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Chapter 1

Introduction

1.1 Overview

This chapter aims to introduce the project and provide an overview to digital pathology, deep
learning, and the usage of deep learning algorithms particularly convolutional neural networks
(CNN) in the medical imaging domain. It will conclude with a discussion of the current challenges
to deep learning in pathology tasks.

1.2 Introduction to the problem and methodology

1.2.1 Project description

This project involves performing tumour segmentation on a collection of whole slide images fea-
turing post-treatment rectal cancer, using a pure CNN approach. Whole slide images are digitised
tissue slides, scanned using a whole slide scanner at high magnification and resolution. Segmen-
tation involves distinguishing between the normal and cancerous tissue on a slide. The network is
trained on small patches sampled from images designated as the training set, and then evaluated on
the rest of the images, the test set. A pure CNN approach has been selected for this project due to
its outstanding results in performing tumour segmentation on breast and brain whole slide images,
discussed more thoroughly in this chapter. While the dataset available for this work is sufficiently
large, it has sub-optimal annotations which are only rough estimates of the tumour area and contain
significant incorrect ground truth. Thus, the purpose of this project is not only to demonstrate the
ability of a CNN to perform segmentation on a unique dataset of rectal cancer whole slide images,
but also to gain additional insight into what the network can learn from sub-optimal ground truth.

1.2.2 Pre-project planning

In the scoping and planning phase before the start of the project, the approximately 14 weeks
of the project span were divided into several phases, shown in Figure 1.1.

1
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14 weeks from 1 June to 6 September

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Preparation work

Data acquisition

Algorithm setup

Background research

Development

Application and prepare dataset

Final stage

Evaluation

Report write-up

Figure 1.1: Gantt chart illustrating methodology.

While the major phases in bold were all completed according to schedule, several of the sub-
tasks took longer or shorter than expected. In particular, the development period took longer,
involving all the scripts needed to automatically read in the test images, load the annotations,
sample patches and meta data and save them. The whole process is detailed in chapter 3. The
developing, adjusting, and training of the CNN also took considerable time; each experiment took
approximately 5 to 6 hours to run even with high-performance computing resources. Each step was
time-consuming due to the sheer magnitude of the images and samples used. The report writing
and background research continued progressively throughout the entirety of the project, so the
final phase of the project required less time than anticipated. Chapter 7 includes a more detailed
project reflection discussing the factors which slowed down certain tasks, and in retrospect, what
could have been done to expedite or improve the work.

1.3 Digital pathology and colorectal cancer

1.3.1 Introduction to colorectal cancer

Colorectal cancer (also known as bowel cancer) is cancer which develops in either the colon or
the rectum, when some of the epithelial cells lining the bowel mutate and grow abnormally and
invasively. The World Cancer Report [34] identified colorectal cancer as the fourth most common
cause of death worldwide, with more than 740,000 men and 610,000 women diagnosed in 2012. In
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the same year, colorectal cancer constituted 10% of all global cancer cases. 65% of cases occur in
more developed countries, which corresponds with research by the World Cancer Research Fund
indicating increased risk with higher consumption of red and processed meats, alcoholic beverages,
and presence of more abdominal fat [38].

In the colon and rectum, most tumours are adenocarcinomas, originating from gland cells in
the epithelial tissue. A group of healthy gland cells are shown in Figure 1.2, with a single gland
outlined. Mutated gland cells can adopt a large range of abnormal morphologies, making the
carcinoma sometimes difficult to identify and grade even for expert pathologists.

Figure 1.2: A portion of a whole slide image with a single normal gland cell in the epithelium tissue
outlined in pink.

1.3.2 Brief history of digital pathology

Pathology is the study of disease through analysis of bodily fluid and tissue samples. A direct
correlation exists between disease progression and tissue structure and changes in nuclei morphol-
ogy, and specimen slides have long been used by pathologists and physicians for cancer analysis and
diagnosis. However, the glass slides typically used for tissue and cell samples quickly accumulate,
are easily damaged, and are difficult to store and transport. Furthermore, many crucial tasks per-
formed using the slides are quantitative [14], involving accurate counting or segmenting of features,
which is both labour-intensive and vulnerable to subjectivity and human error. Faulty diagnostic
(disease presence) prediction is not only dangerous for patients with serious conditions [17]; treat-
ments such as surgery, radiation, and chemotherapy can be fatal for patients with lower-grade,
otherwise survivable cancers.

1.3.3 The typical clinical workflow

The Leeds Teaching Hospitals Pathology Services provides service to both the Leeds Teaching
Hospitals and the local practices in West Yorkshire, and is representative of similar services world-
wide. Tissue samples are typically taken from patients upon physician recommendation, and then
pass through a series of stations at the pathology labs. Samples are cut and the parts of interest
stored in plastic blocks, which are usually frozen or secured by adding a histological wax similar to
paraffin. The prepared blocks are then placed into a vibrotome or similar slicing device which cuts
the tissue into very thin slices. Each slice is positioned onto a glass slide, and undergoes a melting
process which removes the wax. A fixed slide cover protects the front surface of the tissue.
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Once the slides are prepared, they are brought to pathologists for examination. The pathologist
reads the key points of the patient's record, views the slide under high magnification with a micro-
scope, then makes a diagnosis which is then passed on to the physician. In labs moving towards
digitization, the slides are digitised by passing through a whole slide scanner which processes several
hundred slides at a time. Each whole slide image (WSI) is gigabytes in size.

Depending on the policies of the lab, glass slides from each patient are stored for a fixed number
of years. They accumulate rapidly, and large, secured areas must be designated for their storage.
At the Leeds Teaching Hospitals, the slides are stored on the basement floor, as their combined
weight is too large for the building to support on any other floor.

1.3.4 The colour variation problem

A common problem plaguing digitised pathology slides is large variations in colour contrast
and intensity [11]. Variations can come from the length of time the slide was held in the staining
chemicals, the companies producing the stains, the image processing algorithm of the scanner, and
the different scanner manufacturers. Many lab workflows include instruments which stain slides in
bulk, reducing the variation in timing. However, studies have shown that even slides stained the
same way on instruments from a single manufacturer contain large variations in colour [10].

While histochemical stains have long been used to help visualisation of tissue features, the
human visual system is capable of adapting to large variation in colours, making it is difficult to
quantify the effect of colour variation on pathologist's performance [3][6]. Converting the slides to
whole slide images adds additional components to the problem. Both the scanners used to digitise
slides and the displays and software used to view the images add colour variation. Significant
research has examined ways to calibrate scanners, including different types of colour calibration
slides similar to those used in digital cameras.

In the case of digital pathology, colour can also be adjusted after the scanning process. The
Reinhard colour transfer is is a normalisation method published in 2001 [28] which uses statistics
to transfer the colours of one image, the source image, to another, the target image. The images
are first converted to the LAB colour space proposed by Ruderman et al. [30] which minimises
correlation between channels, then each value in each channel separately is normalised to match
the source image. This is performed by subtracting the mean from each colour channel from each
value, then scaling the values based on the relative standard deviations of target and source images.
The Reinhard method has been applied to histopathology image normalisation by Wang et al. [37],
Magee et al. [22] and others with positive results. However, neither of these papers evaluate the
normalisation success with respect to training a CNN.

Researchers have observed that Reinhard performs better on patches where one texture or
colouring dominates, and poorly when there are multiple textures or colourings [22].This seems
to indicate that Reinhard may not be the best normalisation algorithm for patches sampled from
entire whole slide images, as there is considerable variation in texture even within a single patch.

In work by Cruz-Roa et al. [7] on breast cancer whole slide images, a simpler, domain-agnostic
approach was adopted. Sample patches were converted from RGB into YUV colour space, and
normalised to a variance of one and mean of zero. The goal was to simply emphasise differences
between features and remove the correlations of the raw pixel values. While the overall results of
applying a CNN to these pre-processed patches were good compared to using handcrafted features,
the effect of the colour normalisation method itself was not evaluated.

Some researchers have questioned the importance altogether of colour variation to patholo-
gists'clinical accuracy, as the human visual cortex has an astounding ability to adapt to colour
variation. However, other literature by researchers at Leeds argues that colour plays a large role in
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the diagnostic process and presents various calibration methods for whole slide scanners [6]. While
not formally proven, it is widely accepted that the presence of colour, despite variations between
slides, greatly assists pathologists in detecting tissue structures, nuclei, and other key features. For
a CNN which has no domain knowledge and learns purely from training exemplars, however, it is
not definitively known how much colour in whole slide images benefits or hinders learning.

Other works have combatted the variation with a different approach. Instead of trying to reduce
variation, some researchers artificially generate additional colour variation so that the deep learning
algorithms learn every possible variant [32]. In cases where there are larger datasets available,
variation can be naturally obtained by taking large numbers of samples for training. While several
colour normalisation methods are tested, the large sampling approach is used by default in this
work.

1.3.5 Digital pathology today

In the past decade, the introduction of digital scanners has opened up a world of possibilities.
Digital whole slide imaging, or the digitisation of traditional tissue slides, allows health practitioners
to easily share images for second opinions, as well as provides researchers and medical residents
with a wealth of new resources [21]. The availability of digital slides has also paved the way for
the development of computer vision, machine learning, and other image analysis algorithms for
diagnostic, prognostic (outcome), and theragnostic (choice of therapy) predictions [17]. Solutions
have arisen for difficult tasks such as tissue and nuclei classification, segmentation and detection
[14], yet have not generally been adopted for clinical use.

