
School of Computing

FACULTY OF ENGINEERING

W-Structures in Contour Trees

Petar Hristov

Submitted in accordance with the requirements for the degree of

Mathematics and Computer Science MSc

Session 2016/2017

ii

The candidate con�rms that the following have been submitted.

Items Format Recipient(s) and Date

Project Report Report SSO (12/09/2017)

Implementation Software code and URLs Supervisor, Assessor
(12/09/2017)

Type of project: Theoretical Study

The candidate con�rms that the work submitted is their own and the appropriate credit has

been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be

considered as plagiarism.

(Signature of Student)

cO Session 2016/2017 The University of Leeds and Petar Hristov

iii

Summary

As the sheer amount of data that is collected in business and scienti�c applications reaches

exascale it is becoming an increasingly challenging task to process it and extract useful

information. To do so we not only need e�cient algorithms that work over distributed and

multicore hardware but also ways of reducing its volume.

Topological Data Analysis is a general framework for analysing and comparing the signi�cance

of subsets of data. This allows us to process only the most signi�cant ones and greatly reduce

computational overhead. Developing algorithms in this �eld is a challenging task because of

the ballancing act one must do between continous mathematical models and discrete

computational models.

A principal tool in topological data analysis that is used extensively in scienti�c visualisation

is the contour tree. It is a discrete data structure that represents the topological structure of a

scalar �eld. The aim of this dissertation is to lay the foundations of understanding a particular

pathological edge case that emerges in the state of the art parallel algorithm for contour tree

computation and to explore its connection to other �elds of topological data analysis.

iv

Acknowledgements

I would like to thank my academic supervisor Dr. Hamish Carr. This work would not have

been possible without his guidance and encouragement.

