox, Ross and Rubenstein (CRR)

model). For more complex options like exotic options with multiple uncertainties, the Monte

Carlo model is introduced.

C.8 Options pricing

An option is a derivative security that grants the buyer of the option the right, but not the

obligation, to buy or sell an underlying asset, S (such as a stock, a bond or an index portfolio)

on or before an expiration date, T , for an exercise or strike price, K. A call option is the right

to buy, while a put option gives the right to sell. The most common styles of standard plain

vanilla options are the European option and the American option. Exercising for the European

option can only be done at the expiration time, T , but the option can be exercised at any time,

t, up to the expiration date for the American option. Since exercising the option is a right, the

exercise payoff, for a call option, is max{S−K, 0}, and for a put, max{K−S, 0}, in which case

0 is the situation where the option becomes worthless upon expiration. Due to the non-negative

payoff, an investor must pay a premium to purchase the option.

For the convenience of further discussion, the notations used throughout the paper are

summarized below:

S = price of underlying asset

K = strike or exercise price

C = value of the European call option

r = risk-free interest rate

t = time in years

61



T = maturity date

σ = volatility of returns of the underlying asset

µ = drift rate

p = a probability measure

q = probability that the price will move upwards

C.8.1 Black-Scholes Model

The most popular method of pricing options is the classic Black-Scholes model (Black and

Scholes, 1973). The assumptions for this model are:

1. There is no arbitrage opportunity so there is a premium price for buying the option.

2. The price follows a geometric Brownian motion with constant drift and volatility.

3. The underlying stock does not pay dividends.

4. There is a constant interest rate.

5. There is no transaction cost and tax.

6. It is possible to buy or sell any amount of options at any given time.

The underlying asset follows the geometric Brownian motion (GBM), which applies the

following stochastic differential equation (SDE):

dS = µSdt+ σSdW (C.1)

Using Itô’s lemma,

dC =

(
µS

∂C

∂S
+
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt+ σS

∂C

∂S
dW

and from the risk-neutrality measure (setting µ = r), the Black-Scholes partial differential

equation (PDE) can be derived as

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (C.2)

Solving the PDE, we obtain the following Black-Scholes formula

C = SN(d1)−Ke−rtN(d2) (C.3)

with

d1 =
ln( SK ) + (r + σ2

2 )t

σ
√
t

and d2 = d1 − σ
√
t
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where N(d1) and N(d2) denote the cumulative distribution functions of the standard normal

distribution for d1 and d2 respectively. The complete derivation can be found in (Ugur, 2008),

(Wilmott, Howinson and Dewynne, 1998) and (Brandimarte, 2002).

We shall take a test example problem for pricing a European call option to illustrate this

model. Suppose that a stock price, S, of a company is currently $250 per share, and that in a

year’s time (T = 1), the price either rises or falls by 20% (σ = 0.2). A European call option is

to buy the stock at an exercise price, K, of $200 at the expiration time with a risk-free rate of

5% (r = 0.05). To price the call option, we substitute the given set of variables into (C.5), and

obtain C = $61.472091898474446. This is the market value of the call option for the underlying

stock. Mathematically, it is a closed-form solution of the call option that will form the basis

of our result for comparisons with other methods of pricing options, in particular the binomial

and Monte Carlo option pricing models.

One of the limitations of the Black Scholes model is it can only be used to price European

options. To price American options, numerical methods such as the binomial method (Cox,

Ross and Rubenstein, 1979) and finite difference methods (Schwartz, 1977) are required. For

exotic options (e.g. Asian, Lookback and Barrier), the Monte Carlo method is normally used.

We shall focus on two models in detail: the binomial model and the Monte Carlo model. These

models are alternative methods that are approximations to the Black Scholes for European

options. Running approximations of the Black-Scholes value help in validating results and

reducing errors of the models so that they can be applied to the valuations of more complex

options such as American and Asian options.

C.8.2 Binomial Options Pricing Model

(Cox, Ross and Rubenstein, 1979) (CRR) developed a discrete-time lattice model for valuing

options that is useful for pricing American options. This binomial model follows the same basic

assumptions as the Black-Scholes model. At each step, it is assumed that the stock price either

moves up by an up factor of u or down by a down factor of d. Thus, if the current stock price

is S, the stock price at the next period will either be uS or dS. CRR method assumes that u

and d are determined by the volatility σ, such that

u = eσ
√
δt

d =
1

u
= e−σ

√
δt (C.4)

q =
1

2
+

1

2

(µ
σ

)√
δt

where q is the probability of the price moving upwards.

Let r be the risk-free interest rate. We require that u > erδt > d, where erδt is the discounted

riskless bond at time δt according to the risk-neutrality measure. Let C be the current call

option. At the end of one period, the option will be Cu if the stock price goes to uS and Cd if
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the stock price goes to dS. Hence, we have

Cu = max(0, uS −K) (C.5)

Cd = max(0, dS −K) (C.6)

Suppose ∆ is the number of shares1 of stock and B is the amount invested in risk-free

interest bond (a debt security), the value of the portfolio is ∆S + B, which we equate to C.

