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Summary

Previous work has shown that, in principle, it is possible to analyse the electrical activity of so

called ‘place cells’ in the brain of a rat, as it explores a maze, to infer various geometric and

spatial properties about that maze. This is achieved by analysing the spike times of multiple

place cells which fire when the rat passes through associated regions of its environment. A

logical description of the spatial relations between these regions, called place fields, can be

used to derive the topology of the maze and identify features such as loops.

A solution has been produced previously which works successfully with simulated data. This

project shows that the principles behind that solution also work well with real experimental

data by employing a number of techniques to reduce sources of error. These techniques

include smoothing the data, eliminating problematic cells and introducing an alternative

definition of the spatial relation between place fields. Two separate data sets are used to

evaluate the solution for different maze shapes. As an extension, the solution is applied to rest

data to show that topology of earlier mazes can be inferred from ‘replay’ of place cells while

the rat is asleep.
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1. Introduction

1.1 Context

David Eagleman, Associate Professor of Neuroscience at Baylor College of Medicine, says in

his book, The Brain [1], “The most complicated thing we’ve discovered in the universe is the

human brain. How does, what happens in these three pounds of jello-like material, become

us?”. Understanding how the brain works is imperative to knowing how we learn about and

understand the world and for our understanding of mental health. Seventeen percent of adults

in England meet the criteria for a common mental health disorder [2]. 850,000 people suffer

from dementia in the UK caused by multiple diseases in the brain [3].

The hippocampus has long been understood as a crucial component in the way we learn and

remember [4, 5]. It is one of the few places in the brain where we have observed adult

neurogenesis, the growth of new neurons [6]. Without it, human short term memory is

severely impaired and long term memory becomes “read only” [7]. Navigation is also impaired

as is the ability to remember sequences [8].

Beyond issues associated with physical damage, other pathologies such as atrophy and plaques

in the temporal cortex and hippocampus are an early indication for the onset of Alzheimer’s

disease and Dementia [9]. Investigating the structure and behaviour of cells in the

hippocampus, then, is of immediate importance. From a computational standpoint, as

systems such as IBM Watson [10] and Google Deep Mind’s AlphaGo [11] push the boundaries

of machine cognition, we must look for further inspiration from the biological state of the art.

What is more, the question of whether the brain is a (not so simple) computer [12] has

implications for how we evaluate AI systems and how we define what intelligence is. For many

years, artificial intelligence research was primarily concerned with knowledge representation

using formal logical calculi [13]. This was intuitive based on human propensity for structure

and pattern recognition as well as the mathematical beauty of many logical systems. Recently,

AI research has shifted emphasis to that of biologically inspired neural networks and

regression of large volumes of data [14,15]. Where possible, it is preferable to interpret
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bio-inspired systems or indeed biological processes themselves using logic. It links our high

level intuition to a biologically plausible model and helps us to understand how our everyday

perception emerges from the structure of the brain. Furthermore, in order to support

neurological research, computer science projects can help to provide novel interpretations of

experimental results as well as produce applications to open up new methods and avenues of

experimentation.

1.2 Spatial Reconstruction Experiment

This project is born from a single thought experiment outlined by Dabaghian, et al. [16]. An

experiment is setup in which a rat is running round a maze, isolated from an experimenter

who may only observe signals from electrodes in the rat’s hippocampus. What can be deduced

from these signals about the geometrical and spatial properties of the rat’s environment?

Previous work on this problem [17], described later, successfully inferred the topology of a

maze with high accuracy from simulated cell data. There was, however, little success when

directly applying the same solution to experimental data. The aim of this project is to see if

the solution can be extended to improve performance with real world data. Firstly, a program

will be implemented to visualise and to perform analysis on the data. Once the main obstacles

to correctly deducing topology have been identified, a set of processes or techniques can be

designed and implemented to improve the performance of the solution. If successful, there are

a number of possible extensions to this work such as investigating the topology of large open

spaces or applying the solution to signals received while the rat is resting.

The literature review chapter will explore what led to the formulation of the Spatial

Reconstruction Experiment, examine results from neurological investigations which may affect

what can be deduced from hippocampal cells, and cover computational research topics

required to implement a solution. Finally, the work done in the previous project will be

examined in detail as this will form the basis to the implementation in this project.
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2. Literature Review

2.1 Towards the Spatial Reconstruction Experiment

Place Cells and Place Fields

Memory and intelligence testing of patients who had undergone resection of the medial

temporal lobe (so called lobotomies) in the Fifties, identified the hippocampus as a centre for

short term memory in the brain [7]. Later, O’Keefe and Dostrovsky [18] investigated spike

firing rates of cells in the rat hippocampus by recording from electrodes inserted into the

brain. They found that the activity of cells in a region of the hippocampus known as CA1

responded only when the rat was in a certain location within a testing platform (and for

certain other cells, facing in a particular direction). During further experimentation,

O’Keefe [19] found that many of these “place cells” respond solely to the rat being in a single

associated region of its environment. He hypothesised that each “place field”, defined as the

spatial region in which there is heightened activity of the place cell, is based on some internal

navigation system. The location of place fields are dependent on the locations of certain

spatial cues relative to each other [20]. In particular, visual cues such as lights or picture

cards, sound and feel cues have been shown to inform the location of a place field. Due to the

stability of place fields in an unchanging environment, Brown et al. [21] showed that it is

possible to decode the spike trains from place cells to estimate the location of a rat within a

testing platform with reasonable accuracy. This relies on the rat being familiar with the

environment and for a reasonable coverage of place fields to be found.

Experimental Methods

Many of the experiments mentioned here involve the implantation of electrodes into the rat’s

hippocampus under anaesthetic. Initially, these were dual microelectrodes [19] across which a

potential difference could be measured, but in later experiments were replaced by tetrodes [22]

which allowed for the triangulation, using potential difference, of individual cells.
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As described by operant conditioning techniques [23], rats may be trained to perform a ground

task such as performing an action or moving to a certain location using food rewards. Rats

are usually starved to ˜85% body weight to increase the effective reward of the food.

Generally, training platforms consist of connected walled corridors as well as open areas

depending on the specific experiment and are often contained within a roughly metre squared

area. The experiments by O’Keefe and Conway [20] provide a good example of what is typical

in this area. An alternative method for motivating spatial learning is to use the so called

Morris water maze [24]. This involves a pool full of opaque water and a platform positioned

just below the surface so it is invisible from above. A rat is placed into the pool and naturally

attempts to find the platform. The benefit of this technique is that the rat does not need to

be starved before training and, indeed, training has been found to be quicker. The downside,

however, for experiments involving electrodes is obvious.

Place Cells in Humans

There is some experimental evidence that humans also have place responsive cells in the

hippocampus. Ekstrom et al. [25] and Miller et al. [26] took advantage of patients with drug

resistant epilepsy undergoing invasive monitoring with electrodes in the left and right

temporal lobes. In both experiments, patients were asked to play a computer game involving

moving around a town. In the Ekstrom experiment, as the patients moved between shops in

the town to pick up taxi passengers, 11% of cells were found to respond to place fields in a

similar manner to rat place cells. Other cells responded to goals and local objects in the game.

In the Miller experiment, 25.6% of cells across the hippocampus, entorhinal cortex and

amygdala were identified as place responsive with a majority sensitive to direction. In

addition, it was found that these place responsive cells were reactivated when items in the

game were recalled later without the visual cues of the game world. While it is apparent that

there is more going on in the hippocampus of humans in terms of cell responses, the existence

of place responsive cells in humans further justifies the research into rat place cells.

Internal Spatial Representation

O’Keefe and Nadel [27] postulated that the hippocampus of humans, and other animals

including rats, encode a “cognitive map”. This map is an internal representation of the

environment, not relative to the body and is perceived to remain stationary as the body

moves. To investigate whether place cells fire simply in response to stimuli at the current

location of the rat or if there is indeed a memorised internal representation, O’Keefe and
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Speakman [28] performed a spatial memory task in which a rat would be trained to reach a

goal in the presence of spatial cues. The cues would then be removed and the rat would need

to find the goal again. The ability of the rats to do this task and the fact that 90% of place

fields were retained after the spatial cues were removed provides good evidence for an internal

representation which is not simply a response to current stimuli.

Place Field Size

During O’Keefe’s [19] initial investigation into place cells, he found that the size of place fields

varies greatly. In his experiments, sizes ranged between 10cm2 and nearly half of the 2m2

testing area. In experiments where the testing area was increased over time, it was shown that

place fields can stretch to fill the space, although this stretching is limited and beyond a

certain size, additional place fields emerge [29–31]. It has also been shown [32] that the size of

a place field can depend on the location of the place cell itself in the hippocampus.

Remapping

Muller and Kubie [33] investigated the effect of changes in a rat’s environment on its place

fields. They found that when all visual cues were rotated in the testing platform, the place

cells also rotated by the same degree. When the testing platform was scaled up, there was

some degradation of the fields, that is, some place fields would change location or the place cell

would not fire at all, however, some place fields did scale with the environment. Changing the

shape of the testing platform (for example from circular area to a square one) or introducing

barriers to the area, caused all place fields to change position or disappear. This demonstrates

an important aspect of place cells, their propensity to “remap” to partially or entirely

different configurations of place fields when certain changes to the environment are made.

Another way to cause remapping of place fields, is for the behavioural task of the rat to

change in the same environment [34]. In an experiment where a rat switched from a foraging

task (randomly located food pellets) to a goal oriented task (move to a specific pile of food),

additional directed place fields were shown to emerge.

In 2004, Moita et al. [35] showed that inducing a fear response in a rat, which had learned a

spatial environment and whose place fields were stable, would cause some remapping to occur.

Remapping due to spatial changes in the environment can be avoided if those changes are

made in suitably small increments. O’Keefe and Burgess [29] while investigating the geometric

determinants of place fields, saw that changing the scale in either or both dimensions of an

explorable area caused similar scaling of the place fields and no remapping was observed.
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Gothard et al. [31] observed similar scaling along a track with food rewards at either end. One

end was movable, thereby extending the length of the track. Small changes to track length, led

to a scaling of the place fields whereas larger changes caused some place cells to cease firing.

Similarly, Fenton et al. [36] reported distortions in place fields in relation to the movement of

black and white cards in a cylindrical testing platform.

Muller et al. [37] categorised this behaviour in three ways. A Null remapping describes the

case where place fields remain associated with their respective place cells and may change

shape or position as long as the relative position of all place fields do not change. A Full

remapping occurs when all place cells either cease firing in any location, begin firing having

not done so before or whose place fields have shifted to entirely different positions relative to

others. Finally, partial remappings describe the case where only some place fields change.