Contents

1 Introduction 3

2 Background 5

2.1 Point Set Topology . 5

2.2 Di�erential Topology . 7

2.2.1 Reeb Graph . 8

2.3 Algebraic Topology . 9

2.3.1 Simplicial Complexes . 9

2.3.2 Euler Characteristic . 10

2.4 Graph Theory . 11

2.4.1 General Graph Theory . 11

2.4.2 Tree Diameter Algorithms . 11

3 Contour Trees 13

3.1 Typical Input Data . 13

3.2 Existing Contour Tree Algorithms . 14

3.3 Height Trees . 14

3.4 Serial Algorithm . 15

3.5 Parallel Algorithm . 18

3.6 Contour Tree Simpli�cation . 19

4 W-structures - Theory and Algorithms 21

4.1 Formal Description of the W-Structures . 21

4.2 Linear Time Algorithm - 2xBFS . 24

4.2.1 Pathological Cases in 2xBFS . 29

4.2.2 On Resolving the Accuracy of 2xBFS . 30

4.3 Dynamic Programming Algorithm - DP . 30

5 Homology 39

5.1 Homology . 39

5.2 Reduced and Relative Homology . 43

5.3 Inclusion Maps and Induced Maps on Homology 45

5.4 Persistent Homology . 46

5.5 Extended Persistence . 49

6 Extended Persistence and Branch Decomposition 51

6.1 Persistence of Branches . 51

6.2 Persistence Pairs vs Branch Decomposition Pairs 52

7 Empirical Study 59

v

vi CONTENTS

7.1 Algorithm Implementations . 59

7.2 Data sets Overview . 60

7.3 W-detector Algorithms . 60

7.4 Dataset w-diameter Analysis . 63

8 Conclusion 65

8.1 Personal Re�ection . 65

8.2 Future Work . 66

References 68

Appendices 73

A External materials 75

B Ethical Issues Addressed 77

B.1 Data Sources . 77

B.2 Software . 77

C Ascending Filtration of the Contour Tree 79

D Descending Filtration of the Contour Tree 81

E Additional Proofs 83

F Github Repositories 85

List of Figures

2.1 Simplices of dimension 0; 1; 2 and 3. 9

2.2 A simplicial complex. 10

3.1 Triangulation of input data to obtain a simplicial mesh. 13

3.2 The simplicial mesh, join and split trees and contour tree. 16

3.3 Hierarchical branch decomposition of the contour tree from Figure 3.2 b. 20

4.1 A path and its monotone path decomposition. 22

4.2 Two possible types of kinks (vertices are labeled with their height). 22

4.3 Relative position of vertices in Case 1.1 (dotted lines are paths). 25

4.4 Relative position of vertices in Case 1.2 (dotted lines are paths). 26

4.5 Relative position of vertices in Case 2 (dotted lines are paths). 28

4.6 Pathological cases in the 2xBFS algorithm (dotted lines are monotone paths of

length at least three). 29

4.7 In�nite cycle between u and v (dotted lines are monotone paths of length at

least 3). 30

5.1 A simplical complex. 39

5.2 Example of a �ltration of a simplicial complex. 46

5.3 Examples of visualising persistent homology of the �ltration on Figure 5.2. 48

6.1 Branch decomposition of the join tree. 53

6.2 Branch decomposition of the split tree. 53

6.3 Branch decomposition of the contour tree. 54

6.4 Ascending �ltration of the dataset. 55

6.5 Descending �ltration of the data set. 56

6.6 Barcode diagrams of the persistent homology of the ascending and descending

�ltration. 56

6.7 Branch decomposition of the join/split trees and extended persistence of the

�ltrations. 57

7.1 Running time of NxBFS on randomly generated trees. 61

7.2 Running time of 2xBFS (blue) and DP (red) on randomly generated trees. . . . 62

C.1 Ascending �ltration of the contour tree from Figure 3.2 b. 79

D.1 Descending �ltration of the contour tree from Figure 3.2 b. 81

1

2 LIST OF FIGURES

Chapter 1

Introduction

The mathematical �eld of topology studies the qualitative properties of geometric objects. It

is the natural �eld to study for example the shape of a surface by decomposing it into path-

connected components. While topology has traditionally been only considered within pure math-

ematics new methods allow for topological properties of data to be computed in practice. These

new methods are the study of Computational Topology [41] and Topological Data Analysis [11].

These emerging �elds on the edge of pure mathematics and computer science leverage theory

from topology to produce algorithms for solving various problems in structural biology [39, 19],

visualisation [10, 13, 15], medical imaging [36] and computer vision [9, 28].

In this dissertation we will be most interested in utilizing computational topology in the

context of scienti�c visualisation. We shall do so with the use of a tool that has been well

established in recent years called the contour tree [14]. The contour tree is a discrete graph data

structure that is used to summarise the connectivity of planar cross sections of a scalar �eld. The

utility of the contour tree is in that it can be used to identify and display the most topologically

signi�cant features in data with little to no human interaction. Such automated tools become

invaluable when the amount of collected data far exceeds the capability of a human to process

manually.

The central problem that we will discuss in this dissertation is a theoretical computational

e�ciency limitation of the current state of the art algorithm for data-parallel contour tree compu-

tation [17]. The cause of this issue are certain substructures of contour trees we call w-structures.

They hinder parallel performance by serialising parts of the computation [16]. Our goal is it to

understand how and why these w-structures appear in contour trees of data. We will accomplish

this by developing new algorithms that detect the existence of w-structures and extract them for

further study.

The second problem we will address is that of contour tree simpli�cation [35]. Contour tree

simpli�cation is the process of reducing the size of a contour tree by removing parts of it that

correspond to topologically insigni�cant features of data. We will analyse the process of contour

tree simpli�cation using a more general tool from topological data analysis called Persistent

Homology [21]. We will pose and answer the question of whether the two approaches produce

equivalent results. A counterexample based the w-structures we have introduced will make clear

that fact that they do not.

The material in this dissertation is spread throughout eight chapters. The second chapter

provides the reader with the necessary mathematical background to tackle most of the rest of

the dissertation. Chapter three introduces the concept of contour trees and the state of the art

algorithms found in the literature for computing them. Chapter four constitutes the �rst part

of our original research. We explore the theoretical properties of w-structures and develop three

algorithms for detecting and extracting them from contour trees. In chapter �ve we take a step

3

4 CHAPTER 1. INTRODUCTION

back to introduce more mathematical background that would enable us to address our second

goal of comparing contour tree simpli�cation and persistent homology. In this chapter we will

cover the basics of a sub�eld of Algebraic Topology called Homology and introduce the theory

behind Persistent Homology. Chapter six is the second part of our original research. We explore

the connection between contour tree simpli�cation and persistent homology by computing and

comparing the output of both on a speci�cally chosen data set. In chapter seven we present an

empirical study on the w-structures by implementing and analysing the algorithms we created

in chapter four and running them on both arti�cially generated and on real life data sets. We

will use those algorithms to demonstrate that the w-structures do appear in real life data and

that the theoretical algorithmic issues they cause translate to issues with practical computational

performance. Chapter eight is devoted to the conclusion, personal re�ection and our thoughts

on future directions.