The storage of whole slide images, while much more compact than the storage of traditional glass
slides, is an additional resource required for digitisation. The 355,966 slides stored on the Virtual
Pathology Library server at Leeds use over 114 terabytes of memory, and as the lab increasingly
commits to digitising more of their slides, storage is a necessary consideration.

1.4 Deep learning

1.4.1 A brief history

Deep learning is a branch of machine learning involving a layered architecture, each layer con-
sisting of neurons which perform a non-linear transformation on inputs and produce an output.
The origin of neural networks dates back to the single-neuron perceptron, proposed in 1943 by Mc-
Culloch and Pitts [24]. While an extremely simplistic modelling of a biological neuron in the brain,
the perceptron was discovered to be capable of learning the separation boundary for linearly sep-
arable datasets in any dimension. Neurons can be connected and combined to form a multi-layer
perceptron, theoretically proven to be trainable using error backpropagation. Researchers have
proved that in fact, the trained multi-layer perceptron is capable of approximating the posteriori
probability function of any input data [29]. Despite the proven strengths of multi-layer percep-
trons, their success on actual datasets was elusive for decades. Researchers did not yet realise how
much data was actually required for training. Large labeled datasets were not yet generally avail-
able. In addition, researchers initialised network weights incorrectly, introduced the wrong kind of
non-linearity into the layers, and most importantly, did not have the compute resources to make
training realistically feasible.

In the past decade, the development of supercomputers and GPUs and the rise of big data
drastically changed the prospects for deep learning algorithms [33][27]. The weighted sums in each
network layer are matrix operations which are well suited for GPUs. Researchers showed that not
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only were deep networks capable of being trained and learning key tasks such as speech recognition,
content filtering, board and video games, machine translation, and medical diagnosis, but many
variations on deep networks also could be successful.

Recurrent neural networks (RNNs) are among the various successful deep learning algorithms
at the forefront of research today. Deep RNNs achieved the best recorded accuracy in a standard
speech recognition task with a combination of the layered learning from a deep network and the
long-term memory achieved via reinforcement learning [9]. In addition, deep learning blended
with traditional reinforcement learning has been shown to speed up and improve learning [25].
The groundbreaking success of AlphaGo used a novel combination of deep learning, reinforcement
learning, and tree search [31]. Autoencoder neural networks are another deep learning algorithm
which learn a function based on unlabelled data, thus making it an unsupervised learning algorithm
which performs well in natural language tasks [19] .

1.4.2 Convolutional neural networks

History

Today, a class of deep neural networks called convolutional neural networks are one of the most
widely applied types of deep networks. In 1968, a paper by Hubel and Wiesel showed a direct
correlation between neurons in the visual cortexes of cats and monkeys and regions of the visual
field [13]. The animals seeing certain distinct simple patterns always triggered certain neurons in
their brains to fire. Based on this research, it is now known that the neurons which fire for a
region of the visual field form a receptive field in the cortex, and cumulatively, all the receptive
fields cover the entire cortex. Just as the multi-layer perceptron was initially developed modelling
connected neurons in the brain, convolutional neural networks model the vision system. Unlike the
fully-connected architecture of a deep neural network where each input value is related to every
other input value in the same way, CNNs incorporate the concept of spatial structure, or receptive
fields. Input pixels close to each other effectively form a receptive field, via shared weights and
pooling. CNN architecture is discussed in more detail in chapter 4.

LeCun et al. in 1998 successfully used a CNN dubbed LeNet-5 to perform highly accurate
digit recognition on the MNIST dataset of digits [16], examples of which are shown in Figure 1.3.
Despite breakthrough results, the approach was still severely limited to small (32x32 pixel), low-
resolution images due to the number of weights increasing proportionally to the number of layers.
The LeNet-5 model expanded for larger or higher resolution images was simply not feasible using
the compute resources available at the time.

Figure 1.3: Some size-normalised digits of the MNIST dataset from the work by LeCun et al. [16]
proving that a CNN can successfully perform classification on images.

Early applications of CNNs to medical imaging mostly involved grayscale, lower-resolution
images such as photomicrographs of the human corneal endothelium [42] or digital mammograms
[41]. While successful, these applications were few until researchers discovered that GPUs could be
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used for massive speedup of machine learning algorithms, demonstrating a more than 3x speedup
on a fully-connected 2-layer neural network [33]. This research was quickly applied to CNNs as
well, and opened the door for many applications on larger, complex images.

In the past decade, convolutional neural networks have been applied to computer vision problems
such as object detection and classification (face recognition, etc.) [20]. Face recognition is a
standard, challenging problem in computer vision as the images of interest are complex, multi-
dimensional, and inconsistent. Before convolutional neural networks, many researchers investigated
feature-based recognition algorithms which measured ratios and distances between facial features,
or used template or graph matching [15]. The advent of neural networks saw the development of
many valid solutions to computer vision tasks.

Design

CNNs use layers of neurons in a network and multiple processing stages to learn complex
features from given data. These algorithms are well-suited to multi-faceted problems such as those
presented by digital pathology because their success does not depend on prior domain knowledge
or any real understanding of the problem. Rather, convolutional neural nets learn features directly
from the training images themselves.

Training a CNN on images typically involves multiple stages. First, samples are generally
taken from the images. The number and size of samples may vary depending on the task and
image complexity. Each subsequent layer of the network then performs one of several operations.
Convolution layers apply a filtering transformation to small windows of the image; ReLU (rectified
linear unit) layers normalise all values; pooling layers typically reduce the dimensionality of the
images while preserving the most critical features; and the final layer is fully-connected to produce
the output. At different stages a certain percentage of units may be dropped out to prevent
overfitting (dropout operations). Ordering and number of layers can also vary depending on the
task. As with normal deep neural networks, the network weights are updated by gradient descent
and back-propagation.

A strength of convolutional networks for images is that they learn features in hierarchical order,
similar to the way an actual image can be examined on multiple levels. Earlier layers in the
network pick up larger, general features, whereas subsequent deeper layers learn finer features.
This approach allows the network to learn characteristic features from even complex images.

Despite their widespread success in many domains, neural networks for image analysis are
plagued by two main disadvantages. The first is that a considerable amount of training data is
required in order to train and test the networks. The algorithms “learn” based on what they
have already seen, so more data generally can improve results. Only requiring data to learn can
be considered an advantage; but when data is not be readily available, the algorithms do not
perform well. This common problem is often addressed by generating additional data by performing
small random transformations and distortions on the existing data. Secondly, the algorithms are
computationally expensive especially when the data is high-resolution images. High-performance
computing resources are usually necessary.

1.5 A general review of deep learning and pathology

The digitised images in histopathology are information-rich, dense, and extremely high-resolution.
Many prior image analysis algorithms could not handle the scale of data involved in pathology, but
modern deep learning algorithms have enormous potential [20]. Deep networks have been able to
outperform traditional methods for several key problems in digital pathology, including mitosis
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detection, epithelium-stroma classification, and various types of tumour segmentation. In the past
decade, these tasks have been typically first tackled by gathering or generating as much training
data as possible, and training a neural network. These brute-force methods outperform all the
traditional methods. However, researchers realise that the data-driven approach is expensive both
in adequate data and resources. In the past few years, solutions have evolved which employ a com-
bination of a CNN and other techniques, with comparable results. Research is increasingly driven
in the direction of finding a state-of-the-art solution which is feasible for clinical application.

1.5.1 Mitosis detection

Mitosis is the reproductive phase of a cell life cycle, which has a strong correlation to cancer
invasiveness. Mitotic count is key in cancer grading, and is a complex task due to the variation
in size and morphology of different cell types. Cirecsan et al. [5] use deep neural networks for
mitosis detection. Expert annotations on whole slide images are taken as ground truth, and a deep
neural network is trained to perform pixel classification where a pixel is either mitosis (when a
fixed number of pixels away from the centre of mitosis) or non-mitosis. Additional training data
is generated by adding rotations and transformations to the existing data. The problem is easily
evaluated as a classification problem, and the best F-measure (F1) score (see chapter 5 for a detailed
discussion of accuracy metrics) achieved is 0.782.

Several works have successfully produced comparable results on the same task, while reducing
the computational demand of methods using deep learning. Malon et al. in [23] combine hand-
crafted features based on nuclear morphology and the learned features of a CNN to attain an
F-measure of 0.659. A year later in 2014, Wang et al. in [36] used the same approach, but with a
more intelligent combination, attaining an F-measure of 0.734.

Figure 1.4: Examples of mitosis correctly identified in [36] using a combination of hand-crafted
features and a CNN.