Topological Ordering

The null remapping of place cells, during which place fields maintain adjacency relations with

each other and relative ordering, led Dabaghian et al. [16] to hypothesise that place cells code

for a topological representation of the environment. An answer to their Spatial Reconstruction

Experiment would then be that, from the spike firing activity of place cells, the topology of the

maze could be deduced but not the absolute shape or scale. For example, a W shaped maze

would look identical to a Y shaped maze as each has a single junction with three arms. The

size of each maze would also have no effect. This interpretation is supported by the results of a

number of experiments on the hippocampus with respect to its “sequence coding” behaviour.

Chiba et al. [38] showed that hippocampal lesions severely impair a rat’s performance in

spatial ordering tasks. The hippocampus is further implicated in non spatial ordering tasks

such as remembering sequences of odours [39,40]. This behaviour is relevant to the idea of

topological ordering in which sequencing is more of a concern than absolute position.

2.2 Reasoning about Place Fields

The Region Connection Calculus

Dabaghian et al. describe inferring geometric information about the environment by reasoning

about the spatial relations between place fields. To do this, they suggest the use of the Region

Connection Calculus formulated by Randell et al. [41]. Allen relations [42] define a

representation of time intervals in terms of the different ways in which two intervals can

overlap. The RCC is a similar “interval logic” but can be applied to both temporal and

6



spatial regions. The eight base relations of RCC are presented in figure 2.1 and derive from

the ‘connected’ relation which says that two regions, x and y, are connected if there exists a

point in x which is also in y. The overlapping circles in the figure illustrate the various ways in

which two regions can be connected (or not connected). There are simplified versions of these

RCC8 relations such as RCC5, shown in figure 2.2.

Figure 2.1: DC : Disconnected, EC : Externally Connected, PO : Partial Overlap, TPP

(TPPi) : Tangential Proper Part (inverse), NTTP (NTTPi) : Non-tangential Proper Part

(inverse), EQ : Equal. Arrows show possible transitions between relations. Transition diagram

reproduced from [41].

RCC5 is appropriate for models in which the edges or borders of regions are poorly defined

such that there is no need to identify regions which are just touching. As explained in [17],

because the edges of place fields are defined between locations with no cell activity, and

locations with some activity which is subject to variance and noise, RCC5 provides the

appropriate set of relations to describe them.

Figure 2.2: DR : Discrete, PO : Partial Overlap, PP (PPi) : Proper Part (inverse), EQ :

Equal. Arrows show possible transitions between relations.
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Simplicial Complexes

Having created a description of the connectedness of place fields using RCC5, the original

work from Dabaghian et al. described the use of a simplicial complex to derive topological

characteristics of the environment. A simplicial complex is a structure used in an area of

mathematics called algebraic topology to describe shapes or surfaces (see figure 2.3). A

simplex is a generalised triangle in k-dimensions. A triangle is a 2-simplex, that is, a simplex

in two dimensions. A 3-simplex is a tetrahedron or triangular based pyramid. A simplicial

complex as described in [43] is a collection of simplices connected via faces, edges or vertices.

A simplicial complex can be built from a graphical representation of place fields such that

fields are represented by vertices with edges between fields which satisfy the RCC5 PO

relation. From this structure, certain functions, which are beyond the scope of this document,

can be applied to give a clearly defined representation of the space. This includes identifying

the Betti number which is the number of ‘holes’ in the space. As an example, an O shaped

maze would have a (1 dimensional) Betti number of 1 and a figure-8 maze would have a Betti

number of 2. This project focuses on a different method for identifying certain topological

attributes, described later.

Figure 2.3: The grey oblongs represent a collection of place fields. Vertices in the black simplicial

complex are located at place field centres and edges denote PO. The individual edge is valid in

a simplicial complex as it is defined as a 1-simplex.

2.3 Further Relevant Characteristics of Place Cells

Ensemble Coding (Multiple Place Field Cells)

A key question to answer if attempting to infer the relative locations of place fields is, does a

place cell encode a single unique place field in the environment or more than one? Fenton et

al. [44] answered this question with a study of place fields within a much larger testing area
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than before (2.1m2). They showed that place cells can code for multiple distinct place fields in

a large enough area and that this supports a so called “ensemble coding” in which a vector of

place cell signals uniquely identifies a location in the environment.

If it is the case that place cells code for multiple fields, then one should expect to see locally

repeated patterns of place fields in areas which are identical with respect to the spatial cues

which govern place cell firing. This is dependent on the absence of so called “path

integration”, some mechanism upstream from place cells in the hippocampus to track where

the rat has come from. There is some disagreement to what extent path integration affects

place fields. Skaggs and McNaughton [45], monitored the place fields in two identical boxes

connected by a corridor. Despite replacing one box with the other or changing the starting

location, there was almost no similarity of place field locations between each box. This

supported the hypothesis of a path integration process.

Evidence contradicting Skaggs and McNaughton was compiled by Spiers et al. [46] who

conducted an experiment with rats in a maze of four identical compartments connected by a

corridor. They found strong evidence for similar place field locations in each compartment

represented in the activity of a single place cell.

Observing increased activity in a “Multiple Place Field” (MPF) cell may indicate that the rat

is in one of a number of locations and the presence of these cells, therefore, is significant for

this project.

Context Sensitivity of Place Cells

Frank et al. [47] showed that in some cases, place cells fire based on the rat’s current activity

while travelling through its place field. In a W shaped maze, for example, a CA1 place cell

may fire in the central arm if the rat is heading out towards its food goal but not when it is

returning. Similarly, Wood et al. [48] modified a T shaped maze to a figure-8 configuration so

that the rat would continuously travel up the central arm and be trained to turn left and then

right on alternating loops. Despite using much less accurate stereotrodes, place fields were

identified in the central arm which responded only in the context of an upcoming left turn or

an upcoming right turn.

Other experiments [34,49] have further extended the idea of context sensitive place fields.

Markus et al. confirmed that place cells are more selective of directionality in mazes with

corridors compared to more open areas. Moreover, directionality becomes more of a factor in

place fields when the rat is working towards a goal indicating that planning can be associated

with certain place fields.
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Even early work by O’Keefe [19] pointed to the context specificity of place cells when some so

called “misplace cells” increased firing activity for place fields where a reward was expected

and there was none or alternatively when a reward was present where previously there had

been none. Indeed, there is further evidence [31,50] of place fields attached to the food goal of

tasks for which a rat was trained and also fields that are associated with walls and other

obstacles within an arena. This, again, indicates that place cell activity represents an internal

cognitive map. It also means that observing increased place cell activity may not always

indicate the rat is in its place field and furthermore, observing no activity does not always

guarantee the rat is outside of its place field.

Learning and Place Field Formation

On encountering a novel environment, some time is required for place fields to form and

stabilise. The internal representation of a cognitive map through place cells, coupled with

repeated place cell activity during sleep, points to a mechanism involving spatial coding for

learning the environment. Foster and Wilson [51] showed that for a brief time immediately

after exploration of a new environment, while the rat is awake, place cells show activation in

reverse order to that which led to the current goal location. This is postulated to be evidence

for reinforcement learning based on back-propagation of reward.

Monaco et al. [52] showed that place field potentiation occurs as a rat explores a new

environment and as the internal representation is updated. In particular, it was shown that

this happens while the rat performs head-scanning movements to survey the immediate spatial

cues.

It seems, however, that not all place fields emerge over time during exploration. Hill [53] found

that for many place cells, associated place fields are apparent on the first traversal by a rat of a

novel environment. Frank et al. [54] confirmed this but expanded the investigation to find that

some place cells start off silent, showing no activity, but later develop to produce a place field.

They suggested that place field stability is only reached after 5 to 6 minutes of exploration.

2.4 Avenues of Investigation beyond Topology Inference

Wake vs Sleep

An exciting area of research derived from O’Keefe and Dostrovsky’s discovery is the activity of

place cells during sleep. Pavlides and Winson [55] who confirmed and extended work by

Ranck [56] found that place cells activated as a rat explored a maze when awake, showed
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heightened activity during slow wave sleep and to a lesser extent, REM sleep. Further

exploration [57,58] showed that the order in which place cells fire, as the rat travels through a

number of place fields while awake, leads to increased activity in the same order during sleep

states. This indicates that there may be some form of replay of activity during sleep. It may

be the case that the topology of the maze being replayed may also be found using the same

technique as when the rat is awake.

Other Cells in CA1

Place cells are not the only functional unit in CA1 or the wider hippocampal formation.

Hartley et al. [59] give an excellent summary of the major types of spatial cell in addition to

place cells. Head direction cells, as the name implies, show increased activity when the animal

is facing a certain allocentric direction. That is, the direction is not relative to the body. Head

direction cells have been found in both the presubiculum and entorhinal cortex [60,61] and

have been shown to influence the allocentric orientation of place fields [62].

In 2005, research led by May-Britt and Edvard Moser [63] uncovered the existence of grid cells

in the entorhinal cortex. An individual grid cell shows increased activity in certain locations in

the environment similar to place cells but there are many more place fields associated with one

cell, organised into a grid like structure with scale, periodicity and orientation. These cells are

understood to be upstream of place cells in the hippocampus and have less context

sensitivity [64].

Finally, cells which respond to locations near walls or other obstructions in the local

environment, known as boundary cells have been discovered in many areas of the hippocampal

formation [65–67] with the exception of the hippocampus itself [59].

Continuous Attractor Networks

Further understanding of how path integration, for planning and navigation, is performed

within the hippocampal region is an ongoing topic of research. One model for understanding

how a network of neurons can code for navigation is called the continuous attractor neural

network model [68]. The model describes a network of interconnected neurons such that more

excitatory connections between two neurons implies they are functionally proximal (for

example, a head direction cell has more excitatory connections to another cell which codes for

a similar head direction). The model defines a collection of active place cells as a chart which,

when combined with theoretical “attractor map” cells and cross referenced with other spatial

inputs such as head direction cell activity, provides a contextual cognitive map directly
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associated with cues in the world. Although Barry and Burgess [69] cite little evidence for this

model among the place cells in CA1, they discuss its validity among entorhinal grid cells, the

head direction cell network and place cells in CA3. Recent work by Meshulam et al. [70]

reinforces the application of this model to cells in both CA3 and CA1 when applied to both

place cells and non-place cells.

2.5 Previous Project

Although there were other areas of investigation and various topological inference algorithms

were tested in the previous project, this section concentrates on the use of RCC to describe

place field connectivity and an algorithm used to find junctions in the topology of the maze as

these will be relevant in later chapters.

Connectivity Graph

According to the Spatial Reconstruction Experiment, an application acting as the observer has

no knowledge of the shape of the maze and the only information available is the time at which

each place cell spikes. With the assumption that each cell fires when the animal is within the

place field represented by that cell, the previous project [17] used RCC5 to describe deductions

that can be made about the relationships between place fields. During a session, as a rat runs

round a maze, if two place cells show increased spiking at the same time, it can be deduced

that the place fields of these two cells must at least partially overlap (PO). In contrast, if there

is never a time when two cells cofire, their place fields must be disconnected. By making these

deductions for all pairs of place fields in a session, a graph of connectivity can be built where

each node represents a place field and an arc represents partial overlap or connectedness.