Then, the up and down options become

∆uS + erδtB = Cu (C.7)

∆dS + erδtB = Cd (C.8)

Solving (C.7) and (C.8), we find that

∆ =
Cu − Cd
(u− d)S

and B =
uCd − dCu
(u− d)erδt

Therefore, the call option is

C = ∆S +B =

[
erδt − d
u− d

Cu +
u− erδt

u− d
Cd

]
/erδt

Let

p =
erδt − d
u− d

and 1− p =
u− erδt

u− d
Hence, we can write the call option as

C = [pCu + (1− p)Cd]e−rδt (C.9)

Now we consider a call option with two periods. After the first period, Cu either goes up

to Cuu or down to Cud. Cd is analogous. CRR method ensures that the price that moves up

and then down is equivalent to the price that moves down and then up. From the previous

derivation, we find that

Cu = [pCuu + (1− p)Cud]e−rδt

Cd = [pCdu + (1− p)Cdd]e−rδt

Generally, for n periods, the equation is

C =

 n∑
j=a

(
n!

(n− j)!j!

)
pj(1− p)n−jujdn−jS −K

 e−rδt (C.10)

1∆ is not to be confused with a ”change”. It is the number of shares of stock to buy for a call option. It is
also called a riskless hedge ratio and is in the range 0 ≤ ∆ ≤ 1.

64



where a is the smallest non-negative integer such that uadn−aS > K.

Algorithm for the binomial option pricing model

To price options using the binomial model, we have to design an algorithm which we will

implement in Java. Here, we designed a pseudocode to show the iterations involved in building

a lattice tree to obtain the binomial value of a European call option.

Algorithm C.1: An algorithm for a multilevel Monte Carlo simulation.

1 func t i on europeanCal l (T, S , K, r , sigma , q , n) {
2 deltaT := T/ n ;

3 up:= exp ( sigma∗ s q r t ( deltaT ) ) ;

4 down:= 1/up ;

5 c0 := (up∗ exp(−r ∗ deltaT)− exp(−q∗ deltaT ))∗ up/ (upˆ 2− 1 ) ;

6 c1 := exp(−r ∗ deltaT)− c0 ;

7

8 for i := 0 to n {
9 c ( i ):= S∗ upˆ i ∗ downˆ(n−i ) ; i f c ( i )< 0 then c ( i )=0;

10 }
11

12 for j := 0 to n step −1 {
13 for i := 0 to j {
14 c ( i ):= c0∗ c ( i )+ c1∗ c ( i +1);

15 }
16 }
17 return europeanCal l := c ( 0 ) ; }

After implementation in Java, we test the result with the same test example for a 2-period

binomial tree. The binomial value is 61.9480957352685. This result is validated by checking

it against an online binomial calculator.2 For different stock price values, we can generate a

range of option prices. To visualize these results, we need to import a plotting tool in Java as

an extension. JMathPlot is used in this case because it is relatively simple to implement and

can plot both 2D and 3D graphs.

Figure C.1 is a stock-option graph produces using the binomial model for n = 2 that

illustrates how the option prices changes with different stock prices. Included in the graph are

the maximum and minimum values. The minimum value of the option (intrinsic value) is the

value at which a call option is in-the-money (i.e. the strike price is below the stock price). In

other words, it is the actual value of the stock as opposed to the option value and is calculated

by taking the difference between the strike price and the stock price. Option prices, on the other

hand, are calculated using the equation (C.10). The time value (extrinsic value) is the difference

between the option price and the intrinsic value. As an option moves closer to maturity, the

values of the options move closer to the intrinsic value, which means that the time value decays

and eventually becomes worthless when it reaches maturity (Ugur, 2008).

2This can be found at http://jpja.net/interactive/binomial.php. This application also displays the binomial
tree with a value at each node, which is useful for checking the value of each iteration.
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Figure C.1: A graph of stock price against option price with maximum and minimum (intrinsic)
values

As the strike price increases, the option value decreases since the strike price moves closer

to the stock value. Combining Figure C.1 and Figure C.2, we plot a snapshot of the option

pricing surface as a function of the stock price and the strike price. (see Figure C.3). The other

variables remain fixed, that is, the risk-free rate at r = 0.05, the expiration time at T = 1, and

volatility at µ = 0.2.

Convergence of the binomial formula to the Black-Scholes formula

The model, implemented in Java, is run with the same test example that was used for the Black-

Scholes formula but this time, for the binomial, we test it with different number of periods, n.