More recently in 2016, Chen et al. [4] reached an F-measure score of 0.788 on the same dataset,
improving the learning process by cascading two convolutional neural networks together. The
first network is a coarse retrieval model, which efficiently retrieves mitosis candidates from the
images. The second is a finer discriminant model, distinguishing from among the candidates the
true mitosis from the non-mitosis which appears similar. In addition to giving better results, having
two networks, each of which performs a simpler task, improves the overall detection efficiency. These
deep learning approaches far outperform traditional hand-crafted feature methods.
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1.5.2 Epithelium-stroma classification

In breast and rectal cancer, another key feature for aiding diagnosis and prognosis is the
epithelium-stroma ratio within the tumour tissue. Manual labelling is tedious and time-consuming,
making computerised epithelium-stroma classification methods highly desirable. Hand-crafted fea-
ture methods can segment with reasonable accuracy, and are feasible to implement as stroma and
epithelium tissue can be easily distinguished by texture and colour differences [2]. However, deep
learning approaches far outperform those methods. A patch-based approach is presented by Xu et
al. [39], with a deep convolutional neural network (see Figure 1.5) classifying small patches with a
single label based on tissue type. The same problem can also be modeled as a segmentation task, by
first identifying regions of interest, and then labelling them. The approach yielded a perfect result
(F-score of 1.0 on test set) for both a breast cancer dataset and hemotoxylin and eosin stained
colorectal cancer dataset.

Figure 1.5: The CNN used by Xu et al. [39] in their patch-based approach for epithelium-stroma
segmentation.

Huang et al. [12] take the success of deep learning in this task one step further, aiming to
reduce the resources necessary for training convolutional networks. Their method employs transfer
learning to eliminate the need for large well-annotated datasets. A CNN pre-trained on the public
ImageNet dataset is used to extract features from the training set, and the learned distribution of
the training set is then transferred to a target domain where the images are completely unlabelled.
The final classification is comparable or better than the brute-force CNN methods and is argued
to be much more applicable to clinical usage as well-labeled ground truth is required only for the
source domain.

1.5.3 Tumour segmentation

A fundamental task of practicing pathologists is tumour detection. When a tumour is present
in a tissue sample, it is closely examined to determine the invasiveness and extent of carcinoma.
The largest tumour diameter is one of the measurements often used for cancer grading. Tumour
detection and segmentation tasks can range from easy from a pathologist's perspective, to very
difficult. This is because a single tumour type can have many variations in appearance as the cells
evolve and reproduce. Within the tumour itself, there are different types of tissue. While some
segmentations can be performed by a pathologist at relatively low magnification, others require a
higher level of magnification.

The Medical Image Computing and Computer Assisted Interventions hosted a tumour segmen-
tation on whole slide images as their yearly challenge in 2014. The challenge provided whole slide
images from brain cancer patients. Researchers in [40] sampled patches from the dataset and used
a CNN pre-trained on the ImageNet public dataset, and discriminative feature vectors retrieved
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from the output. A support vector machine (SVM) was then used to distinguish between positive
and negative samples. On the test set, this resulted in an accuracy of 0.84.

Several researchers have employed similar deep learning techniques to segment breast tumours.
In [7], researchers compare the results of CNN learning with the traditional hand-crafted features
methods. The best features method returns 0.78 accuracy, compared to the improved 0.84 achieved
by the CNN. The CNN approach samples patches from the whole slide images, excluding borders
and background slide, then trains a 3-layer CNN to perform binary classification on the training
set. The test images are then classified by being subdivided into patches of the same size as the
training samples and passed through the network. Heatmaps were used for visualising the results,
as seen in Figure 1.6.

Figure 1.6: The resulting probability heatmap showing probabilities learned by the CNN on a
breast cancer whole slide image in [7].

The International Symposium on Biomedical Imaging also held a challenge (Camelyon) in 2016
featuring breast cancer identification on whole slide images. Instead of combining different features
or trying to improve computational efficiency, researchers for the winning approach [35] used a pure
CNN approach, using four well-known deep learning algorithms for training: GoogLeNet, AlexNet,
VGG16, and FaceNet. GoogLeNet performed the best with a patch classification accuracy of
0.984. They also thoroughly experimented with different zooms, resolutions, input patch sizes, and
re-training the CNN with additional patches from difficult negative patches which closely resembled
true positives. While arguably too computationally expensive for present clinical use, this brute-
force method clearly highlights the ability of a CNN with adequate training data and ground truth
to give outstanding results.

1.5.4 Conclusion

While deep neural networks have given promising results in many medical imaging tasks, in-
cluding grading cells of cancerous liver tissue [18], identifying tissue components in prostrate slides
[8], classifying eye disease from retinal images [1] and more, they have not yet proved generally fea-
sible in clinical environments due to requiring powerful computing resources and massive amounts
of training data [21] [4], as well as various other valid concerns raised by both computer scientists
and clinicians. The whole slide images themselves, often between 20x to 40x magnification, are
significantly larger than traditional images analysed in computer vision and thus contribute to the
resource requirements. Thus, deep learning with whole slide images remains an open, challenging
area full of potential.

The other weakness of deep learning algorithms for whole slide image analysis is the heavy
reliance on good quality training data. Due to the magnification and size of whole slide images,
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obtaining a large collection of annotations up to a high enough standard for machine learning
(minimal false annotations even at high magnification) can be difficult. Producing the annotations
is extremely manual and work-intensive for a pathologist. In the past few years, researchers have
begun exploring variations of deep learning algorithms including combinations with genetic algo-
rithms [26], self-organising neural networks [1], adding handcrafted features to speed up the training
process [36], and transfer learning across domains [12]. These approaches attempt to address the
issue of deep learning's data-heavy approach.



Chapter 2

The Eindhoven dataset

2.1 The whole slide images

2.1.1 Overview

The Eindhoven dataset, named for the city where the images were gathered in 2014, contains
202 separate cases each consisting of multiple whole slide images for a total of 3047 images. The
clinical scenarios for each case are various regimens of post-treatment rectal cancer. Each slide is
hemotoxylin and eosin (HE) stained. Each whole slide image is gigabytes in size (tens of thou-
sands of pixels in width and height) as the slides were scanned by a whole slide scanner at 20x
magnification.

Out of these images, a subset of 295 were manually delineated by pathologists using the image
viewing software ImageScope by Aperio. The annotations are intended to assess the effectiveness
of radiotherapy on the tumours, so include not only the remaining viable carcinoma, but also the
associated scar tissue, fibrosis. As a result, many of the image annotations include large amounts
of non-carcinoma, the area where the tumour has regressed. Regression often appears similar to
normal tissue. This is an additional challenge for the neural network, which is discussed in detail
in chapter 6. A pre-treatment dataset without regression, or new annotations of the complete
Eindhoven set including only carcinoma would have been ideal, but due to time restraints, this
work uses this pre-existing dataset. Sub-optimal datasets are common, and working with such data
provides opportunities to explore the capabilities of deep learning. It is anticipated, however, that
further work in the domain will be performed on more suitable datasets.

Some example images from the Eindhoven dataset (detailed discussion of data quality issues
such as pen markings in bottom right image in subsequent section) are shown in Figure 2.1.

The images in this dataset were only available on a University of Leeds research server via a
simple server API which allows access to sub-portions from each image of maximum 2000 pixels
width and height at a time. Customisable parameters include the X and Y position of the block to
be downloaded and its quality, zoom, height and width.

Direct access to the image files had been anticipated, however this was not possible during the
project timeline, so several methods were taken to reduce the impact of latency related to API-only
access. This significantly complicated the patch sampling algorithms discussed in chapter 3.

2.1.2 Examples

The more success the radiotherapy treatment had in a certain case, the more regression present
within the annotation of the corresponding whole slide image. Conversely, an unsuccessful radio-
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Figure 2.1: Five example whole slide images from the Eindhoven dataset.

therapy treatment implies that the annotation quite accurately encircles only the carcinoma on the
slide. It is difficult to quantify the annotation quality of the whole dataset, but the majority of
the images include significant amounts of regression. It is thus expected that learning to detect
carcinoma will be difficult. From the perspective of deep learning, the best annotations will pro-
vide correct ground truth. Figure 2.2, 2.3, and 2.4 are examples of excellent, partial, and mostly
inaccurate annotations.

Figure 2.2: These annotations encircle the cancerous regions only.

2.2 XML annotations

Pathologists drew a polygon encircling the original tumour area on each whole slide image.
The annotations are saved in XML format with each annotated region represented as a list of XY
vertices, the pixel locations of the vertices in the image.

In order to establish ground truth for both training, validation, and testing, the XML files were
converted to binary image masks as seen in Figure 2.5 with the same dimensions as the original
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Figure 2.3: These annotations contain a mix of both carcinoma and regression.

Figure 2.4: Neither of these annotations contain significant carcinoma; both are mostly fibro-
sis/regression.

image. They could also be imposed as annotations overlaid on the original images as in Figure 2.6.
A simple, customised visualisation library was developed using the Python matplotlib module.

2.3 Data quality issues

A close examination of the dataset revealed five issues in the images themselves and the anno-
tations. This examination is from the perspective of patch sampling for deep learning.

1. Firstly, it is clear from the accuracy level of the annotations (Figure 2.7) that the markings
were not made while viewing at the highest level of magnification. This would have been
incredibly labour-intensive for the pathologists, so instead they delineated from a zoomed out
perspective, probably around a 2x or 4x magnification.

2. The annotations often enclose lumen, or large areas of background slide which should be
labeled as normal not cancerous. Figure 2.8 shows one such case. While small white areas
within cancerous regions may be legitimate characteristics of adenocarcinomas due to distor-
tion of the gland cells, large areas are usually abnormal, due to large enclosed lumen or tears
or cuts in the tissue. For the purpose of general dataset analysis, background areas of width
or height larger than 200 pixels at full magnification are not considered features to learn.
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Figure 2.5: The binary masks of the example images in Figure 2.1, generated from XML vertices.