Figure 2.4: (left) Partial overlap between place fields. (right) The derived connectivity graph.
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Junction Finding

Once the connectivity graph has been generated, an algorithm is implemented to find the

number of junctions in the maze and the number of corridors leading away from each (the

degree of the junction). A junction is defined as an area of a maze with three or more

corridors leading away from it. For example, in the W shaped maze, there is a single junction

of degree three which connects the three arms. A plus shaped maze would have a single

junction with degree four and an H shaped maze would have two junctions of degree three.

The junction finding algorithm starts from any place field in the maze which is then labelled

x. The next step is to find all fields which overlap with x. This is equivalent to finding all

neighbours of x in the connectivity graph. These fields are labelled 1 to denote their distance

from x as shown in figure 2.6.
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(a) W-maze with a 3-junction. (b) Plus shaped maze with a 4-junction.

Figure 2.5

(a) The first set of connected fields. (b) The fully labelled maze.

(c) The 2-labelled fields form three discon-

nected subsets.

Figure 2.6

All fields which are neighbours of any 1 fields and not already labelled are given the label 2 as

they are all 2 jumps away from x. The algorithm continues counting distances from x until all

fields have been labelled.
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For each set of fields who all have the same label, the number of disconnected subsets is

counted. A set has disconnected subsets if there exists a pair of fields in the set such that

there is no path between them. Figure 2.6c shows an example of a set of 2 fields with three

disconnected subsets surrounding field x and its 1 fields.

If a set has three or more disconnected subsets, this indicates that there must be a junction in

the maze of that degree.

Initial Attempts with Experimental Data

The connectivity graph and junction finding algorithms were shown to be highly successful

with the simulated data and further investigations were carried out into identification of other

topological features including loops and larger open spaces called arenas. With only a short

time left, testing was performed on experimental data and although generally unsuccessful,

the challenges posed to the algorithms with real world data were well documented and will be

covered later in section 3.3.
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3. Data Analysis and Visualisation

3.1 Data Sources

In order to assess the feasibility of deriving a maze topology from experimental data, it was

necessary to develop a simple application to visualise the location of the rat as it ran around a

maze and the locations at which spiking occurred. The expectation was, for each place cell, a

distinct cluster of spiking activity would be visible as the rat passed through the

corresponding place field. An assessment could then be made of the general size, shape,

reliability and coverage of place fields for each experiment. Additionally, any noise or

unexpected activity could be noted and perhaps explained using results from the background

research. The two available experimental data sets are described below.

Loren Frank

The experimental data set used by the previous project is from the lab of Loren Frank at

UCSF. The data are recordings from hippocampus regions CA1 and CA3 in seven Long-Evans

rats and from the MEC and CA1 regions in two further rats. The methodology is summarised

in [71]. The rats were deprived of food to 85% of their initial body weight. Initially, they were

trained to run from one end of a linear track to the other to receive a reward at each end. The

animals then underwent surgery to implant microdrives containing 30 tetrodes.

After recovery, each day during two or three 15 minute sessions in a W shaped track, the

animals were allowed to behave freely and learned through trial and error to perform an

alternation task (figure 3.1) starting from the central arm then moving along the left arm

before returning back to the centre, then the right arm and back and so on. This behaviour

would result in a reward given at the end of each arm provided the correct order was followed.

The animals were given rest sessions, during which cell recordings were also taken, in a black

box before and after each run. Two geometrically identical W tracks in different parts of the

room (separated by a large black divider) were used for the sessions. For the first two days,

track A was used for two distinct 15 minute sessions alternating with three rest sessions. From
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day three onward, both tracks were used, two sessions of track B and one session of track A,

with five alternating rest sessions.

Figure 3.1: The rat’s path repeatedly follows A to C to A to B to A.

Although other data is available, the pertinent data used for this project includes the position

of the rat during each session, derived from tracking of an LED attached to the rat’s head.

The position data is assumed to be unavailable to the observer in the spatial reconstruction

experiment but it is useful to be able to visualise the rat’s behaviour and for analysis of the

spike data. For the spike data itself, distinct cells in the hippocampus were identified from the

signals at each tetrode and the times at which each cell produced a spike was recorded. The

LED video processing to derive position and cell and spike time identification were performed

by the Frank team and made available as Matlab data files which was the starting point for

this project.

Gyorgy Buzsáki

In order to test the solution with different shaped mazes, a further data set was obtained from

the Gyorgy Buzsáki lab at NYU. These recordings were also taken from the CA1 and CA3

regions as rats explored various different mazes.

� A single linear track

� A plus or cross shaped maze

� A Figure 8 maze with a wheel in which the rat is trained to alternate turning right or

left before returning to the wheel for a period of time.

� Two open square areas of differing size (180cm2 and 120cm2)

As with the Frank data, both the position and occurrence of spikes was recorded during each

session and made available in an already processed form.
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3.2 The Animation Visualiser

Both datasets were converted to a consistent format for use throughout the project. A

MATLAB script was implemented to extract the position and spiking data of the Frank set

and a python script was implemented to convert the .csv formats of the Buzsáki set. For each

experimental session, then, there is a run.txt file which lists the rat’s position at each timestep

(the Frank data was at 30Hz and the Buzsáki data was at 39.06Hz). There is also a file, for

each identified cell, listing the times at which that cell fired. An application was implemented

to display a mouse icon which moves according to the position data in run.txt. It deposits a

single sprite, a gaussian radial gradient, in the the rat’s location in the event of a spike. The

application was implemented in C++ utilising OpenGL GLUT due to its ease of setup, cross

platform nature, extensive online support, and flexibility when compared to languages such as

Java or Python. The position data was normalised so that the extent of the maze corresponded

to the size of the visualiser window. Although the shape of the maze is not displayed, it can

usually be inferred from the movement of the rat or location and shape of the place fields.

Figure 3.2: The visualiser application showing the mouse icon and five place fields derived from

the spiking data of five different cells during a session in the w-maze.

In order to obtain more quantitative results beyond an animation, a single snapshot of all

spikes at their corresponding locations was saved to a file and the screen was split into a grid.

Each grid square was given a value corresponding to the number of spikes which occurred

while the rat was in that square. This ‘spike rate’ value was normalised to between 0 and 255

and displayed as a red colour in the image as well as recorded to a file. An example is shown

in figure 3.3
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Figure 3.3: A snapshot image of all spiking activity from a single cell’s spike file with the red

‘spike rate’ grid overlay. The grid gives a good indication of where a place field is located and

its extent by taking into account the number of spikes in a given area. This is in contrast to

the white gaussian deposits which display dormant or spurious firing with the same intensity as

place field firing.

3.3 Analysis

Python was used to further analyse this data due to its more functional nature and the

simplicity of the matplotlib library [72] for plotting graphs.

Figure 3.4 summarises the number of cells showing spiking activity during a single session for

six rats from the Frank experiments. In total there are eight rats, six of whose data shall be

used for testing and evaluation. The remaining two rats have recordings from cells in different

regions of the hippocampus. As mentioned earlier, the spike rate grids give a good indication

of where a place field is located and its extent by taking into account the number of spikes in a

given area. These grids were therefore used primarily for understanding the nature of the

place fields in each experiment.

Figure 3.4: Number of place cells available in a single session

Name Mean spiking units max min

Bond 16.6 30 9

Conley 8.5 18 3

Miles 12.5 19 4

Frank 21.8 41 4

Dudley 5.9 12 2

Eight 20.2 27 12
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Place Field Size

Figure 3.5 shows the histogram of sizes of all place fields during run sessions on track A and

track B undertaken by three rats across all days and sessions of the w-maze experiments.

Figure 3.5: Histogram of Place Field Area (W-maze)

As a proportion of the size of each track, the place fields are generally quite large but with

high variance. For the w-maze, there is an outlying number of place fields covering almost the

entire track. Without expert knowledge of the functioning of the electrodes and behaviour of

cells in the hippocampus, it is difficult to say if these fields come from valid place cells or not

but it is probable that they are, in fact, interneurons. Interneurons do not act like place cells

and have a very high spike rate. This high spike rate can be interpreted as constant cell

activity resulting in a ‘place field’ which covers the entire track. There are also a high

proportion of place fields which take up almost no space at all on the track. Certain cells spike

sporadically with no cohesive place field and these are recorded as spike rate grids with no

bright red squares. It can be said that these are either not place cells or they code for a

location which does not lie within the maze. These outlier cells will likely be a source of noise

later on.

Multiple Place Fields and Spurious Firing

As described in [17] and in the literature review, there are a number of Multiple Place Field

(MPF) cells in the datasets. These cells produce field images such as in figure 3.6.
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Figure 3.6: An MPF cell produces more than one distinct place field in the track.

It will be necessary to find a solution to deal with these cells as connectivity with other fields

will be ambiguous in this case. Similarly, many cells show spurious firing at the ends of each

arm of the w-maze (shown previously in figure 3.3). This is most likely due to increased

overall activity in the hippocampus while eating or potentially as a result of replay on

achieving a goal (in this case, reaching the food in the correct sequence). In general, there is a

large amount of firing outside of the place field. It is probable that this can be reduced using a

data smoothing technique.

Stability of Place Fields

For the w-maze experiments, each rat was required to perform the alternation activity in two

different mazes of the same shape over a number of days and sessions. If no place field

remapping occurred between each of these activities, it would be useful to be able to take

spike data from consecutive sessions to increase the confidence of the solution. To measure the

degree to which place fields remain stable across sessions, the 25x25 spike rate grids from the

same cell in two consecutive sessions were flattened to vectors of length 625. The two vectors

were then zipped together with each tuple treated as an observation from a pair of discrete

random variables. If it were the case that the two grids were identical, if the field was exactly

the same shape from one session to the next, calculating the correlation coefficient between

the two random variables would yield a value of 1. If they were completely different, perhaps

the place field switched to a different location entirely in the second session, the correlation

coefficient would be close to -1. Figure 3.7 shows the average correlation coefficient between

the first session and subsequent sessions for each available cell during track A alternation

activities for the three rats. In many cases, consecutive cell spike data is unavailable due to a

negligible number of recorded spikes. This alone is an indication that remapping may be

occurring between sessions, although movement or failure in the tetrodes could also account
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for this.

Figure 3.7: Average Correlation Coefficient between the First Session and Subsequent Sessions

The correlation between the first and second sessions’ place field is generally higher, due to

place fields remaining stable for the same track on the same day (for three of the six rats, the

same activity was performed twice each day). After this, however, the average correlation

drops to nearly zero. When inspecting the field images of individual cells across multiple

sessions, it appears that though there are some fields which remain stable over many days,

many others do not. This explains the near zero correlation average and indicates that while

there may be some value to using data from multiple sessions, additional work would be

required to identify only those fields which haven’t changed. For now, only spiking data from

individual sessions will be used.