The following table shows the binomial values obtained for different n.

no. of period, n Binomial value

10 61.53616204233657

50 61.443894450462025

100 61.48373974924799

200 61.468107803401594

500 61.47445853544964

1000 61.47304425642073

5000 61.47232014677787

As the number of period increases, the binomial value seems to converge to the Black-Scholes

value of 61.472091898474446. To demonstrate this behaviour, we implement the convergence

for the given test example in Java using the Java package JMathPlot (see Figure C.4). There is,

in fact, a close analogy between the binomial formula and the Black-Scholes formula in (C.5).
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Figure C.2: A graph of strike price against option price

The call option obtained at (C.10) can be rewritten as

C = S

 n∑
j=a

n!

(n− j)!j!
pj(1− p)n−j u

jdn−j

erδt

−Ke−rδt
 n∑
j=a

n!

(n− j)!j!
pj(1− p)n−j


Replacing the two parts in parentheses with functions φ(a;n, p′) and φ(a;n, p) respectively,

we obtain a simpler equation of the form

C = Sφ(a;n, p′)−Ke−rδtφ(a;n, p)

where p′ = ue−rδtp

From (Cox, Ross and Rubenstein, 1979) work on the convergence of the binomial formula

to the Black-Scholes formula, as n tends to infinity,

φ(a;n, p′)→ N(d1) and φ(a;n, p)→ N(d2)

Hence, the Black Scholes formula is a limiting case of the Binomial OPM (Cox, Ross and

Rubenstein, 1979; Lee and Lin, 2010). However, the proof given by CRR imposed restrictions

on u, d and q (see equation (C.4)). Hsia (1983) applied a general proof for the convergence of the

Binomial OPM to the Black Scholes formula without restricting u, d and q, using the DeMoivre-

Laplace limit theorem with the only condition being np → ∞ as n → ∞. Qu (2010) further

demonstrated that there is a direct proof of the Binomial OPM converging to Black Scholes

formula as n tends to infinity with the use of direct approximation of binomial probability from

the normal distribution. The rate of convergence from the Binomial pricing model to the Black

Scholes formula was found to be 1
n (Chang and Palmer, 2007).
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Figure C.3: A pricing surface with stock and strike as the independent variables

Figure C.4: A graph showing convergence of the binomial model to the BS model

C.8.3 Monte Carlo Simulation

Monte Carlo simulation, which was first proposed by Boyle (1977), uses pseudorandom numbers

to simulate price paths. It is a useful method to price options that has multiple uncertainties

when the Black-Scholes and the binomial tree become infeasible. Like the Black-Scholes model,

the underlying asset is assumed to follow the geometric Brownian motion (GBM) given by the

stochastic differential equation (SDE):

dS = µSdt+ σSdW (C.11)
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where µ is the drift rate and σ is the volatility. Since the risk-neutrality assumption is made

for the pricing of options, we let µ = r, where r is the risk-free interest rate. We can generate

a sample path by dividing the time period [0, T ] into M intervals of δt and using Itô’s Lemma

with the properties of lognormal distribution to obtain a sample stock price path of

S(t+ δt) = S(t)exp

[(
r − σ2

2

)
δt+ σ

√
δtZj

]
, j = 1, ...,M (C.12)

Zj is a standard normal random variable for j = 1, ...,M . The payoff, C(ω), for a European

call option is max(St −K, 0) for a sample path ω. To sample N stock price paths, we find the

sample mean of the payoffs discounted to present using the risk free rate, r, to obtain

C =
1

N

N∑
i=1

C(ωi)e
−rδt

Algorithm for the Monte Carlo simulation

Similar to the previous model, we will show the steps involved in valuing options using the Monte

Carlo simulation and implement them in Java. The following pseudocode is the algorithm we

have designed for the Monte Carlo simulation of a European call option.

Algorithm C.2: An algorithm for a multilevel Monte Carlo simulation.

1

2 func t i on europeanCal l (T, S , K, r , sigma ) {
3 deltaT := T/M;

4 sum:= 0 ;

5 for i := 1 to N {
6 for j := 1 to M {
7 S( t+deltaT ) = S( t ) ∗ exp [ ( r−0.5∗ sigma ˆ2)∗ t imestep+

8 sigma∗ s q r t ( t imestep )∗ rand ] ;

9 }
10 sum := sum + max(S−K, 0 ) ;

11 }
12 c := sum/N∗exp(−r ∗ t imestep ) ;

13 return europeanCal l := c ;

14 }

Convergence of the Monte Carlo simulation to the Black-Scholes formula

In this context, the error generated by Monte Carlo simulation can be reduced by increasing

the number of simulation runs, N.
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no. of runs, N mean Monte Carlo value

100 59.455676789370784

10000 61.62079134557369

100000 61.37954293238363

Jabbour and Liu (2005) tested the convergence of the Monte Carlo price to the closed-form

solution of C = 61.472091898474446, which is measured by taking the difference of the sample

means of both models, and applying the t-test. The evidence suggests that the accuracy of the

price is increased with an increase in the number of executions. However, increasing the runs

causes this method to be computationally slow.
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