Chapter 2

Background

The two key concepts we will introduce in this dissertation are the Contour Tree and Persistent

Homology. In order to be able to do this we have to �rst take a step back and walk the reader

through a range of other mathematical disciplines. The preliminaries include Point Set Topology,

Di�erential Topology, Algebraic Topology and Graph Theory. We will opt for introducing these

�elds with a more practical and computational �avour. Our goal is to provide the reader with

both the necessary formalism and intuition behind the main de�nitions and results we will use

in the following chapters.

2.1 Point Set Topology

The �rst branch of Topology that we will introduce is Point Set Topology. It forms the underlying

framework on top of which mathematicians build the concepts of continuous spaces and functions.

Point Set Topology is the study of sets that posses certain mathematical structure. The core

concept in Point Set Topology is the mathematical structure known as the topology of a set.

The topology of a set makes the notion of whether two elements of a set are "close" or "near"

to one another rigorous. Elements of a set which are close or near to one another are said to

be a part of an open set. In this chapter we will borrow de�nitions and results from one of the

standard introductory topology textbooks [31].

De�nition 1. Let X be a set and � be a set of subsets of X. The set � is a topology on X when

the following holds:

� X and ; 2 � .

� If U and V 2 � then U \ V 2 � .

� If fU�g�2� is a family of subsets of X, where U� 2 � for all � 2 �, then
S

�2� U� 2 � .

We will call the elements of X points and the elements of � open sets or simply open. An

open set is an open neighbourhood of a point when the point is in the open set. We must stress

that the topology we endow on a set is by no means unique. For example if X is any set then

one valid topology on X may consist of all subsets of X while another may simply be f;; Xg.

Let us now introduce the topology we are going to use on n-dimensional Euclidean space

or simply Rn. It is called the standard topology and it is based on the standard de�nition of

distance between points in Rn. Let x = (x1; x2; :::; xn) be a point in R
n. We can de�ne the open

ball around x of radius � as B�(x) = fy 2 Rn : d(x; y) < �g where we de�ne the distance function

as d(x; y) =
pPn

i=1 (xi � yi)2. The standard topology on Rn consists of the open balls around

all points of all possible radii and their �nite intersections and arbitrary unions.

5

6 CHAPTER 2. BACKGROUND

Next we will de�ne a special class of functions that preserve the properties of topological

spaces. Those are the continuous functions.

De�nition 2. A function f : X ! Y is said to be continuous when the preimage of an open set

in Y is an open set in X.

In formal notation if U 2 Y is open in Y then f�1(U) is open in X. This de�nition captures

the understanding we have of continuity from calculus in the more general context of topology.

If f is a bijection and f�1 is also continuous we will call f a homeomorphism. Homeomorphisms

play a special role in topology. Two topological spaces are homeomorphic when there exists

a homeomorphism between them. As continuous functions preserve open sets it follows that

homeomorphic spaces are topologically identical. This is the reason why topologists are mostly

interested in classifying and analysing spaces up to homeomorphism.

We will call a property of a space that is preserved under homeomorphisms a topologi-

cal invariant. The �rst topological invariant we will introduce is path-connectedness. Path-

connectedness is based on paths between points in a topological space.

De�nition 3. Let X be a topological space and let x; y 2 X be any two points. A path between

x and y in X is a continuous function f : [0; 1]! X such that f(0) = x and f(1) = y.

Using this de�nition we can de�ne a path-connected topological space as follows.

De�nition 4. A topological space X is said to be path-connected if there exists a path between

any two points x; y 2 X

Topological invariants play a crucial role in di�erentiating between topological spaces. Since

path-connectedness is a topological invariant the continuous image of a path-connected topolog-

ical space is also path-connected. It follows that there cannot exist a homeomorphism between

a topological space that is path-connected and on that is not.

We will now introduce two di�erent ways in which you can obtain new topologies from already

known topologies. The �rst way is known as the subspace topology. A subspace of a topological

space X is any subset of points in X.

De�nition 5. Let A � X be a subspace of X. We de�ne the open sets for a topology on A as

the intersection of the open sets in X with A.

This means that a set U � A is open in A exactly when U = U 0 \A where U 0 is open in X.