Figure 2.8: Issue 2: portion of tissue within a cancerous region, showing blank slide also enclosed
and thus incorrectly labeled.

3. Occasionally a single slide includes two samples, neighbouring slices of a block placed on the
same slide, which are nearly identical due to their proximity. It has not been confirmed, but
it appears that pathologists were only instructed to annotate one cancerous portion even in
these cases. In the case of multiple tissue samples, this means that there are large cancerous
portions which are not included in the annotated region (see Figure 2.9). A large amount of
cancerous tissue is thus incorrectly labeled as normal.
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Figure 2.6: The annotations for the images in Figure 2.1.

Figure 2.7: Issue 1: from left to right, decreasing accuracy corresponding with magnification (por-
tion to the right of the annotation should also be included).

Figure 2.9: Issue 3: binary mask (right) of a single slide with multiple samples (left), both of which
contain cancer, but only one of which is annotated.

4. Extra markings are present in a minority of the slides, which appear to be the edge of the
slide cover or markings from a dark coloured pen on the slide cover itself before scanning.
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Figure 2.10: Issue 4: markings directly made on slide covers.

5. Some slides also contain more than one main cancerous region (Figure 2.11), and in an attempt
to delineate both, the pathologist has connected them. The small region in the connecting
portion of the image is likely normal, but according to the annotation would be labeled
incorrectly as cancerous. Fortunately, the connecting regions are usually narrow, meaning
that few patch samples will be sampled within them.

Figure 2.11: Issue 5: two connected regions.

Various approaches to reduce the impact of the four latter observations are discussed in the
following section. These issues do not include the typical artefacts of the tissue samples them-
selves, including staining variations, folded-over tissue, and torn tissue. Table 2.1 shows the issues
enumerated.

Large enclosed
background or
lumen (greater
than 200 pixels
width or height)

Multiple sam-
ples/one annota-
tion

Extra markings
on slide cover

Connected por-
tions

Cases 22 32 73 7

Table 2.1: Quantification of observations in whole slide images, out of 295 total images.



Chapter 3

Patch sampling

3.1 Patch sampling for training

In order to train the algorithm to learn characteristic features of cancerous and normal tissue,
labeled training samples are needed. Based on the tested approaches of similar researchers with
ductal carcinoma [7], epithelial and stromal segmentation [39] and mitosis detection [36], square
patches of 100x100 pixels are used as training samples. In native resolution, the patches are 500x500
pixels, 0.5 microns per pixel. As the size of a nucleus is 10 microns, patches of this size display
250x250 microns, which insures that enough cell features are present in each sample. While ideally
the ideal magnification and patch sample size would be systematically determined, due to time
restraints the best parameters used by other researchers are adopted for this work. In addition,
two practicing pathologists have roughly estimated the zoom and patch size necessary for a human
to correctly label a sample as cancerous or normal, without seeing its larger context.

3.2 Patch sampling methods

Selecting patches from extremely large images and labelling them using a ground truth binary
mask is not a trivial task. Several methods were developed and tested, evaluated in terms of
efficiency and effectiveness.

3.2.1 Random sampling method

Researchers in [35] use a random sampling method to obtain millions of positive and negative
samples. The first patch sampling method attempted for this project models that method. The
algorithm chooses random locations within the image, checks with the mask to label the patch
either inside or outside the mask, and continues iteratively until the desired number of patches
with each label have been found. An attempt is made to select an equal number of each sample
type from each image; however, due to the cancerous portions in some images being quite small,
the algorithm allows a fixed number of attempts before moving on to another image. This method
gives a relatively uniform patch sampling, but was in practice only efficient when sampling a small
percentage of the total patches available in an image.

3.2.2 Binary search method

The second sampling algorithm more intelligently performs a binary search on the image by
recursively dividing the binary mask into blocks which are identified as either purely inside or
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outside the mask. Patches are sampled randomly from within those blocks, in the real image.
Some experimentation was done to determine, for the image sizes and average complexity of the
masks, how many blocks to find before ending the binary search early. While in practice more
computationally expensive than the random approach, the binary search method has the added
advantage of being able to choose patches near the boundary line of the mask as seen in Figure 3.1,
by calculating block sizes and then selecting patches from the smaller blocks. It also can return a
larger number of patches at little extra cost.

Figure 3.1: Example of selected patches from the binary search method on a test mask, choosing
near boundary line.

While the binary search method proved more capable of choosing intelligent samples, it was
computationally quite expensive due to the image sizes, and as a result, the search tree had to
be pruned by early stopping. In practice, the random search provided a more uniform sampling
distribution across the images than the binary search.

3.2.3 Grid sampling method

The final sampling method simply divides the entire whole slide image into a grid of non-
overlapping patches as seen in Figure 3.2, and takes patches from every possible position. As each
image can only be accessed in portions of maximum 2000 pixels across via the API, the entire
image is scanned in rectangles 2000 pixels across and 100 pixels down, each rectangle subdivided
into square patches, and each patch either accepted or rejected by thresholding functions.

Figure 3.2: The original image with annotation and the sampling grid overlaid.

Thresholding and filtering functions are used to avoid taking patches from areas of little interest,
such as ones featuring background slide and clearly non-cancerous areas such as those with low
standard deviation across all colour channels (indicating very pale or sparse tissue which are not
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likely to be cancerous). Figure 3.3 shows the modified sampling grid after the threshold functions
have been applied.

Figure 3.3: Image with the modified sampling grid after threshold functions eliminate background
and patches with little variation.

It was initially thought that fewer sample patches would be required, but test runs of the CNN
overfit the training set when the set size was too small (around 10,000 patches). Eventually, the
grid sampling method was chosen for this work, due to the large number of patch samples needed
for training. Other works, including [7] use a similar sampling method, but only sample a subset
of grid positions. Xu et al. in [39] use a similar method with a step size of 40 pixels between every
patch. In an attempt to provide more data for training and include as much colour variation as
possible, no stride was used in this work and patches were sampled from every non-overlapping grid
position not filtered out by the thresholding functions. Figure 3.4 shows patches in their original
sampling order using the grid sampling method. In total, this method resulted in 1,264,499 patches.

Figure 3.4: Example patches, in original ordering from left to right, sampled from a whole slide
image.
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3.3 Further preparation

3.3.1 Reducing the impact of issues with images and annotations

To reduce the impact of the first and fourth issues, that of general imprecision of the annotations
and connected portions, patches are sampled only from areas which are entirely within or outside of
the mask. This is different from the approach of Cruz-Roa et. al. [7] for breast cancer segmentation,
where patches are labeled if they are 80% within or without the region of interest. This approach
only takes “pure” patches, to try to reduce the noise of the training samples. In retrospect, this
approach has little impact, as the tissue surrounding the carcinoma is often fibrosis or regression,
so is already incorrectly labeled.

The second issue noted in the previous section is that of background slide enclosed in the can-
cerous region. Since all the background slide portions of each whole slide image are not cancerous,
these can be ignored and not even used for training. To avoid sampling these areas, a simple thresh-
old function is used which calculates the percentage of each patch which has RGB values greater
than 210, and decides if the patch contains enough meaningful content. Whole slide scanners are
generally calibrated to set the background slide values to 250, so the threshold used in this work
generously allows for some colour distortion and shadows, for example along the slide cover edge.

There is no way to easily resolve the third issue automatically, where two tissue samples are
mounted on the same slide but only one is annotated. The incorrectly labeled patch samples would
definitely reduce accuracy if used for training. The 32 images with this issue (Figure 2.1) need to
be discarded and not used for training or testing.

The fourth issue, that of pen markings directly on the slide covers, can be partially alleviated
by colour normalisation and pre-processing techniques, but only when the patch is entirely covered
by the marking as in some patches in Figure 3.5. As this is usually not the case, some noise is
expected to be introduced into training due to this issue.

Figure 3.5: Patches sampled from marked regions, showing that colour is distorted but features are
generally still detectable beneath the marking.

3.3.2 Dimension reduction

To improve the efficiency of the sampling methods, dimension reduction is performed on the
binary mask by a fixed stride, which allows for faster checking when labelling sample patches.
Coordinates from the reduced dimension are then converted back to the original dimension when
fetching the patches from the actual image. A reduction by a factor of 20 was found to be large
enough to greatly increase efficiency and yet preserve the details of the annotation. Larger strides
such as those greater than 100 caused a large loss in precision, as illustrated in Figure 3.6.

3.3.3 Colour normalisation: three approaches

As discussed in detail in chapter 1, colour normalisation and its impact on deep learning algo-
rithms is an ongoing research area in digital pathology. This project has attempted three of the
solutions adopted by different researchers: the original image colours (Figure 3.7), Reinhard colour
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Figure 3.6: Illustration on a real mask showing the tradeoff between efficiency (larger stride of 300
on left) and accuracy (smaller stride of 10 on right).

normalisation (Figure 3.8), and conversion to grayscale. The openCV Python library was used to
replicate this algorithm for normalising the whole slide images used in this research, with code snip-
pets found online used as general guidelines (see Appendix A). By default, the experiments will be
carried out using full, unaltered colour. By taking the maximum number of non-overlapping patch
samples from the training images, this approach also maximises the CNN exposure to colour vari-
ation, as do methods which artificially generate more variation. It is expected that this approach
will give the best results overall.