Place Field Coverage

One factor which would surely affect the ability of the application to estimate topology

correctly is whether the place fields recorded in a single session cover the track fully. If it is the

case that one arm of the w-maze has no place fields, identifying this arm (and thus an arc from

a junction node) would be impossible. To confirm acceptable coverage, the spike rate grids

from each cell were summed and displayed as a heat map. For each session, two maps were

generated, one with all place fields and one with only place fields smaller than 40% of the full

size of the track. The stipulation of smaller place fields allow confirmation that full coverage is

not only as a result of large place fields spanning the entire track due to the presence of

interneurons. Figure 3.8 shows examples from different rats, mazes and sessions for all field

sizes. Figure 3.9 shows coverage of cells with fields smaller than 40% of the area of the track.
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Figure 3.8: Place Field Coverage : All Place Fields

Figure 3.9: Place Field Coverage : Place Fields < 40%

From left to right the maze shapes are a W, a backwards E, and a figure 8. Red colour

indicates activity from any cell in that location of the maze. White indicates no activity. The

40% or smaller fields show that, while there are gaps, place fields are spread across all areas of

each maze.

For the smaller sized fields, there are occasions where there is a break in between the available

place fields as shown in figure 3.10 . In this case, no partial overlap will be apparent across the

gap and so the connectivity graph may show a set of disconnected place fields.

The figure also highlights the question of coverage of the rat’s path around the maze. If the

rat does not visit an area of the maze, it is guaranteed that no cell will fire in that location.

This could lead to a part of the maze topology being missed or topology being incorrectly

inferred. In the figure, the rat frequently travels up the middle of the central arm of the maze

then on separate occasions turns right and follows the right hand wall back down or turns left

to follow the left hand wall. As the left and right sides are covered by different place fields and

they do not overlap in the middle, it may be deduced that the left and right sides are two

separate corridors which is incorrect.

Finally, although not visible in the still images of firing over an entire session, it is the case

that there are cells which do not consistently fire when the rat is in the associated place field.

This could be due to error in the recording equipment or formation of a place field during the

session due to spatial learning.
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Figure 3.10: There is a gap between place fields in the right arm and those in the rest of the

track. In addition, the central arm shows three adjacent fields which are not connected due to

the rat’s path.

In summary, the following facts were confirmed from the analysis

� In general, place fields present themselves in all areas of the maze although there are

sometimes gaps between them which may hinder the use of ’Partial Overlap’ as a means

to derive connectedness.

� The range of place field size is larger than the simulated version and there are far fewer

place cell recordings available.

� There are instances of place cells which fire in two or more distinct places - so called

multiple place field (MPF) cells.

� There is a high incidence of spurious firing and firing at important locations such as food

sources in addition to the place field.

� There are instances of cells which fire constantly throughout the experiment so no useful

location information can be deduced from these.

� For many place cells, there is little or no similarity of location of their place fields in an

experiment from one day to the next.

� A few place cells show inconsistent firing when the rat is in the corresponding place field.

� The path of the rat does not cover the whole maze leaving gaps between place fields

which may be misinterpreted.
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4. Design and Implementation

4.1 Extending Junction Finding

The junction finding algorithm from the previous project returns a list of labelled sets of fields

and their disconnected subsets. From this list, a network graph can be generated such that

each node represents a subset and each arc represents connectedness of each subset. Not only

does this aid in visualising the results of the algorithm but the network identifies subsets of

fields which lie at the ends of corridors, nodes with degree 1, denoting dead ends. It also

identifies subsets of fields lying along a corridor with degree 2 and junction nodes with degree

3 or higher.

Figure 4.1: A graph representing topology of a W-maze.

In fact, the algorithm can be altered to simply build this ‘topology graph’ without generating

the list of subsets first.

Starting with field x in the connectivity graph, find each disconnected subset among the

neighbours of x and create a node in a new topology graph for each. The fields in each of

these nodes are connected via x so create arcs between each of the new nodes.
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Figure 4.2: (left) Place fields overlapping with x. (right) The partial graph of sets of connected

fields.

Iteratively, for each disconnected subset x′, find each disconnected subset among the

neighbours of x′ (not including those already visited) and create a node in the topology graph

for each.

Figure 4.3: (left) Place fields overlapping with the neighbours of x. D and E form a disconnected

subset and A,B and C another. (right) The next step in the partial graph of sets of connected

fields.

The stopping criterion of the iterative process is if there are no unvisited adjacent fields.

Identifying Loops

In this form, the junction finding algorithm is unable to identify loops in the maze. If it were

the case that the iterative step found a path back to previously visited fields, the stopping

criterion would be satisfied and the final arc linking the start and end of the path would not

be added. An observation can be made that the only place where an arc should be added to

create a cycle in the graph is between the node at the end of a branch, that is a node of degree

1, and any other node in the graph whose fields are connected. Figure 4.4 shows the two

appropriate locations for ‘cycle arcs’ in a figure-8 topology graph.
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Figure 4.4: The dotted arcs are cycle bridging arcs identified by the loop identifying step.

An additional step was added to the junction finding algorithm after the end of the iterative

process, once the topology graph is generated. For each node in the graph of degree 1, search

through all other nodes in the graph. If there are place fields in the degree 1 node which are

connected to fields in the other node then create an arc between them thus creating a cycle.

Trimming the Topology Graph

The lack of coverage of the rat’s path around the maze and generally a lack of total coverage

of place fields raises a potential problem. A small branch of partially disconnected fields which

in reality should overlap with a number of neighbours can be construed as a unique arm or

corridor of its own. This would appear in the topology graph as an additional path leading

away from a junction node. It is expected that these paths would be short and made up of

only a few fields whereas genuine corridors will be denoted by much longer paths with many

more fields. With this in mind, another step was added to the end of the junction finding

algorithm. All nodes, in the completed topology graph, of degree 1 are removed if the number

of fields in that subset is less than some parameterised value. This ‘branch cut’ value will be

explored in the evaluation.

4.2 Connectivity Graph

Avoiding MPF Cells and Large Place Fields with Intersections

From the results of the data analysis, it was necessary to make some changes to the RCC

algorithm used to derive connectvity. Figure 4.5 shows a typical problem which can occur due

to MPF cells in the dataset.
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Figure 4.5: A schematic showing the effect of MPF cells on connectivity.

Field D overlaps with Fields A and B. Field C also overlaps with Fields A and B but is from

an MPF cell and is split between both arms of the maze. The connectivity graph would show

that A is connected to C and B is also connected to C. The topology graph would therefore

deduce that there is a path from A to B via C. This is incorrect.

Figure 4.6: (left) Additional overlaps can be used to avoid MPF confusion. (Right) The corrected

connectivity graph of 2-field intersections.

Figure 4.6 shows the same case except now fields E,F and G have been included. If instead of

deriving connectedness from PO of individual fields, it was derived from the PO of

intersections of strictly two, the case where C fires on its own, would not be included in the

connectivity graph. The topology graph algorithm would deduce, correctly, the path in the

figure.

This solution is unlikely to scale well with larger numbers of cells. As soon as two MPF cells

cofire in two or more place fields, the stipulation of using intersections of two fields fails for

the same reason as it did with individual fields and there would be a requirement of strictly

three field intersections. As the number of intersections required increases, the size of the

available fields will decrease to the point where there are no longer any overlapping fields. The

number of field intersections to be used to derive the connectivity graph will be a parameter
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explored in the evaluation section.

A similar problem to that of MPF cells occurs when a cell has a very large place field which

extends across and beyond a junction. Figure 4.13 shows an example where fields A, B and C

would appear to be arms from the junction field D. However, field E overlaps them all and so

the connectivity graph shows them all to be connected. The topology graph algorithm is then

unable to derive a junction, only a single field connected to all cells.

Figure 4.7: (left) Place fields entirely subsumed by a single large field. (right) The resulting

connectivity graph.

As before, this problem can be partially solved with the application to field intersections

instead of individual fields.

A Threshold to Eliminate Spurious and Inconsistent Firing

One additional factor was added to the connectivity graph algorithm to tackle the issue of

inconsistent firing of a place cell as the rat moves through its place field, as discussed in

section 3.3, and to reduce the effect of spurious firing. A weight was added to each arc of the

connectivity graph to represent the number of occurrences of cofiring between two cells during

the session. In each session, the rat traverses the maze multiple times and it would be

expected that each traversal would cause cofiring of the cells at least twice, once on the way

out and once on the way back. By including a ‘weight cutoff’ parameter such that arcs with a

weight below this threshold are removed, spurious occurrences of cofiring outside of place

fields and inconsistent place cells can be eliminated from the graph.

Connectivity using Timing

A different way to define connectedness of place fields is to observe that if cell A fires at time,

t, then cell B fires at t+1, the rat must have passed through the field corresponding to cell A
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and moved into the field corresponding to cell B and they must therefore be adjacent. This is

a looser definition of connection than partial overlap and solves two main problems.

Figure 4.8: Over time, as the rat moves along its path, each cell spikes in order.

Firstly, in the case that there is a gap between fields in the maze which would show no

overlaps due to cofiring, consecutive firing over time would still be able to capture this

connectedness and include the ‘orphan’ fields in the graph. This assumes that times during

which no firing occurs are ignored. Secondly, in the scenario described earlier where very small

field intersections are being used to avoid problems with MPF cells, the reduction in

overlapping occurrences would not hinder the connectivity algorithm as timing adjacency

could be used instead. In fact, the entire maze area could be partitioned into intersections of

unique combinations of place fields. Each set of intersections would be unique to that location.

There would be no overlap at all as each set would never fire anywhere else, however,

connectedness could be derived using the timing method.

Figure 4.9: Each unique combination of intersections represents a small region of the track.

Note that all regions defined in this way are disjoint.

There is also the possibility to use both connectivity algorithms to derive a single connectivity

graph. In an ideal case, both the RCC and Timing algorithms should produce the same

connectivity graph. However, both algorithms have strengths which the other does not. In a

case where two fields overlap and the rat only runs through the intersection (not the first,

then the intersection, then the second) the RCC algorithm would infer connectedness due to

cofiring but the Timing algorithm would not. Similarly, separated fields with no overlap would
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only be connected in the timing algorithm not the RCC. By first generating the connectivity

graph using the RCC algorithm then augmenting that graph by adding missing arcs from the

Timing algorithm, a better result may be possible. Choosing to use the RCC algorithm alone,

the Timing algorithm alone, or this combination represents a parameter to the solution which

will be tested to see which is most effective.

4.3 Further Data Preprocessing

In order to give the connectivity and junction finding algorithms the best chance at correctly

identifying topology, additional pre-processing was performed on the spike timing data.

Hidden Markov Model

It was expected that, in order to aid the estimation of topology, some smoothing would be

required on the spiking data to minimise the effect of spurious firing. To achieve this, the time

series of spikes from each cell was split into discrete consecutive time bins and a hidden

markov model [73] was estimated with the following parameters:

� The size of each time bin.