This result allows us to obtain a topology of A by taking all possible intersections of the open

sets in X with A. For example let X = R and A = [0; 1]. The set [0; 1=2) = (�1=2; 1=2) \ [0; 1]

is open in A because (�1=2; 1=2) is open in X . This does not imply that [0; 1=2) is open in the

topology of X, only in the topology of A.

The second way of obtaining new topologies is via the quotient topology. To understand it we

must �rst de�ne a quotient space via an equivalence relation. An equivalence relation � de�ned

on a topological space X partitions all points in X into equivalence classes. The equivalence

class of a point x 2 X is the set [x] = fy 2 X : x � yg. The set of all equivalence classes is

called the quotient of X by � and denoted as X= �. Let also � : X ! X= � be the map that

takes a point x of X to its equivalence class in X= �.

De�nition 6. Let X be a topological space and � be an equivalence relation de�ned on X. The

2.2. DIFFERENTIAL TOPOLOGY 7

quotient topology of X= � is formed by the sets U � X= � such that ��1(U) is open in X.

By this de�nition the function � is continuous. We can use this fact to infer that if a

topological space X is path-connected then X= � is path connected for any equivalence relation

� because there exists a continuous function � : X ! X= �. An example of this is when

we take quotients of subsets of topological spaces. Let A � X. We can de�ne an equivalence

relation as x � y whenever both x; y 2 A. We will call the resulting quotient space X=A. The

geometrical interpretation of X=A is that all points in A are contracted to a single point in X=A.

As a direct example of this consider the closed disk D = fx2 + y2 � 1g and its subset the circle

S1 = fx2+ y2 = 1g. The quotient space D=S1 is homeomorphic to the three dimensional sphere

S2 = fx2 + y2 + z2 = 1g.

Now we will present our �nal de�nition. That of a topological manifold - a mathematical

generalisation of a surface.

De�nition 7. A d�manifold is topological space where every point has an neighbourhood that

is homeomorphic to Rd.

An example of a 0-dimensional manifold is a single point in Rn. Examples of one dimensional

manifolds are lines, circles, graphs and curves. Examples of 2-dimensional manifolds are the

surfaces we are familiar with from geometry such as the sphere, the torus and so on. In this

dissertation we will only consider manifolds of dimension zero, one, two and three. The reason for

this is that our primary focus is on the visualisation aspect of computational topology. Visually

modelling natural spacial phenomena prohibits us from using high dimensional manifolds because

they cannot be properly embedded in two or three dimensional Euclidean space.

It is often di�cult to analyse the topology of a space by just considering its open sets. This is

why in the following two sections we will employ additional tools from other �elds of mathematics

to aid in our analysis of the topology of a space. These tools are di�erentiable functions over

di�erentiable spaces and combinatorial approximations of topological spaces.

2.2 Di�erential Topology

Di�erential topology is the study of di�erentiable functions de�ned on di�erentiable manifolds.

One of the most well developed �elds of di�erential topology is Morse Theory [30, 32]. Morse

theory is the study of the relationship between spaces and functions de�ned on them. One

way we can study manifolds via di�erentiable functions is by analysing the critical values of the

functions. Due to complexity of doing so especially in relation to degenerate critical points we

will restrict ourselves to a special class of di�erentiable functions called Morse functions.

De�nition 8. A function f :M ! R
n is a Morse Function if f is smooth and at critical points

the Hessian (matrix of second partial derivatives) is full rank.

In order to analyse the topology of scalar �elds will restrict our attention even further and

consider Morse functions whose codomain is R. Points of M whose �rst derivative is zero are

called critical points. All other points of M are called regular.

We can use a Morse function de�ned on a manifold to decompose it into a family of path-

8 CHAPTER 2. BACKGROUND

connected subsets. We can analyse the subsets to obtain global topological information about

the connectivity of the manifold. Examples of such families of subsets are level sets, sublevel sets

and super level sets.

De�nition 9. A level set at a value h of a Morse function f : M ! R is the set f�1(fhg) =

fx 2M : f(x) = hg

Sublevel sets are de�ned in terms of the preimage of f of intervals of the form [�1; a]. A

sublevel set at a is de�ned as f�1([�1; a]) = fx 2 M : f(x) 2 [�1; a]g. Superlevel sets are

de�ned analogously in terms of intervals of the form [a;1].

Morse functions ensure the following properties hold:

� None of the critical points are degenerate.

� Changes in the topology of level sets, sublevel sets and superlevel sets only happen at

critical points.

� A Morse function de�ned on a surface has a �nite number of critical points.