Figure 3.7: Ten sample patches before any colour normalisation.

Figure 3.8: The ten sample patches after Reinhard colour transfer using pictured source image.

While this work will not involve a thorough comparison of all the colour normalisation methods
and their impact on deep learning, the results of experiments involving these three approaches are
discussed in chapter 6.



Chapter 4

Setting up the convolutional neural
network

4.1 Overview

4.1.1 Choice of deep learning library

TensorFlow is an open-source machine learning library, currently very popular due to Google
marketing and support. It provides a low-level API which gives developers full control. Tensor-
Flow represents networks as graphs, and provides customisable visualisations. In addition, Google
developers are actively contributing to and improving TensorFlow, which gives it excellent docu-
mentation and an advantage over Theano, a stable, more developed library also with a Python
interface. Unlike Theano, TensorFlow also supports multi-GPU computing, a critical feature for
efficiency with large-scale projects. TensorFlow also pre-compiles all its low-level operators and
chains them together, providing a virtually instant compilation.

During the project planning phase, one consideration was to use Keras on top of TensorFlow
due to its interoperability with TensorFlow, higher-level libraries and concise, minimalistic syntax.
However, while the learning curve associated with TensorFlow was higher, various frameworks for
basic convolutional neural networks already exist on the public domain, which helped speed up
the learning process. The control and flexibility provided with TensorFlow eventually were more
appealing than the friendly syntax offered by Keras.

4.1.2 Overall method description

Hvass-Labs (see Appendix A) provides a TensorFlow CNN which learns the MNIST digit
dataset, classifying test images as digits between 0 and 9. Compared to the complex, dense patch
samples from whole slide images, the MNIST digit dataset consists of low-resolution, grayscale,
small images of relatively low complexity. The CNN was altered to produce a binary classifier
which given a small image patch in 3-channel RGB colour, determines whether it is cancerous or
normal. Once the CNN was trained with the training images from the training set, the learned
filters were run convolutionally over each entire test image to perform the final segmentation. In
the case of this project, this was equivalent to running every patch from the sampling grid of each
test image through the trained network, and saving the results as a forced class and a probability.
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4.2 The convolutional neural network

4.2.1 Components and basic structure

The basic structure of the CNN shown in Figure 4.1 was adopted from similar works using deep
networks on whole slide images in [7], [39], and [36]. Each of the 10 sets of data, approximately
3GB of training and validation patches each, passes through a combination of the following network
layers:

• Convolution layer: applies a set number of convolutional filters to the patch, returning an
output feature map for every filter. Each filter is a small kernel window of specified size which
is applied to every value in the patch. Each output value is the weighted sum of the kernel
values and the corresponding input patch window.

• Max-pooling layer: downsamples the patch by taking the maximum value of every 2x2 window
from the patch (with a stride of 2 so each window does not overlap) and discards all other
values.

• ReLU function: replaces every negative pixel value with 0, introducing non-linearity to the
transformation.

• Fully-connected or dense layer: performs classification on the features extracted from the
previous layer by having every neuron connected to every neuron in the previous layer.

• Classification layer: a full-connected layer with only two neurons, each of which represents
an output class (normal or cancerous). A softmax activation function returns a probability
for each neuron output, the likelihood of the patch belonging to that class. The two softmax
outputs sum to 1. For calculating accuracy, the maximum value is used to force a 0 or 1
prediction. For generating heatmaps and experimenting with threshold value, the softmax
outputs are used.

Figure 4.1: The basic convolutional neural network before experimentation with parameters.

The CNN structure developed as a base for experimentation has three convolutional layers, each
with max-pooling and reLU, followed by a dense fully-connected layer and a final classification layer.

4.2.2 Saving the predictions and model

After the CNN has been trained on the training and validation sets, it must be run on the
test images. As the test set is too large to be loaded all at once into memory, it is divided into
two batches. Every non-background patch from each test image is passed through the CNN and a
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simple function saves all the test patch predictions (softmax outputs) along with the corresponding
meta data for each patch to a CSV file labeled after the CNN model. The learned CNN model
is saved using the TensorFlow saver class. Since the structure of the network changes in each
experiment, the complete model and graph must be saved. The following three files are generated
for each saved model:

• .meta: stores the entire TensorFlow graph including all the network elements such as variables,
layers, functions, etc.

• .data: contains all the variable values, namely all the learned weights and kernels.

• .index: stores metadata for all variables.

4.3 High-performance computing: ARC at Leeds

4.3.1 ARC3 and the container

Deep learning is known to be computationally expensive, and due to the size of the whole slide
images, the number of training patches required, and the depth of the network, this project required
high-performance computing (HPC) resources. The Advanced Research Computing centre (ARC)
at the University of Leeds provides access to high-performance computing resources, including
clusters with graphics processor units (GPUs). Containers instead of virtual machines are used in
order to maximise space and efficiency, with Singularity on top of Docker taking care of container
management. While Docker is a stable, widely used container management platform, it does not
provide the security required for shared HPC clusters. Singularity, on the other hand, allows users
to create containers from images and have root privileges within their container, while protecting
the cluster.

The ARC3 cluster in ARC was chosen for this project due to its GPU availability. Built upon
Linux CentOS 7 and possessing two Nvidia K80 nodes with 24 cores and 128GB of memory, ARC3
hard drives contain an additional 800GB per node and 350TB of Lustre storage. The University
of Leeds is upgrading the ARC3 cluster to include 24 more GPUs in the fall of 2017, an additional
motivation to become familiar with the system.

For training the CNN for this work, an image file for a Docker container with TensorFlow for
GPUs was obtained from Docker Hub (see Appendix A). It was then altered to include OpenCV,
the supporting graphics libraries for OpenCV, and updated for Python 3. The docker2singularity
script provided by ARC staff then converted the Docker image file to a Singularity image file.

All code and important meta files were stored on a personal backed-up user directory with a
5GB quota on ARC3. The approximately 50GB of compressed image patches in .h5 format were
stored in the no-backup high speed shared parallel file system. Once all HDF5 files were generated,
they were copied to a personal University of Leeds OneDrive account for saving via Linux secure
copy (scp).

4.3.2 Jupyter within the container and Git version control

One of the challenges with working within a container is visualisation; as there is no interface to
the actual machine, users are limited to terminal-only access. To deal with this challenge, Jupyter
notebooks were used extensively for each step of this project.

Jupyter is a powerful open-source web application for organised programming, interacting with
live code, and in-line visualisation. Jupyter allows the creation of notebooks which can contain a
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combination of code, displayed results, and stylised comments. While over 40 languages are sup-
ported by Jupyter, Python is its native language, and this project primarily used Python 3 kernels.
Notebooks are hosted locally or on some other specified host. By running Jupyter notebooks inside
the custom container created for this project with the –no-browser setting (Figure 4.2), and then
using local ssh port forwarding (Figure 4.3), the notebook is able to be accessed via a local machine
and all the results visualised from within the container.

Figure 4.2: Opening an interactive Jupyter session within the container.

Figure 4.3: Local ssh port forwarding.

Typically, the development workflow for containers involves testing within a local instance of
the container, then moving the container to the production environment. Container image files
while not as large as virtual machines, are still substantial, so changing the container frequently
uses valuable time. The local environment also has to match the production environment, which in
this case was Linux CentOS. Rather than work within the container inside a virtual box on a local
machine and export it to production, Git was used instead for simple version control. Development
was done on a local machine, code changes committed to the master branch, then all changes
pulled onto production from within the container. To avoid having to alter the container image
during development, a list of Python modules was established early on in the project, and built
into the container. As much as possible, code changes were made in the local environment and not
in production. This allowed for a clean, efficient, controlled workflow (Figure 4.4).

Figure 4.4: Development workflow.
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4.3.3 Patch storage on ARC3 with HDF5

Turning every whole slide image into patches via the grid sampling algorithm in the previous
chapter is a computationally expensive procedure, and could not be repeated for every session of
experimentation. Instead the patches needed to be saved to disk on ARC3 and then loaded for
training. Every patch is sampled at 100% quality in full 3-channel colour, with each 100x100 pixel
patch taking up approximately 50MB of memory. With a total of over a million training patches,
it was quickly evident that the patches would need to be generated once and then stored, but that
in original form, they would consume too much memory. Using the grid sampling method, around
2,000 - 11,000 patches were retrieved from each image, depending on the size of the tissue sample
featured. Complete patch statistics are shown in Figure 4.5.

Figure 4.5: Statistics for patches sampled from all 295 whole slide images using grid method.

Various compression models were explored, and eventually HDF5 was chosen as a storage model.
HDF5 is a data model which can accommodate a wide variety of data types, transparent file
compression, and extremely large amounts of data. A Python module called h5py allows for easy
usage. The patches from each whole slide image are stored in a single .h5 file and compressed
by HDF5 using gzip. These files could be quickly read and loaded into NumPy arrays when
needed. While gzip is not the best image compression method, it was the best compression method
built into HDF5, which has the key advantage of offering transparent, efficient compression and
decompression. Another main feature of .h5 files is the ability to read specific data items from
them without reading in the entire file. Similar common storage formats such as comma-separated
value (CSV), JavaScript Object Notation (Json) which can also save the images as numeric arrays
do not have this capability. This feature is particularly useful in the training phase, as the patches
need to be shuffled rather than read in sequential order.