� The probability of moving into a place field given the rat is currently outside.

� The probability of moving out of a place field given the rat is currently inside.

� The probability of observing a spike while inside a place field.

� The probability of observing a spike while outside of a place field.

For each consecutive time bin, the probability that the rat is in each place field is estimated

based on the observed number of spikes in that bin, the above parameters, and the probability

estimated from the previous time bin.

This process is followed for each cell spiking file. For each time bin, if the probability that the

rat is outside of the place field is greater than inside the place field, the spikes in that bin are

discarded. A new smoothed cell file is then generated and stored.

As well as the Markov model smoothing, a threshold was introduced for the minimum number

of spikes required for a time bin to be included in the dataset. This aim of this threshold value

is to eliminate both spurious firing and firing near food sources as in these cases, the spike rate

is significantly lower than in the place field itself. The parameters to the Markov model, spike

rate threshold and time bin size were chosen to tightly limit the extent of place fields while
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retaining their general shape. With more time, a full sensitivity analysis should be performed

on these parameters.

Figure 4.10

(a) Place fields before HMM smoothing. (b) Place fields after HMM smoothing.

Using Position Data

The grid of red squares overlaid on the spike firing images gives a clear definition of the

location of place fields. Spurious firing is generally not enough to elicit a high spike rate in a

certain square in contrast to the place field itself. Additionally, the 25 x 25 grid gives a less

granular measure of spike location allowing for further quick analysis to be performed on the

data. In particular, distinct place fields belonging to MPF cells can be identified.

Using the position data to perform pre-processing of the input for the application (instead of

purely analytical work) violates the conditions of the Spatial Reconstruction Experiment. It

may be instructive, however, to see what improvement can be made when spurious firing and

MPF cells are eliminated from the dataset. Eliminating spurious firing was performed by

simply removing all spikes from the dataset which occurred in squares with a negligible

spiking rate.

To identify MPF cells, the following algorithm was devised (figure 4.11). Find a red square in

the grid and define two rows and two columns either side of this square. Each row or column

will be three squares long defining a box surrounding the initial square. Scan along each row

and column to see if there are any red squares. If there are, move the row one square away

from the centre. Continue scanning rows and columns and extending the box until all rows

and columns contain no red squares. This is the bounds of the place field.
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Figure 4.11

(a) A small bounding box is defined

around the initial square.

(b) Rows are shifted outwards while there are red squares along the

edge.

(c) The final bounding box.

If there exists another red square in the grid which sits outside this bounding box, there must

be more than one place field for this cell.

Ideally, finding the presence of more than one distinct place field should be enough to

eliminate that cell from the data set entirely. This would be equivalent to defining an MPF

cell as different to a place cell and so could plausibly be removed from the experiment.

However, because there is still noise and spurious firing has not been eliminated entirely, most

cells show more than one location which may be interpreted as a place field. Removing these

cells entirely would leave the data set almost completely empty with no chance of making a

good topology inference. It is possible that more work to consider the relative size of fields

might help to separate genuine MPF cells from noisy place cells but for now, the place field

with the biggest area is chosen and spikes occurring in this field are used in the dataset.

Using this bounding box technique, it is also possible to identify very large place fields which

might be caused by an interneuron instead of a place cell. As discussed, interneurons fire

throughout the entire session and therefore produce a place field the same size and shape of

the maze.
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Figure 4.12: The place field of an interneuron covers the entire maze. The bounding box algo-

rithm finds a box the size of the entire grid.

This cell provides no location information and only serves to make all fields appear connected.

An interneuron can be identified by the bounding box of its ‘place field’ whose area will be

almost the same as that of the maze itself. As an interneuron is not a place cell, it is

acceptable to remove these from the data set without violating the SRE.

In the evaluation, comparisons will be made of the performance of the application on different

combinations of pre-processing techniques to gain an understanding about the limitations of

the data with respect to the algorithms used.

Different Maze Topologies

Having developed the application using mainly the Frank w-maze data, it is important to be

able to test it on different maze topologies as well. The second data set from the Buzsáki Lab

at NYU contains spiking and position data for a number of different experiments with rats.

Although the data is generally much noisier than the Frank data, success of the application

with different topologies will be a key metric for evaluation.

4.4 Rest Period Data

As mentioned in the literature review (section 2.4), it has been shown that place cells firing in

the hippocampus when the rat is resting or asleep, fire in the same order as in a track the rat

has seen. This leads to the idea that some kind of replay is occurring among place cells after

experiencing a maze. The Frank w-maze data has rest sessions before and after each track

session. Testing to see if topology of a w-maze can be determined from these rest sessions is

irresistible. During each rest session, the rat is placed in a high walled box for 20 minutes.

The rat may be awake or asleep during this time. There are two main obstacles to deriving
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meaningful results from applying the algorithm to rest data. First, it is not known at what

time or for how long, replay occurs in any given session. There may be periods where there

are no firing place cells, or periods where they do fire but not due to replay. Only from

periods of enough place cell firing, in the correct order, might we be able to derive the

topology of that replay. This leads to the second obstacle which is there is no ground truth

with which to confirm the result. During these sessions, the position data gives no useful

information. It is also difficult to derive a statistical model for a null hypothesis in which no

replay occurs without going back to simulating spike data. This is, sadly, beyond the scope of

this project. An experiment by Karlsson and Frank [74] uses the same experimental data and

has shown that significant replay events occur during these rest sessions while the rat is both

awake and asleep. Without knowing the precise times of the replay events, it was necessary to

define a time window capturing only a small section of spike times within the entire rest

session. From this time window, connectivity and topology graphs could be generated in the

same way as with the track runs although, without any position data, interneurons and MPFs

are not identifiable from the rest data. The time window was then scanned across the full

spike time series and a number of different window sizes were examined. Time windows

generating topology graphs matching the topology of the previous run maze could be

identified and checked to confirm that cell order was correct. In order to check correctness,

paths of length greater than 2 in the rest window topology graphs were compared to see if

equivalent paths were present in the topology graphs of the previous run.

Figure 4.13: (left) A topology graph from a run session. (right) A topology graph from the next

rest session. Green lines and circles identify a matching path between the two.

The existence of any matching paths might indicate that this window contained a replay event

and that the application had at least partially deduced the topology.
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5. Results and Evaluation

5.1 Methodology

Initially, evaluation of the application was planned to be carried out in a similar fashion to

that of a classifier. Running the application on all maze shapes together with a definition of

what the topology graph should look like for each, would enable the creation of a confusion

matrix. Then various metrics such as recall and precision could be used to evaluate

performance. However, there are a number of ways in which error can be introduced (as

summarised in the Data Analysis, section 3.3) and the similarities between each correct shape

topology are such that any small error would immediately change the ‘classification’. The

significance of a topology graph with a 4-junction, generated from a w-maze session, is not

that it has been mistaken for a Plus-shaped maze. Furthermore, the success of the application

is likely to be reliant on the quality of the input data which is extremely variable across all

experiments and sessions. For these reasons, a more qualitative approach to evaluation is

required, so for each set of results, common causes of error will be examined. To provide a

quantitative measure of success, a definition of ‘correct’ topology will be given for the

topology of each maze shape and an accuracy value will be calculated based on how many

correct topology graphs are generated from the data set. Although for convenience this will be

referred to as ‘accuracy’, correctness will only be dependent on the number and degree of

nodes in the topology graph. Because of this, there is an opportunity for false positives to

occur where the correctness definition is satisfied but the actual ordering of fields is incorrect.

Figure 5.1 shows an example where it is possible for the application to derive a topology graph

with a single junction of degree 3 for the w-maze, which would be declared correct, even

though the session in question has no place fields in one of the arms and the application

mistakenly counted a third branch elsewhere.
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(a) 16 1 (b) 24 1 (c) 24 3

(d) 24 6 (e) 24 7 (f) 26 1

Figure 5.1: Fields labelled (a)-(f) cover only the bottom arm and central junction of a backwards

E maze yet in certain circumstances, a topology graph with a 3-junction can be incorrectly

derived.

This value will be particularly useful for comparing the various techniques and parameters

used for each result set. The evaluation will proceed by analysing results produced from the

same data set but with differing pre-processing techniques. These are

� W-maze data with no pre-processing, spike time files taken directly from the

experiments.

� W-maze data with HMM smoothing.

� W-maze data with HMM smoothing and exclusion of interneurons.

� W-maze data with HMM smoothing, exclusion of interneurons and the reduction of

MPFs to single fields using position data.

Finally, performance on different shaped mazes with the most successful preprocessing

techniques will be evaluated as well as results from their application to the rest data.

Expected Maze Topologies

For the quantitative measure of performance, the definitions of ‘correct’ topology are given

here.

W-maze

A correct topology graph for the w-maze will have a single 3-junction, three 1-junctions (dead

ends) and (n− 4) 2-junctions where n is the number of nodes in the graph.
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Figure 5.2: A correct W shaped maze topology graph.

Linear

A linear maze, for example, one which is a straight corridor and nothing else or perhaps a U

shaped maze will have two 1-junctions and (n− 2) 2-junctions. An O shaped maze, which has

no dead ends and therefore all nodes are 2-junctions, is not considered here as there are no

examples of this in the data.

Figure 5.3: A correct linear maze topology graph.

Plus

A plus or cross shaped maze will have a single 4-junction, four 1-junctions and (n− 5)

2-junctions.

Figure 5.4: A correct plus shaped maze topology graph.

Figure-8

The figure-8 maze has two potential configurations depending on whether the central crossover

area is considered a single 4-junction such as with the infinity symbol, ∞, or two separate

3-junctions such as with a B shape or an 8 on a digital clock. Due to the two loops, there

should be no 1-junctions (no dead ends) but (n− 1) or (n− 2) 2-junctions. As the cycle

finding step is a separate process and may be evaluated separately from the topology graph
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algorithm, any number of 1-junctions will be permitted with only the 3 or 4-junctions required

for a correct graph.

Figure 5.5: (left) Figure-8 with a single 4-junction. (right) Figure-8 with two 3-junctions.

Arenas

It is not obvious what the correct definition for topology should be for a large open area and

there may be no strict number of junctions. A purely qualitative analysis will be carried out

for arenas.

Algorithm Parameters

As discussed throughout chapter 4 the following parameters will be tested on each data set

and the average accuracy across all experimental sessions for all combinations of parameters

will be recorded.

Place Field Intersections

As discussed in 4.2, it is possible to stipulate that the connectivity algorithms use intersections

of fields, rather than the fields themselves, for generating a connectivity graph. To explore the

impact of this stipulation, each result set will be derived from connectivity between 1-field (i.e

no intersections), 2-field or 3-field intersections. For these values, every node in the

connectivity graph will list 1, 2 or 3 cells respectively.