Morse functions allow us to decompose a manifold into its level sets. We will use the theory

we have developed so far to introduce the principal tool that allows us to analyse how the

connectivity of level sets f�1(fhg) changes as we vary the input parameter h.

2.2.1 Reeb Graph

The Reeb Graph is a tool that encapsulates the evolution of the topology of level sets of a

continuous function. When the function is Morse, an edge in the Reeb graph corresponds to a

sequence of contours in the level sets whose topology does not change. The vertices correspond to

critical points where the topology of those components does changes. An example of a topological

change is when connected components in the level sets appear or disappear or when two connected

components split or merge. Morse theory ensures that critical points occur at distinct values of

the parameter and are isolated. This removes ambiguities that may arise in the construction of

the Reeb graph.

De�nition 10. Given a topological space X and a continuous function f : X ! R we can de�ne

an equivalence relation � such that two points x; y in X are equivalent when there exists a path

between them in a level set f�1(fhg) for some h 2 R. The Reeb Graph is the quotient space

X
�
� together with the quotient topology.

We can think of the Reeb graph of a space X as the quotient space where the connected

components of all level sets are contracted to a single point. The resulting topological graph can

also be though of as a discrete graph. To do so we must enumerate the vertices and record all

edges between them.

The reason we have de�ned Reeb graphs is because the contour tree is a special case of the

Reeb graph. We will leave it as this and return to the topic in the beginning of the next chapter.

Before doing so we must take a look at certain tools from Algebraic Topology that allows us to

translate the continuous mathematical results we have obtained so far into the realm of �nite

combinatorial structures that would allow us to perform actual computation.

2.3. ALGEBRAIC TOPOLOGY 9

2.3 Algebraic Topology

Algebraic Topology is a branch of topology that uses tools from the �eld of abstract algebra to

study topological spaces. The primary goal is to derive algebraic structures such as groups, rings

and vector spaces from topological spaces that remain invariant under continuous mappings.

Modern Algebraic Topology has its roots in combinatorially de�ned topological spaces [27].

Unlike Point Set Topology and Di�erential Topology this allows us to obtain exact algorithms for

computing the algebraic invariants we are interested in. To make matters clearer we will introduce

one of the most basic combinatorial topological spaces - Simplicial Complexes and then we will

introduce one of the earliest discovered algebraic invariants - the Euler Characteristic. We will

continue our discussion on Algebraic Topology in Chapter 5 where we will see how the concept of

the Euler Characteristic can be generalised to the �eld of Algebraic Topology called Homology.

2.3.1 Simplicial Complexes

Simplical Complexes are one of the �rst combinatorially �avoured topological spaces one encoun-

ters in Algebraic Topology. A simplicial complex is a subset of Rn that consists of points, line

segments, triangles and their higher dimensional analogues attached to one another in a single

geometric object. In order to understand simplicial complexes we must �rst de�ne their basic

building blocks [22, p. 51].

De�nition 11. Let fv0; :::; vkg be k points in Rn. The convex combination of the points is the

sum
Pk

i=0 �ivi where �i � 0 and
Pn

i=0 �i = 1.

If we decide to take the subset of Rn covered by all possible convex combinations we obtain

the convex hull of the points.

De�nition 12. Let fv0; :::; vkg be points in R
k+1. The convex combination of those points is the

k � simplex de�ned by the points. We will write that simplex as [v0; :::; vn] � R
k+1

(a) Vertex. (b) Edge. (c) Triangle. (d) Tetrahedron.

Figure 2.1: Simplices of dimension 0; 1; 2 and 3.

The number k is also called the dimension of the simplex.

We will call the simplices of dimension 0; 1; 2 and 3 vertices, edges, triangles and tetrahedron

respectively. As we have mentioned previous we are primarily interested in introducing math-

ematics as a tool to use in visualisation. Therefore we will have no use for simplices of higher

dimension so will avoid naming them altogether.

10 CHAPTER 2. BACKGROUND

A face of a simplex is the convex hull of a non-empty subsets of its points. For example

the faces of the tetrahedron are the four triangles, six edges and four vertices. To construct a

simplical complex all we have to do is take the union of a number of simplices and "glue" them

together along common faces without allowing self-intersection.

De�nition 13. A simplical complex K is a �nite collection of simplices such that if � is a simplex

K then all faces of � must be simplicies in K. Furthermore the intersection of two simplicies in

K is either empty or a common face of both.

Figure 2.2: A simplicial complex.