The complete patch sampling process is shown in Figure 4.6.
In addition to the .h5 files, meta data for each patch was stored in CSV format. Information

included image ID, classification label (0/1 normal/cancerous), and the coordinates of the patch
location in the original image. Figure 4.7 shows eight example entries from a meta data file
containing all the patches for training image 110042.
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Figure 4.6: The patch sampling process.

Figure 4.7: The meta data stored for eight patches from image with ID 110042: label, image ID,
class, x and y coordinates.



Chapter 5

The training phase

5.1 Setup

5.1.1 Division into training, validation, and test sets

The standard division of data is 80% training and validation, and 20% test. Typically, between
10% and 20% of the training data is set aside for validation, which can be used to prevent overfitting.
In these experiments, 50 out of the 260 whole slide images (19.2%) were designated as test data so
that none of the patches from one image used in training were included in testing. The division in
shown in tabular form in Table 5.1.

Set Number of whole slide images Number of patches

Training and validation 210 844,378

Test 50 193,994

Table 5.1: Dataset division

5.1.2 Loading the patches

A naive initial attempt to train the CNN involved loading all the training patches at once,
which allowed for very efficient in-memory processing and training. The MNIST digit classifier
used as a template also loaded all the training, validation, and test images at once. While this
method worked for smaller datasets, it was not feasible with the Eindhoven patches dataset even
in the production environment within the container. Jupyter notebooks by default have a fixed
memory limit, but even with that drastically increased, the Docker scheduler itself imposes memory
limitations on the container, and closes any container attempting to use more than the allocated
amount.

A second attempt used the TensorFlow feed dictionaries (placeholder variables) to load patches
in batches during each training epoch, with a large batch size of 1,500 patches to reduce read fre-
quency. While well within the container memory limits, training this way was extremely inefficient,
taking over 18 hours on the two GPU nodes. In addition, there was no way to easily thoroughly
shuffle the patches before training as the patches from each whole slide image are stored in a single
.h5 file, and at each epoch, each batch was taken from a single .h5 file.

The final, most effective method divided the entire training, validation, and test data into sets.
The memory limitations of the container permitted a maximum of approximately 180,000 patches
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to be loaded at once, so all the patches were divided into 10 sets. Set i consisted of the i th patch
from each .h5 file, and was randomly shuffled before being fed to the feed dictionary for training.
While this method does not minimise read frequency since every .h5 file must be read for each set,
it returns a uniform sampling of patches across every whole slide image, and maximises training
efficiency, thus taking advantage of the GPUs.

5.2 Learning

5.2.1 Basic learning requirements

Due to the nature of the dataset, a high test set accuracy is not expected nor desired, as all the
ground truth labels are based on the original annotations. The CNN should demonstrate an ability
to learn important features of carcinoma. Ideally, the CNN should not learn features of regression,
such as fibrosis. A detailed discussion of what the CNN has learned as well as an evaluation on a
small subset of re-annotated test images is provided in chapter 6.

Initial attempts to train the CNN demonstrated that two key elements were essential for learn-
ing. Firstly, with any fewer than 20,000 training patches, the CNN overfit the training set and
was unable to get better than an average 50% accuracy on the test set, and tended to classify all
the test images as a single class. Secondly, too low of a learning rate also encouraged overfitting
the training set, and resulted in poor test performance. A high starting learning rate of 1.0e-4
discouraged the initial overfitting, and an exponential decay over time helped prevent divergence
in the latter half of training.

5.2.2 Accuracy metrics

For quantifying CNN performance, several accuracy metrics were used. The segmentation
problem over the whole slide images is essentially treated as a classification problem, where each
patch of interest in the image (ignoring any background slide) is classified as normal or cancerous.
Thus, instead of using accuracy metrics typically used in segmentation problems such as area ratios,
shape similarity metrics, or mass centre location, the performance can be evaluated based on the
test patches, their ground truth labels, and the CNN predictions. Every non-overlapping patch
not filtered out through the thresholding function is sampled from each test image, and given a
predicted value by the trained CNN. The softmax threshold then determines the final label for each
patch of the test image. Each test image patch has two values: the predicted label output by the
CNN+threshold, and the label provided by the original annotations. The segmentation accuracy
can then be calculated very precisely by treating it as a classification problem by quantifying the
true and false positives and negatives for all the patches in a test image.

The first and the second metric mentioned, F-measure and balanced accuracy, are the clearest
indication of actual performance as they penalise both false negatives and false positives. For this
dataset, there is not an equal division between normal and cancerous training and test patches. The
traditional error calculation, the percent of correct classifications, does not reflect this imbalance,
and may disproportionately reward classifying all the patches with the same label.

In the context of the pathology workflow, however, it is especially crucial to minimise false
negatives. In the hypothetical scenario that a trained classification system were to be integrated
into a software to support pathologists in identifying cancer, the presence of false positives would
require a pathologist to examine the slide and observe that no cancer is present. At worst, the
pathologist may trust the system and require the patient to undergo more testing, which would rule
out carcinoma. False negatives, however, could encourage the pathologist to potentially ignore a
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more careful verification of tissue which is in fact carcinoma. Misidentifying true carcinoma has the
highest cost. For this reason, sensitivity (or recall) is a key accuracy metric. Sensitivity measures
the true positives which are not misidentified; in other words, a high sensitivity minimises false
negatives. In the medical imaging context, this is also an important metric.

• F-measure: is also known as F1 or F-score, and is the weighted harmonic average of both
precision and recall.

• Balanced accuracy (BAC): is the arithmetic mean of sensitivity and specificity.

• Sensitivity or recall: the true positive rate, the proportion of positives which are correctly
classified as positives.

• Error rate: the standard ratio of correct over total classifications.

• Specificity: the true negative rate, the proportion of negatives which are correctly classified
as negatives.

• Precision: the consistency of classification results, or, the ratio of true positives over both
true and false positives.

5.2.3 Experiments

The parameter values from the CNN outlined in chapter 4 are used as the starting base for the
following experiments. The purpose of experimentation is to improve the quantitative accuracy
of the CNN on the test set, but equally to qualitatively observe what the CNN is learning. Due
to the poor quality of the annotations, it is also taken into consideration that too high of an
accuracy would be unusual. The full results of each experiment discussed in the following sections
are included in Appendix C, in chapter 8.

Softmax threshold

By default, the threshold for the softmax activation function is 0.5; classification layer outputs
above this value are classified as 1, cancerous, while outputs below the threshold are classified as
0, normal. This experiment is run over multiple models (the trained CNN weights from the best
performing set of parameters) to determine whether the threshold varies depending on the model,
or if there is a fixed value or range of values for which all models perform the best. It was found
that a small range of threshold values within the 0.65 - 0.75 range, does perform the best on all
the tested models (Figure 5.1).

Figure 5.2 shows the result of several accuracy metrics applied to the complete test set as the
softmax threshold value is varied.

Number of layers

Each layer of a CNN learns certain features from the training data, and deeper layers subse-
quently learn finer features, allowing a CNN to better learn difficult classification tasks. A network
which is too shallow may result in the CNN being unable to learn the training data. However, if the
training features can be learned in a shallower network and not overfitted, then extra layers only
add additional parameters the CNN needs to learn, and increases the risk of overfitting the training
data during the extra training epochs required to learn all the parameters. Thus, this experiment
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Figure 5.1: A softmax threshold within the 0.65 - 0.75 range returns the best accuracy for multiple
learned models.

Figure 5.2: A clear illustration of the precision recall tradeoff (left). The key accuracy metrics
observed in these experiments (right) are able to reflect the tradeoff and are used to find the
optimal solution.

attempts to determine the fewest number of layers necessary to generalise well over unseen patches
and not overfit the training data.

As shown in Figure 5.3, several experiments indicate that three layers is deep enough to learn
the features of the dataset, and any shallower or any deeper negatively affects performance. It
is important to note that in these experiments, the size of the fully-connected layer remains the
same, meaning that regardless the number of parameters in the network, everything learned must
be represented by a fixed number of features.

A careful qualitative evaluation provides some insight into which features are being learned, and
in which layer. A patch passing through the best performing network with three layers is shown in
Figure 5.4, demonstrating that general features are captured in the first and second layers, while
the third layer appears to learn finer features. Even at the deepest layer, each filter has captured
some information from the original patch.

The network deepened to five layers shows signs of overfitting the training data, and conse-
quently does not generalise well. Figure 5.5 shows the training accuracy reaching unreasonably
high values for the given dataset, decreasing validation accuracy, and high validation loss indicat-
ing divergence. With five layers and enough training epochs, the network has enough parameters
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Figure 5.3: The performance of networks with up to 5 layers.

to essentially memorise the training set patches.

Number of filters

The results of the depth experiments already hint that too many filters will negatively affect
learning, as increasing depth increases the number of features which are fed into the first fully-
connected layer. Increasing the number of filters per layer also corresponds to more input features
to the fully-connected layer. This can be qualitatively confirmed by Figure 5.6 showing a patch
passed through a 3-layer CNN with 32, 32, and 64 filters per layer respectively. The first and second
layers have several filters each which appear to not be learning any particular feature, while the
majority of the third layer filters seem to learn nothing at all.