Figure 5.6: (left) A partial connectivity graph with individual fields. (centre) 2-field intersec-

tions. (right) 3-field intersections.
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A combination of all three will also be tried such that connectivity can be derived from areas

where only a single cell is firing; where only two cells are cofiring and where only three cells

are cofiring. The connectivity graph will contain nodes with lists of 1, 2 and 3 cells together.

Figure 5.7: The partial connectivity graph using 1, 2 and 3-field intersections.

Connectivity Graph Algorithm

There are three options for how the connectivity graph is generated from the time series of

spiking cells. These are, the RCC algorithm, the Timing algorithm or a combination of both

(outlined in section 4.2). All three will be tested in combination with other parameters.

Connectivity Graph Weight Threshold

The threshold for weights in the connectivity graph, below which arcs should be removed, may

reduce error introduced by spurious cofiring. The degree to which this aids performance will

be explored with a set of low valued thresholds 0, 1, 2, 3 and 5. Higher thresholds than this

are expected to encroach on genuine cofiring.

Branch Cell Threshold for the Topology Graph

To investigate the benefit of removing erroneous branches in the topology graph due to small

sets of unconnected fields, the minimum number of cells allowed in a node at the end of a

branch will be set to 0, 1 and 2.

5.2 Results for Unprocessed W-maze Data

With no preprocessing of the spike data from the Frank w-maze experiments, that is no

smoothing, elimination of MPF cells or interneurons, it was expected that performance would
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be poor as explained in the previous project. This was confirmed with only 9.71% of topology

graphs showing a single 3-junction when the application was run with all parameter

combinations. Figure 5.8 shows an example of a successful topology graph. Using the RCC

connectivity algorithm with 2-field intersections.

(a) 2 4 (b) 5 1 (c) 12 1

(d) 13 4 (e) 14 1 (f) 29 4

Figure 5.8: A correctly deduced topology graph. Each node is labelled with the identifiers of cells

whose place fields are adjacent. In this case, this includes two identifiers as 2-field intersections

have been used.

Figure 5.9: Accuracy Results for Unprocessed W-maze Data

Connectivity Algorithm % correct Field Intersection % correct

RCC 9.69 1-Intersection 8.21

Timing 8.77 2-Intersection 9.09

RCC&Timing 10.94 3-Intersection 10.98

1,2,3-Intersection 10.94

Branch Cell Threshold % correct Connectivity Weight Threshold % correct

Branch-0 9.36 Weight-0 9.8

Branch-1 10.92 Weight-1 10.47

Branch-2 9.11 Weight-2 10.35

Weight-3 9.34

Weight-5 9.79

The best performing single configuration of parameters with a mean accuracy of 21.8% for the

unprocessed data, was using the Timing only connectivity algorithm over individual fields

with a connectivity weight threshold of 1 and no branch size threshold. Although the Timing

algorithm shows the lowest average accuracy, it also has the highest variance and shows

consistently good accuracy with individual fields and 0 branch threshold (mean 17.87%). The
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timing algorithm benefits from being able to include individual fields in the arms of the maze

which do not overlap with those in the rest of the track. This is a common occurrence as there

are often fewer fields recorded in the right and left arms of the w-maze. A branch threshold

value greater than 0 might discount these extreme fields from the topology graph but this

must be balanced with the introduction of erroneous branches elsewhere in the maze. In the

case of using the Timing algorithm, it seems, the benefits of a 0 branch threshold outweigh the

negatives despite a general improvement in performance for all parameters with the threshold

set to 1.

Multiple Place Fields

As expected from data without MPF cells and interneurons excluded, using individual fields

for connectivity instead of 2-field or 3-field intersections shows a lower accuracy than average.

Figure 5.10 shows an example of how MPF cells can cause an incorrect connectivity graph to

be derived from individual fields. Here, the connectivity suffers twice. MPF cell 14 3 is

connected to 12 1 in the central arm and 12 2 and 13 4 which are in the right arm of the

maze. Cell 11 5 has fields at the top of all arms and in the bottom left corner of the maze and

connects 13 4 and 12 2 to 11 1.

(a) 14 3 (b) 12 1 (c) 12 2

(d) 11 5 (e) 13 4 (f) 11 1

Figure 5.10: The topology graph incorrectly links fields from 11 1, 12 2, 12 1 and 13 4.

With higher field intersections there is also a greater number of possible combinations of fields

and this leads to more nodes in the connectivity graph assuming there is a large number of

overlapping fields to begin with. It is possible that this higher number of nodes is another

cause for better accuracy.
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Large ‘Place Fields’ from Interneurons

Figure 5.11 shows the presence of an interneuron in the spike data causing confusion in the

connectivity graph leading to an incorrect topology graph. The connectivity graph shows all

place fields overlap with that of cell 5 5 which is most likely an interneuron. A topology graph

with a single high degree node is indicative of this problem. When the iterative step of the

junction finding algorithm reaches the interneurons field (which should be the second iteration

for any field chosen as a starting position is always connected), all remaining fields are

considered to be disconnected subsets.

Figure 5.11: (left) The connectivity graph shows all fields connected to 5 5. (right) The resulting

topology graph.

Provided there is only a single interneuron in the data set, the 2 and 3-field intersection

parameters should provide better results than the individual fields. This is because the single

5 5 field will no longer be considered to connect to everything else. Instead, in the 2-field

example, all nodes in the connectivity graph will represent intersections of the smaller fields

with 5 5. As the smaller fields are entirely subsumed by the interneuron, the intersections will

be equivalent to the smaller fields as shown in figure 5.12.

Figure 5.12: (left) The corrected connectivity graph using 2-field intersections so all notes include

5 5. (right) The resulting topology graph.
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5.3 W-maze Data with HMM Smoothing

With strong HMM smoothing, there is a much lower chance of seeing spurious firing. The

fields themselves are also much smaller but consistently form a well defined area. For this

result set, there is no check for interneurons or MPFs and so they still appear in the dataset.

With the smoothing, the average accuracy across all parameters has increased to 15.9%.

Figure 5.13: Accuracy Results for HMM Smoothed Data

Connectivity Algorithm % correct Field Intersection % correct

RCC 14.97 1-Intersection 22.1

Timing 16.61 2-Intersection 12.48

RCC&Timing 16.12 3-Intersection 11.94

1,2,3-Intersection 18.66

Branch Cell Threshold % correct Connectivity Weight Threshold % correct

Branch-0 16.01 Weight-0 23.5

Branch-1 17.1 Weight-1 17.3

Branch-2 17.1 Weight-2 14.6

Weight-3 14.7

Weight-5 13.3

Once again, the Timing only connectivity algorithm with individual place fields performs best

giving an average accuracy of 38.27%. Looking at the connectivity weight threshold, a 0

weight greatly out performs higher values. Because of the HMM smoothing, there is far less

spurious firing and the need for a weight threshold in the connectivity graph is diminished. At

higher values, the threshold begins to remove genuine connectivity information instead of just

disregarding noise.

5.4 Exclusion of Interneurons

Using the rat position data to identify and exclude interneurons from the spike data further

reduces the error introduced from an overly connected connectivity graph as discussed earlier.

Overall, the average accuracy after this additional preprocessing step increases to 21.4%.
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Figure 5.14: Accuracy Results for HMM Smoothed Data with Interneurons Excluded

Connectivity Algorithm % correct Field Intersection % correct

RCC 11.1 1-Intersection 19.2

Timing 26.4 2-Intersection 3.5

RCC&Timing 26.8 3-Intersection 0.0

1,2,3-Intersection 24.1

Branch Cell Threshold % correct Connectivity Weight Threshold % correct

Branch-0 26.9 Weight-0 36.8

Branch-1 18.7 Weight-1 22.7

Branch-2 18.7 Weight-2 20.9

Weight-3 18.7

Weight-5 8.3

The Timing only connectivity algorithm with individual fields seems to consistently take the

top spot for accuracy. In this case, 58.05%. In all experiments including this, the combination

of Timing & RCC algorithms performs comparatively well. This is unsurprising as the Timing

connectivity is a subgraph of the Timing & RCC graph. As there is no increase in accuracy in

the Timing & RCC version over the Timing only version, the additional RCC arcs seem to

provide no additional information and may, in fact, introduce some error.

The two graph threshold values, while showing some utility with the unprocessed results, show

a clear impedance to accuracy with smoothing and interneuron exclusion. This is encouraging

as fewer parameters speaks to the robustness of the algorithm itself and indicates that the

problems they were designed to suppress have been eliminated in the preprocessing steps at

least for this data set. The 2 and 3-field intersection results and those using the RCC

connectivity algorithm are quite poor when compared to the individual field and Timing

results. Although it is tempting to eliminate these parameters, it is probable that they would

show better performance with larger data sets and more place fields. The timing algorithm

was designed as a salvo against gaps in place field overlap. With a larger number of place

cells, there would be less chance of these gaps and it is expected that the RCC algorithm

would become as performant as Timing.

The accuracy results for the RCC algorithm with combined 1, 2 and 3-field intersections are

also comparable to those of the Timing algorithms even though RCC with individual fields

gives very poor results. Because the 1, 2 and 3-field intersections lead to a much larger
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population of nodes in the connectivity graph, this may be evidence that the RCC algorithm

requires more data to perform well.

5.5 Reduction of MPF Cells

As well as interneurons, the existence of MPF cells is expected to cause errors as described

earlier in section 3.3. This experiment applies HMM smoothing, removal of interneurons and

reduction of MPF cells to the dataset before running the application. Although it can be

argued that elimination of MPF cells from the dataset is not in violation of the spatial

reconstruction experiment, using the position data to identify and record spikes in only one of

the multiple fields of a cell certainly is. However, it would be instructive to see the effect on

accuracy of having no multiple place fields without reducing the number of recorded place

cells.

Figure 5.15: Accuracy Results for HMM Smoothed Data with Interneurons Excluded and Reduced

MPFs

Connectivity Algorithm % correct Field Intersection % correct

RCC 11.4 1-Intersection 18.4

Timing 25.3 2-Intersection 2.9

RCC&Timing 27.1 3-Intersection 0.0

1,2,3-Intersection 24.16

Branch Cell Threshold % correct Connectivity Weight Threshold % correct

Branch-0 30.3 Weight-0 31.4

Branch-1 16.7 Weight-1 25.1

Branch-2 16.7 Weight-2 23.1

Weight-3 18.9

Weight-5 7.9

There is a slight reduction in accuracy overall with an average of 21.0%. The Timing only

connectivity algorithm with individual fields still performs the best at 51.27%. Figure 5.16

shows how multiple place fields could give more opportunities for the junction finding

algorithm to produce a graph with a single 3-junction despite inferring an incorrect field

ordering. Removing MPFs denies the possibility for these false positives resulting in a lower

percentage of topology graphs declared correct despite being more reliable. If there were more

time, it would be important to find a way to define correctness based on ordering of fields so
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this kind of confusion is avoided.

Figure 5.16: (above) A w-maze with place fields for cells A-G. C is an MPF cell. (below) Three

potentially correct topology graphs from the same maze.

Rat Path Coverage

Figure 5.17 shows an example of how the path which the rat takes through the maze can cause

errors in the connectivity and topology graphs even with the previous preprocessing applied.

Cells 25 2 and 17 3 have place fields in the same arm of the maze. The field of cell 14 1 spans

the width of the arm towards the central junction and so whenever the rat runs up this arm, it

passes through 14 1. However, on some occasions, the rat runs up and down the right hand

side of the arm through the field of 25 2 and does not pass through the field of 17 3. On other

occasions, the rat runs up and down the left side of the arm only passing through 17 3,

avoiding 25 2. As a result, these two cells never cofire or fire consecutively. Both connectivity

algorithms, therefore, interpret that 17 3 and 25 2 are not connected and the junction finding

algorithm derives two separate arms in the maze. This is a highly common feature in many of

the experimental sessions and is not remedied by any of the processing techniques explored.

If it were the case that another place cell had a field which overlapped or was adjacent to both

17 3 and 25 2 and the rat passed through this on all occasions, the problem would be solved

as the connectivity graph would show the two cells connected via this additional third cell. It

is probable that such a cell exists and has simply not been recorded, therefore it is safe to say

that a greater number of recorded cells would reduce the error caused by uncertainty in the

path of the rat.
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(a) 14 1 (b) 17 3 (c) 25 2

Figure 5.17: The place fields in (a), (b) and (c) all sit in the same arm of a maze. (lower left)

The connectivity graph - 17 3 and 25 2 are not connected. (lower right) The topology graph has

a branch for 17 3 and one for 25 2.

It is also possible to consider a case in which the rat consistently runs up and down one side,

or the other, of a wide corridor without travelling through the middle. Regardless of cell

population, it would appear to the application as two separate arms. This introduces a caveat

to the spatial reconstruction experiment such that the environment must be fully traversed by

the rat or that the spatial information inferred describes the movements of the rat itself and

not the environment.

As well as MPF cells, this is another characteristic which regularly introduces false positives

into the results. If the left arm of a w-maze is misclassified as two separate arms and the right

arm of the maze is not identified due to some other error, counting the central arm and two

arms for the left would result in a seemingly correct w-maze topology graph.

5.6 Other Maze Configurations

Having found successful preprocessing techniques to improve the accuracy of the application,

they can be tested on different maze configurations. Due to the greater amount of noise than

the Frank w-maze data and in some cases fewer available place cells, the average accuracy

across all configurations (not including arenas) is only around 8%. However, certain parameter

combinations find success with the linear and figure-8 tracks over 35% of the time.
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Linear Track

In the trivial case of a straight track in which the rat moves from one end to the other, there

is still the possibility for the rat’s path to follow the walls of the corridor leading to

disconnected fields on either side. Additionally, different recording and experimental

techniques may lead to a different level of inconsistent firing to that of the Frank w-maze data

which may affect the outcome. However, figure 5.18 shows an example of a successful inference

resulting in a topology graph with a single path between two nodes of degree one.

(a) 5 5 (b) 5 8 (c) 5 9 (d) 8 8 (e) 8 10 (f) 8 11

Figure 5.18

Plus Shaped Track

The data from the plus shaped maze experiments provide the fewest recorded cells per session.

Figure 5.19 shows one of the better sessions. There is very little activity in the top left arm

and only in a very small area. The fourth arm of the topology graph holds cell 6 7 whose field

somewhat extends into the top left arm, yielding a correct result.

(a) 5 11 (b) 5 13 (c) 6 7

(d) 6 9 (e) 6 13 (f) 7 12

Figure 5.19
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Figure-8 Track

The figure-8 track is the only example of a configuration with cycles and so there is a role for

the additional step of connecting nodes in the topology graph together based on connected

fields. Figure 5.20 presents a good example of data from the continuous alternation task in the

Buzsáki experiments. The red arcs have been added by the additional step as potential arcs

which complete a cycle.

(a) 1 16 (b) 2 10 (c) 5 8 (d) 3 9 (e) 3 14 (f) 3 15

(g) 3 17 (h) 3 23 (i) 4 17

Figure 5.20

In this example, the application identifies a 3-junction and a 4-junction in the topology graph

and two loops. Both loops are small as many fields are collected in a single node due to a

lower connectivity weight threshold which produces a more connected graph. If the threshold

were higher, gaps would appear in the connectivity graph as there is a great deal of

inconsistent firing in the figure-8 experiment. This could be because the place fields have not

stabilised (if the rat is new to this environment) or if the place cells are firing according to

future alternation decisions as mentioned in the literature review, section 2.3. Cell 3 15 has

been incorrectly identified as a separate arm of the graph. However, the two junction nodes do

represent fields on either end of the central arm of the maze as would be expected. The node

containing cell 3 23 represents the top arm and the node containing 5 8, 3 9 and 3 14
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represents the bottom arm.

Arena

There is a great deal of investigation to be made into the topology graphs expressed by this

application for large open areas or arenas. Unfortunately there is only time to consider a

single example here. Figure 5.21 shows an example of a generated topology graph from an

arena. In its current form, if the junction finding algorithm were applied to a fully covered

square arena, one might expect the following outcome. Starting from a single field, perhaps

somewhere in the centre of the arena, the initial topology node would contain all fields

surrounding it. Another node would be defined for all the fields surrounding those and so on

producing a single straight path. Finally, as fields in the corners of the square would be

disconnected from those in other corners, the path would split into four separate branches.

Figure 6.1 in section 6.1 illustrates the outcome of this explanation. To some degree, this can

be observed in the results below. The fields in the nodes at the end of the branches (4 5, 2 9,

1 23 and 3 15, 1 15 and 2 14) are all close to the edges of the arena. Fields in the node of

degree 2, however, are not fully surrounded by fields in the node of degree 4. This is because

the starting place field was not in the absolute centre of the arena or perhaps due to

insufficient coverage in some areas.

Figure 5.21

It seems incorrect for the concentric circles of fields to form a linear path and surprising that

the number of branches may depend on the number of corners in the arena. This will be

discussed in section 6.1.
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5.7 Rest Period Data

It has been shown [74] that replay is a fairly common occurrence during the rest sessions of

the Frank data by comparing the order of firing of pairs of cells. In order to discern topology,

however, a stricter requirement was introduced such that a topology graph, generated from a

time window during a rest session, must contain at least one path of length 2 or more which is

also present in the topology graph of the preceding run session. If this requirement is fulfilled,

it is an indicator that not only is there replay of the previous session but that there may be

sufficient data to infer the topology.

Sessions from four rats were tested. Only two showed any sufficient replay with only 13 out of

80 sessions passing the requirement. From these 13 sessions, however, the application deduced

a w-maze topology 23.4% of the time. Figure 5.22 shows an example of a correct deduction.

The graph on the left is the topology graph generated from the previous run session in which

place cells were firing as the rat ran around the maze. The graph on the right is the topology

graph generated from a window of time during the rest session which followed. Place cells

were firing due to replay while the rat was stationary or moving within the small box. The

3-junctions of both graphs share the place cell 6 2 and both have a branch with the single cell

9 1. There are a number of matching cells in the branches with the nodes containing many

fields. There is disagreement on the final branch for cells 5 4 and 5 3 however, the fields for

each of these cells are in a similar location and a small difference in firing could account for

this confusion.

Figure 5.22: (left) Topology graph from a single run session. (right) Topology graph from a time

window in the following rest session.

It would be beneficial to be able to calculate a significance value for the likelihood of such

matching graphs but it is unclear how a null hypothesis would be formulated. This will be

discussed in section 6.4.
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6. Future Work

6.1 Arenas

In section 5.6, how a square arena might be represented in the graph output from the junction

finding algorithm, was discussed. An example from the experimental data supported this

explanation. However, two questions were raised about the implications of these results.

Firstly, the representation of concentric rings of place fields as a single path of nodes in the

topology graph is counter intuitive. Such a structure in the graph can also represent a linear

track or corridor. One solution might be, during the junction finding algorithm, in the case

where a single group of connected fields has been found, to add those fields to the currently

tested node. Currently, a new node is created for the connected fields. In the case of an arena,

concentric circles of fields would be reduced to a single node in the topology graph containing

all fields excluding those in the corners, as they would form more than one set of connected

fields with the outermost circle. This would also have the effect of reducing all corridors to a

single arc in the graph regardless of the shape of the maze. It is perhaps more topologically

sound and would change the significance of an arena to that of a junction. The ideal topology

of a square arena with this adjustment would be a single node of degree 4, similar to the plus

shaped maze. Instead of eliminating arenas entirely, bearing in mind that more information

about the environment is the aim of this project, it would be prudent to have a separate

algorithm for identifying an arena. From the results of the improved junction finding

algorithm above, fields that belong to a junction or an arena would have been automatically

identified. They are the fields in junction nodes. By performing the old version of the junction

finding algorithm only on these fields, a single path would be generated as before but the

significance of the length of the path is now a measure of the extent of the junction. A path of

length 0 or 1 might indicate a small junction between corridors but a path of 2 or greater

might indicate a larger open arena. If experimental data can be found with arenas of differing

sizes, the study of the effect of arena size on path length might yield interesting results,

particularly with respect to the elastic nature of place fields (see section 2.1).
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Figure 6.1: (left) A tight junction with only a single circle of fields in red. (right) An arena

with multiple concentric rings of place fields.

The second question raised from the results of arena testing is that of the significance of

disconnected fields at the edges or corners of an arena. In the idealised case of a fully covered

square arena, it might be expected that fields in the four corners would not be considered

connected by the junction finding algorithm, because fields in the centre and along the middle

of the edges would have been collected in previous nodes. A circular arena with four corridors

leading away would look the same to the algorithm. Whether these corner branches should be

treated as artifacts of the algorithm, or in some way fulfilling the criteria for small corridors

leaving the arena, should be investigated with different shapes and with corridors leading away.

6.2 Loops and Holes

The current additional step in the junction finding algorithm to add bridging arcs to the

graph when identifying cycles could be designed in a more nuanced way. The paper by

Dabaghian et al. [16] outlined a method to generate a simplicial complex (section 2.2) based

on the overlap of place fields which would be equivalent to using the connectivity graph from

this solution. This method offers an alternative to the junction finding algorithm and has the

benefit of more robustly defining ‘holes’. For example, the figure 8 maze would contain two

such holes and the w-maze would have no holes. The number of holes would give an indication

of the presence of loops in the maze and identify the fields involved. However, given the extent

of the coverage of fields in the experimental data, it is possible that incorrect holes could be

identified due to missing place fields.
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6.3 Stable Place Fields Across Multiple Sessions

It was discussed in section 3.3 that there are certain cells, although by no means all, whose

place fields continue to appear in the same place in the maze across multiple sessions and days

of experimenting. To improve the performance of the solution, it may be possible to use the

spiking data of the same cells across multiple sessions. There are three main obstacles to this.