The declining accuracy as the number of filters increases further confirms these observations,
as seen in Table 5.2. The best performing combination of filters per layer is in bold, with highest
F-measure and balanced accuracy.

Number of
filters

F-measure Balanced
accuracy

Error rate Recall Specificity Precision

16, 32, 32 0.679 0.723 0.271 0.605 0.841 0.774

16, 16, 32 0.684 0.724 0.271 0.617 0.831 0.767

16, 16, 16 0.741 0.769 0.240 0.779 0.76 0.753

32, 32, 32 0.659 0.722 0.269 0.55 0.894 0.823

32, 32, 64 0.638 0.712 0.278 0.517 0.907 0.833

Table 5.2: Accuracy for 3-layer networks with varying number of filters per layer.

Filter window size

The filter window size should correspond to the size of the features of interest in the input
patches. From a human perspective, the “features” which make carcinoma identifiable include a
combination of abnormal morphologies. Figure 5.7 shows the results of a patch passing through
the first layer of filters on two CNNs. The first CNN uses a 4x4 pixel filter window, and the second
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Figure 5.4: Visualisation of the features learned by the CNN with three layers of 16, 16, and 32
filters per layer respectively.

uses a 14x14 window. The small filter window has learned much finer features than the larger. The
experiments with filter windows within this range indicate that the best sized window is 8x8 pixels.

Colour normalisation: grayscale and Reinhard

Converting the images to grayscale gives the CNN fewer features to learn, as the three colour
channels are reduced to one. The default 3-layer CNN is too deep for the reduced number of
features, as evident in Figure 5.8. A more shallow CNN avoids overfitting but does not generalise
well on the test data. As discussed in chapter 1, pathologists generally believe that colour helps
differentiate between tissue types and distinguish features. It appears that colour also helps the
CNN to learn; the models perform better on coloured patches than grayscale. Because of the large
number of sample patches taken for training, this approach most closely mirrors the approach where
researchers artificially generate colour variation. The original unaltered images give the best results
overall.

All the experimental results are listed in full in Appendix C.
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Figure 5.5: With too many layers, the training and validation accuracy diverge and validation loss
increases, before reaching 50 epochs of training.

Figure 5.6: Visualisation of the features learned by the CNN with three layers of 32, 32, and 64
filters per layer respectively.
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Figure 5.7: The results of a patch passing through the first layer of two networks, one with a filter
window size of 4x4 pixels (left), and 14x14 pixels (right).

Figure 5.8: Patches converted to grayscale give the CNN far fewer features to learn; by the third
layer of the network, the filters have learned very little from input patches.



Chapter 6

Evaluation

6.1 Results and visual analysis

Due to the nature of the annotations on the Eindhoven dataset, a result surpassing the most
recent work by researchers in similar areas is not expected. However, the poor ground truth
provides opportunities to demystify deep learning and examine what the CNN has learned. Several
interesting observations can be made by looking at heatmaps generated using the CNN predictions.
The predictions, in the range of 0.0 - 1.0 where 1.0 indicates a high likelihood of carcinoma and 0.0
indicates normal tissue, are used to colour the original patch locations on the test images. We can
qualitatively see how well the CNN has performed by comparing the generated heatmaps with the
original annotations. The heatmap colour scheme is shown in Figure 6.1.

Figure 6.1: The heatmap colour bar with yellow indicating high likelihood of carcinoma, and dark
violet a low likelihood.

When examining the heatmaps, it appears that the CNN has learned to detect the general
regions of interest. However, in the context of the poor annotations, a good heatmap is not always
equivalent to a good carcinoma detection. Figure 6.2 displays a selection of test images for which the
heatmaps indicate that the CNN has learned regression/fibrosis as well as carcinoma. Consequently,
while it predicts the annotated region is cancerous, it also gives high probability to anything that
looks similar to the regression outside of the region.

Other test images, however, such as those in Figure 6.3 indicate that the CNN is unsure about
areas of regression within the original ground truth annotation, and gives them a lower probability.

Colouring the patches according to their confusion matrix category (true positive, true negative,
false positive, or false negative), gives additional insight into what the CNN has learned. Figure
6.4 presents the colouring scheme, and Figure 6.5 displays several confusion matrix heatmaps.

There may also be potential for transferable learning across cancer types. One whole slide image
in the test set has prostrate cancer as well as rectal. The network has surprisingly also been able to
detect its features despite not having been trained on them. Figure 6.6 shows the CNN generated
heatmap for the test image, as well as the ground truth annotation. In particular, the deformed
prostrate glands in the top left of the tissue sample have been detected by the CNN.
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6.2 Insight into actual accuracy

6.2.1 Re-annotated subset

After training and experimentation with the CNN was complete, an expert pathologist was
able to analyse the test set, and re-annotate 10 images on which the CNN performed poorly so
that only the viable carcinoma was enclosed. An additional five original annotations were judged
acceptable by the same standards. This produced a small set of 15 whole slide images never seen
by the CNN during training for which the ground truth is on par to those used in similar research
in the domain, where the annotations segment tumour only. Some of the differences between the
original annotations and the new annotations are highlighted in Figure 6.7.

On this subset of images, the CNN attained an F-measure score of 0.487 and balanced accuracy
of 0.724. A visual examination reveals that on certain whole slide images the CNN has segmented
significantly better than the original annotation, and much closer to the pathologist re-annotation.
However, in other cases, it has confused regression for carcinoma. Overall, the network does very
well at correctly classifying all true carcinoma, and does less well at determining what is not.
It is understandable that the network is not good at distinguishing non-cancerous tissue, as it
has been trained with incorrectly labeled ground truth, namely large amounts of normal tissue
labeled as cancerous. In the context of digital pathology, it is more valuable to correctly classify
true carcinoma than to correctly classify normal tissue, so a high sensitivity (recall) indicates that
despite the rough training annotations, the CNN has still learned the crucial elements.

If the CNN has actually learned carcinoma features, raising the threshold value should increase
accuracy, as it should filter out the patches which it is unsure about; namely, all tissue which is
regression or normal tissue that looks like regression. It is found that a high threshold of 0.85 does
in fact return the highest accuracy, improving the test performance to the values displayed below
in Table 6.1.

Threshold F-measure Balanced
accuracy

Error rate Specificity Recall Precision

0.5 0.487 0.724 0.357 0.564 0.711 0.513

0.85 0.551 0.762 0.207 0.813 0.883 0.373

Table 6.1: Accuracy of best performing network on test subset, with default and adjusted threshold.

6.2.2 Comparison

The results of the CNN trained on sub-optimal data and evaluated on a small test subset of 15
correctly annotated images can be compared with the results obtained by researchers performing
tumour segmentation on breast and rectal cancer with good quality annotations. It must be noted
that due to the small subset size, a good average accuracy cannot be measured; however, Table 6.2
still illustrates that as is, the CNN with a high softmax threshold is not far away from comparable
solutions on much better data sets. Note that the CNN methods listed below are not all purely
CNN approaches; they may include extra classification tactics on top of the CNN.
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Approach Ref. Cancer
type

Balanced
accuracy

Hand-crafted features [5] breast 0.772

CNN [5] breast 0.842

CNN * rectal 0.762

CNN [40] brain 0.840

CNN [35] breast 0.984

Table 6.2: Comparison of results from this work (from small test subset) and similar problems; *
indicates this work.

6.3 The future of learning despite sub-optimal ground truth

Despite poor ground truth, the neural network has still managed to learn the key features of
carcinoma. A neural network learns by error back-propagation starting from the output layer. For
each training patch that is normal, but incorrectly labeled as cancerous, the non-linear separation
boundary learned by the network is moved a small amount in the direction which would classify that
patch as cancerous. If another training patch with similar morphological features passes through
the network, and is correctly labeled as normal, the separation boundary is shifted back in the
original direction to classify that patch as normal.

Theoretically speaking, it is possible to understand why the presence of a two similar patches
labeled differently would cumulatively have little effect on the classifier. An equal number of
inversely labeled patch pairs would allow the network boundary to effectively not be impacted by
the incorrectly labeled patches. However, when given a test patch which is similar to the inversely
labeled training patches, the CNN would be equally likely to correctly label it as to incorrectly label
it. The network is unsure about the entire range of patches which exhibit regression-like features.

Future work with this particular dataset will explore using a very high softmax threshold (0.9 or
greater) to allow the network to only classify the patches which it strongly believes are cancerous.
There is also potential for better training the network using its own initial predictions; by running
the training set through the trained network, re-labelling them with only the strongest predictions
marked as cancerous and the rest marked as normal, the CNN may be able to learn a better
separation boundary. This bootstrapping approach may result in a better final accuracy. Figure
6.8 shows four images from the re-annotated subset, demonstrating the potential of using a high
softmax threshold on the training set to re-train the network. Higher threshold values produce
predictions much closer to the actual ground truth. In addition, a probability or Markov model
could be applied after the CNN to introduce some basic contextual information, such as discouraging
patches from being classified differently than all their surrounding neighbours. This would produce
a cleaner final segmentation and slightly improve accuracy.
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Figure 6.2: A selection of images and predictions from the test set, evidence that the CNN has
unfortunately learned regression as well as carcinoma; however, it often appears less certain about
the regression being cancerous than it is for the actual carcinoma.
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Figure 6.3: A selection of images and predictions from the test set where the CNN does better than
the original ground truth annotation in detecting carcinoma; gives low probability to fibrosis in
centre of slide (top), the entirety of the tissue sample (centre), and pink stroma in middle (bottom).