Not all cells fire during all sessions. One session would need to be selected for the initial data

set, then when taking cell data from subsequent sessions, only cells which also fired in the

initial session would need to be analysed. This leads to the second obstacle in the case that

the Timing algorithm is used for connectivity. Let there be three cells A, B and C in the

initial session such that cell A fires, then B, then C and the reverse. The connectivity

algorithm would infer that A is connected to B, B is connected to C but A is not connected to

C. If, in a subsequent session, cells A and C show activity but not B, the Timing connectivity

might infer that A is connected to C. The RCC algorithm would not suffer from this problem,

however, and may well benefit from the additional data. The final obstacle is that in some

cases a cell might still show activity but in an entirely different location which would do

nothing but introduce error into the system. The benefit of additional information might be

enough to outweigh this problem.

6.4 Rest Data

The examples of replay topology graphs matching those of the previous run session given in

section 5.7 are compelling. However, it was unclear how to measure the significance of the

findings. The normal way in which this would be done, would be to define a null hypothesis

saying that the matching results occurred as often as expected if there were no replay of cells

from the previous session. That is to say, the matching topology graphs occurred by chance. A

model could be devised to identify the expected number of occurrences were this the case. The

proportion of matching graphs in the results could then be compared to this null hypothesis

model and a p-value calculated. The difficulty comes from how to define the null hypothesis

model. Further discussion with neuroscientists or in-depth review of previous research might

yield a plausible model. It may be acceptable to assume that all possible graph configurations

among the available place cells are equally likely. If the null hypothesis is valid, the proportion

of occurrences of, say, a single 3-junction should match the number of possible configurations

containing a 3-junction. This is only one of many ways of defining a potential model.

If the findings do appear to be significant, it would be interesting to use the position data to
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identify specific periods of sleep as outlined in [74]. Periods of time where the rat does not

move for 5 minutes or more could be conservatively defined as sleep periods. Occurrences of

matching topology graphs could be compared to those found when the rat was only still for a

short time or while moving around the resting box. It may also be possible to compare the

topology of replay fields with the graphs of run sessions performed further back in time. It

may be that the replay is of an earlier session than just the one immediately before. In

particular, there may be occurrences of replay of track A from the w-maze data in rest

sessions immediately after run sessions in track B.

Finally, it may be informative to find a quantitative way to describe the degree to which the

sequence of place cell firing has changed between a run session and the subsequent rest

session. This could be done by analysing the connectivity graph instead of the topology graph

and counting matching arcs between those of both sessions.

6.5 Context and Activity Analysis

The main aim of this project was to identify the spatial aspects of the rat’s environment. This

involved filtering out what was deemed spurious cell firing in areas where a food goal was

reached or where a decision was frequently being made (for example at the junction of the

w-maze where the rat must choose to go left or right according to its training). These areas are

still, however, additional properties of the environment which may be recognisable from the

firing data alone. By analysing spikes which do not occur within the place fields, as defined by

the HMM smoothing technique, it should be possible to find common areas of ‘spurious’ firing.

Additionally, once the topology graph has been generated, it should be possible to trace the

location of the rat during a session as it moves from the set of fields in one node to the next.

From this trace it should be clear in the w-maze data that the rat is performing an alternation

task. Alternatively, having been told it is an alternation task, it should be possible to identify

the times where the rat made a mistake and went to the wrong arm.

6.6 Combination with Grid Cells

Some of the Buzsáki experimental data sets, as well as containing recordings from CA1 and

CA3 regions of the hippocampus, also have recordings from the entorhinal cortex. As

described in section 2.4, the grid cells in the entorhinal cortex provide a more regular, strictly

spatial representation of the environment with less of the ‘context sensitivity’ of hippocampal

place cells. With another source of data describing the spatial location of the rat and the
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geometric properties of the environment, it may be possible to explore the contextual aspects

of place cells more thoroughly. The location of the rat in a maze may be deduced from the

firing of a place cell indicating that the rat is most likely in its place field. The position could

be confirmed by the combination of cofiring grid cells. With the assumption that the grid cells

are a more reliable indicator of location only, if it is the case that these two locations disagree,

it it likely because the rat is actually outside the place field and the place cell is firing for some

other reason. Investigating the conditions of these mismatched locations may inform on the

contextual nature of place cells.

6.7 Additional Physical Information

There is evidence that the size of a place field is linked to the physical location of the place

cell in the hippocampus (see 2.1) with place cells in layers having similar sized fields. As seen

in the place field images throughout this project, there are many cases where small place fields

are entirely subsumed by larger fields and the algorithm itself depends on the existence of

overlaps between fields. This implies that there is a great deal of redundancy among place

cells if the main function is to represent location. Perhaps it is the case that cells with large

place fields provide some method of fast indexing of location with more specificity coming

from cells with smaller fields. If this is true, it should be possible given enough data, to split

place cells into sets according the place field size and derive spatial characteristics at differing

levels of detail. Experiments using mazes with both large features such as corridors and

smaller features such as obstacles would be required.

A more immediate use of additional physical data would be to include the spike rates of each

cell during a session to estimate the distance at each time point from the centre of the place

field [19]. Interneurons may be identified by an extremely high spike rate compared to other

place cells which would eliminate the need to use the position data to identify them. Indeed,

MPF cells may be identified in the case where maximal firing occurs in more than one

location. A non MPF place cell would produce a single maximal firing location in the centre of

its place field.

6.8 More Realistic Simulated Data

Having analysed the experimental data, it is clear there are some key features missing in the

simulated data used for the previous project. These include, a greater variation in place field

size, spurious firing in common locations such as food goals, less random paths taken by the
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rat and multiple place field cells. These features could be added to the simulation. The aim

here is not to produce simulated data which looks like recorded data but should be an

estimate of what perfectly recorded data would be like. This means that the number of place

cells should not be reduced to match the number available in these experiments and large

amounts of spurious firing should not be included to match noisy recording equipment. A

more accurate simulator, used with more creative and complex maze shapes would allow for

more robust testing of the algorithms used here and in future work.
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7. Conclusion and Project Evaluation

7.1 Conclusion

In a set of recordings of cells in the CA1/CA3 regions of the rat hippocampus, it is possible to

identify and exclude interneurons and multiple place field cells using the rat’s position as it

runs around the track. By using a hidden Markov model to smooth the spiking data from the

remaining place cells, it is possible to infer, with reasonable accuracy, the topology of the

track as described in the Spatial Reconstruction Experiment. Moreover, using this technique,

it is possible to infer the topology of the track as the rat is resting or asleep and the place cells

are undergoing replay.

Some limitations to the solution still exist. A way to plausibly remove Multiple Place Field

cells, to avoid the errors they introduce, has not been found. The number of place cells

recorded in each experiment often fails to provide enough coverage of the maze and errors in

recording or misunderstood behaviour can be problematic. Finally, the inference made about

topology of the maze is dependent on the path taken by the rat which may not be a full

traversal of the entire area.

The solution presented allows for further investigation of arenas and analysis of different

shaped mazes and opens up the possibility to explore replay periods in much greater detail.

7.2 Project Evaluation

Initially, before the data analysis had been performed, it was difficult to fully lay out a plan

which could be strictly followed. However, the intuition that data smoothing would be

required and that certain ground truths would need to be identified and taken into account

was correct. It was suggested that these ground truths would be specific to the maze or

activity of the rat (for example eating or reaching a goal) and while it is possible that these

factors still have an influence, identifying neurological features such as interneurons and

multiple place field cells were identified, during the data analysis, as greater factors.
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Producing an animation visualiser to better understand the data and its context proved to be

very successful and the place field images for each cell were instrumental in analysing results.

Though incorrectly defined as ‘filters’ early on, the objective to produce a number of processes

to be applied to the data was sound and there is clear evidence of the benefits of removing

interneurons and to a lesser extent, multiple place field cells. Smoothing of the data was also

identified from the beginning. Bayesian inference was suggested as a tool to eliminate spurious

firing but later, HMM became a more appropriate choice. Finally, the objective to find further

experimental data was successful although there was not enough time to investigate arenas as

suggested. Instead, inference from rest data was explored leading to some interesting results.

The contingency plan in case of failure of the application or lack of additional data was,

thankfully, avoided. However, the number of deliverables listed initially were over promised.

Time was not allotted to partial code submissions and only a single code submission was

provided at the end of the project. A separate data analysis report was submitted which gave

more structure to the implementation stage and facilitated design conversations. As part of

the requirements of the project, a status report was completed with an evaluation of the

majority of the work completed by that point. In a commercial setting, partial milestones,

particularly code drops, would be extremely important to raising confidence from stakeholders

of the project. However, they were perhaps not appropriate here given the tight deadline and

sufficient, regular contact time with the supervisor.
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A. External Material

A.1 Experimental Data

As described in section 3.1, the experimental data was collected and processed externally to

produce position tracking files, spike timings and various other meta data used by the

topology inference application.

A.2 Visualiser and Preprocessing

The experiment visualiser and spike data preprocessing techniques were developed using

Microsoft Visual Studio 2017. The graphical elements and window management were

facilitated using the OpenGL Utility Toolkit (GLUT) [75] and OpenGL Extension Wrangler

(GLEW) [76] libraries. Certain mathematical structures and functions are provided by

OpenGL Mathematics (GLM) [77].

File bitmap image.hpp is provided by Arash Partow [78] to generate bitmap files.

A.3 Data Analysis and Topology Inference

The python scripts produced to analyse the data and generate topology graphs use the

traditional scientific libraries NumPy [79] for mathematical features, SciPy [80] for statistical

features and MatPlotLib [72] for graph plotting. In addition, the NetworkX library [81] was

used to define network graph structures and plot them. It also provided functions for network

analysis.
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B. Ethical Issues Addressed

B.1 Frank Data

The details of methodology and data collection for the experiments performed at the lab of

Loren Frank at the University of California are outlined in [82] and were obtained according to

UCSF and National Institutes of Health guidelines.

B.2 Buzsáki Data

The experimental data obtained from the Gyorgy Buzsáki lab at New York University was

used in [83]. The supplementary material outlines the protocols used for the experiments,

approved by the Institutional Animal Care and Use Committee of Rutgers University.

B.3 Other Concerns

There is a great need for research and new computational tools into the function of the

hippocampus, particularly to aid in finding treatments for Alzheimer’s and other causes of

Dementia.

Although extremely rudimentary, this research examines the degree to which we can make

inferences from neural activity. It has been shown that this pertains not only to spatial

location in the past and present but also goal planning and future intent. At some point, it

may be possible to apply this and subsequent research to human brain activity which could

cause privacy concerns. Currently, this is a distant prospect so this implication can be

disregarded in favour of the benefits.
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