Figure 6.4: The colouring scheme according to confusion matrix category.
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Figure 6.5: A selection of confusion matrix heatmaps demonstrating that the CNN has learned to
classify regression as carcinoma.
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Figure 6.6: Prostrate cancer on the top left of the tissue sample, and rectal on the bottom left;
both recognised by the trained network.

Figure 6.7: Four test images with original annotations, expert re-annotations, and CNN predictions.
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Figure 6.8: Four test images with CNN predictions using different softmax threshold values, along-
side the expert re-annotations; the areas it is most certain about are more likely to be close to the
ground truth.



Chapter 7

Conclusion

7.1 Project reflections

The two main obstacles in this project were the sub-optimal dataset and lack of direct access
to the whole slide images. Neither obstacle is insurmountable, but due to the short timeline of the
project (approximately 14 weeks from start until dissertation submission), the decision was made to
progress despite them. In retrospect, a more thorough initial examination of the dataset and better
understanding of the purpose of the annotations may have caused the use of the Eindhoven set to
be reconsidered. However, using the Eindhoven dataset allowed for a more interesting evaluation
and gave insight into the capabilities of a neural network.

The project timeline outlined in the initial scoping and planning phase, mentioned briefly in
chapter 1, was closely followed throughout the project, although the initial work outlined in chapters
3 and 4 was more time-consuming than the later phases. Direct image access via a temporary
mount to external file system from within ARC would have greatly sped up and simplified the
patch sampling process, and the time gained could have been used for experimenting with different
patch sizes and zooms in the training stage. As it required nearly a full week to convert each whole
slide image into patches in HDF5 format with the conversion scripts running day and night, it was
not feasible to repeat the process multiple times.

In addition, extra time could have been used to designate the training set and test set by
separating all the images into five sets of equal size, and rotating which is used as the test set for
each complete round of an experiment. This would require each experiment to be repeated five
times. The final results could then be averaged over all the sets, reducing the possibility of a skewed
result based on unusual test images.

During the parameter experimentation phase, the test set was used for evaluating the accuracy
of each model. If there had been more data, it would have been better to use the validation set
instead, thus eliminating the possibility of customising the CNN to the test set. Unfortunately,
there was not enough time to see whether the validation set was large enough to obtain clear results
for all the experiments.

7.2 A promising future

While the appeal of whole slide images over traditional slides continues to rise, opening up op-
portunities for machine learning, good quality annotations on whole slide images for the purposes
of computer vision research are difficult to come by. Clinical pathologists generally roughly segment
a tumour on a whole slide image at a magnification and quality far lower than those required by
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a deep learning algorithm for training. Annotating at the ideal accuracy for a computer vision
system would be a painstaking task. However, this work has proved that despite significant misla-
belled ground truth, deep neural networks are still capable of learning the principal features which
distinguish carcinoma from normal tissue. While the results understandably cannot compete with
those of research performed on datasets with higher quality tumour annotations, they are still com-
parable and have clearly shown that a CNN does not need perfect ground truth in order to learn.
This indicates that perhaps with bootstrap re-training and additional improvements to the model,
rough annotations could be sufficient for obtaining state-of-the-art results. Future extensions to
this work hope to explore these possibilities.

Intelligent deep learning systems could offer support in many areas of the pathologist workflow.
Glass slides are placed in whole slide scanners and pass through the complete scanning process
before any defective slides can be manually detected and either re-scanned or rejected. A deep
learning system built into the scanners could be used for early detection of defects including large
tissue tears or artefacts, major discolourations, and misaligned or marked slide covers. This could
reduce the percentage of slides needing to be re-scanned or manually rejected, saving valuable
time. In addition, highly accurate deep learning systems could be used for automatic analysis of
removed polyps. Polyps are growths which appear in the colon surface and are commonly removed
by physicians. Tissue samples from these polyps are then examined by pathologists for carcinoma,
but only very few of polyps removed are actually cancerous. An automated system could be trained
to support and speedup the screening of polyp tissue samples. These tasks are among many which
could benefit from automated computer vision systems.

Deep learning algorithms have proven capable of performing difficult tasks in pathology and
show enormous potential for having clinical applications. In work by Wang et al., it was observed
that the errors of the deep learning system were not strongly correlated with those of the test
pathologists annotating the same images [35]. Combining the conclusions of the trained CNN
and those of a test pathologist thus gave a better overall accuracy. This strongly proves that
deep learning algorithms have potential to support pathologists in a clinical environment. While,
due to the nature of the domain, they may never be suited to replace the expertise of practicing
pathologists, they promise to aid in tasks which can be tedious, painstaking, and subject to a degree
of error and subjectivity.

The outlook is promising. If deep learning's heavy reliance on good-quality data and powerful
computational resources can be reduced, a future where pathologists and intelligent computer
systems work together is altogether imaginable.
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Chapter 8

Appendices

8.1 Appendix A: materials provided

The following materials were provided to me either partially or entirely used, and are not the
result of independent work:

• The basic implementation of the Reinhard colour transfer algorithm was taken from Adrian
Rosebrock's open-source Github project, and adjusted to maximise efficiency (calculating
statistics for the source image only once and turned into function form): https://github.

com/jrosebr1/color_transfer

• The Hvass-Labs TensorFlow CNN for MNIST digit classification was used as a rough base
for creating a 3-layer binary CNN classifier: http://www.hvass-labs.org/

• The public Cats vs Dogs dataset on Kaggle was used for practice training the CNN: https:
//www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data

• The following Tensorflow Docker image file was used as a base for creating a custom Docker
container for use on ARC3: https://hub.docker.com/r/tensorflow/tensorflow/

8.2 Appendix B: ethical issues and risk addressed

The data used in this project has been fully anonymised and is legitimate. No attempt has
been made during the course of this research to link images to patients. Image analysis work was
pre-approved for this dataset, with ethics reference Leeds West LREC, 05-Q1205-220.

In the hypothetical situation that anyone were to misuse these experiment results in a clinical
environment, and there were a misdiagnosis due to over-reliance on the algorithm results, patients
could suffer psychological and physical damage. To this end, any use of this project in a clinical
setting is not supported. The intention of this research is not to replace the expertise of a physician
or pathologist. This project is not intended to apply to any kind of practical application.

8.3 Appendix C: complete experimental results

The following Table 8.1 displays the performance of all the CNN variations discussed in chapter
5. The best results in each category are in bold. The overall best performing model has no colour
normalisation, three layers of 16 filters each, and filter window size of 8x8 pixels. The model names
refer to the saved TensorFlow models available in the Github repository for re-running the CNN.
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Number of
filters

F-
measure

Balanced
accuracy

Error
rate

Recall Specificity Precision Model

16, 32, 32 0.679 0.723 0.271 0.605 0.841 0.774 model-2017-07-19-23:04

16, 16, 32 0.684 0.724 0.271 0.617 0.831 0.767 model-2017-07-20-14:18

16, 16, 16 0.741 0.769 0.240 0.779 0.76 0.753 model-2017-08-07-20:42

32, 32, 32 0.659 0.722 0.269 0.55 0.894 0.823 model-2017-07-20-20:31

32, 32, 64 0.638 0.712 0.278 0.517 0.907 0.833 model-2017-07-21-02:47

Number of
layers

F-
measure

Balanced
accuracy

Error
rate

Recall Specificity Precision Model

1 0.593 0.668 0.323 0.497 0.838 0.735 model-2017-08-07-01:30

2 0.676 0.712 0.284 0.625 0.799 0.736 model-2017-07-23-18:51

3 0.741 0.769 0.240 0.779 0.76 0.753 model-2017-08-07-20:42

4 0.661 0.697 0.299 0.613 0.781 0.716 model-2017-07-24-02:36

5 0.617 0.686 0.306 0.519 0.853 0.761 model-2017-08-04-15:11

Filter size F-
measure

Balanced
accuracy

Error
rate

Recall Specificity Precision Model

4, 4, 4 0.730 0.763 0.247 0.759 0.767 0.754 model-2017-08-05-01:39

6, 6, 6 0.694 0.735 0.259 0.619 0.850 0.788 model-2017-07-31-15:00

8, 8, 8 0.741 0.769 0.240 0.779 0.76 0.753 model-2017-08-07-20:42

10, 10, 8 0.674 0.715 0.28 0.611 0.818 0.752 model-2017-07-24-14:52

12, 12, 12 0.663 0.708 0.286 0.593 0.824 0.752 model-2017-07-29-18:27

14, 14, 14 0.601 0.677 0.314 0.499 0.854 0.755 model-2017-08-05-14:52

Colour F-
measure

Balanced
accuracy

Error
rate

Recall Specificity Precision Model

normal 0.741 0.769 0.240 0.779 0.76 0.753 model-2017-08-07-20:42

Reinhard 0.669 0.72 0.273 0.584 0.855 0.784 model-2017-08-24-02:01

grayscale 0.617 0.686 0.306 0.519 0.853 0.761 model-2017-08-04-02:40

Table 8.1: Complete results for all experiments conducted with varying number of filters, layers,
filter size, and colour normalisation; best parameters emphasised in bold.
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