We obtain the topology of a simplicial complex by embedding it in Euclidean space and

considering its subspace topology as a subset. After formalising the concept of a simplical

complex we will introduce our �rst algebraic invariant.

2.3.2 Euler Characteristic

The �rst topological invariant of algebraic nature we shall encounter is the Euler Characteristic.

It is denoted as � and it assigns an integer to simplical complexes through a generalisation of

counting [25, p. 44]. The concept was originally de�ned for polyhedra as an alternating sum of

the form jV j � jEj+ jF j, where V is the set of vertices, E the set of edges and F the set of faces.

The Euler Characteristic can be generalized to simplical complexes as as a in�nite alternating

sum 3-dimensional simplices, 4-dimensional simplices and so on.

� = k0 � k1 + k2 � ::: =
X
i

(�1)i ki;

where all ki is the number of i-dimensional simplicies for i 2 Z
+ and kj = 0 for i bigger than the

dimension of the highest dimensional simplex in the simplicial complex.

The Euler Characteristic is a topological invariant. This allows us to compute the Euler

Characteristic of topological spaces which are not simplicial complexes. Let us take for example

the sphere. We will call any simplicial complex that is homeomorphic to the sphere its trian-

gulation. The most basic triangulation of the sphere is the tetrahedron (excluding its volume).

Therefore the Euler Characteristic of the sphere is � = 4� 6 + 4 = 2.

2.4. GRAPH THEORY 11

2.4 Graph Theory

The last piece of background theory we will cover is from Graph Theory. In this dissertation we

will make use of certain notation and algorithms that we will de�ne here.

2.4.1 General Graph Theory

We will assume that the reader has is familiar with basic concepts from graph theory such as

graphs, subgraphs, vertices, edges, paths and cycles and the basic algorithm such as Breadth

First Search (BFS) and Depth First Search (DFS) [20]. For a graph G = (V;E) we will use

notation V (G) for the vertices of G and E(G) for the edges of G. We will use the notation N(u)

for the neighbourhood of u or all the vertices u is adjacent to. We will use the notation d(u; v)

where u; v 2 V (G) for the length of the shortest path between u and v in G.

Throughout this dissertation most of the graphs we will be working with will be trees. A

tree is a connected graph that has no cycles. We will typically refer to trees as T = (V;E). For

our intents and purposes we shall de�ne a subtree of a tree as a connected subgraph of a tree.

We will refer to subtrees of rooted trees by their root. If T is a rooted tree and u is a node in T

then Tu is the subtree of T whose root is u. In this notation if s is the root of T then Ts = T .

If u is any vertex that is not the root of T then Tu is the (vertex-wise) maximal subtree of T

that contains u but does not contain the parent of u. We remind the reader that N(u) does not

include the parent of u in a rooted tree.

In Chapter 4 we will be interested in �nding the longest path in a tree. This is known as the

diameter of a tree. Here we will describe two of the most well known linear time tree diameter

algorithms.

2.4.2 Tree Diameter Algorithms

The �rst algorithm we will discuss is based on the following theoretical result [1].

Lemma 1. Let s be any vertex in a tree. The most distant vertex from s is an endpoint of a tree

diameter.

To implement this algorithm we require a way of �nding the most distant vertex from a

given vertex. This can be done using Breadth First Search (BFS) [20, p. 594]. Let T be a

tree and s 2 V (T) be any vertex. We can run BFS with s as its root to �nd a vertex u such

that d(s; u) � d(s; t) for all t 2 V (T). We can then run a second BFS with root u to obtain a

vertex v such that d(u; v) � d(u; t) for all t 2 V (T). Since u is the farthest vertex from s by

Lemma 1 it must be the endpoint of a diameter. The diameter of T is the longest path in T .

Therefore the second BSF produces a path whose length as much as the diameter of T . Therefore

d(u; v) � d(a; b) for all a; b 2 V (T).

The space and time complexity of BFS are linear and therefore the space and time complexity

of this algorithm are linear as well. This follows from the fact that the algorithm consists of

running BFS two consecutive times. For the implementational details we refer the reader to [2].

12 CHAPTER 2. BACKGROUND

The second approach [3] is based on the Dynamic Programming paradigm. Dynamic pro-

gramming is a method that is used to solve optimisation problems whose solution can be reformu-

lated recursively through solutions of subproblems of the original problem. The key ingredients

in developing a dynamic programming algorithm are [20, p. 359]:

1. Characterise the structure of the optimal solution.

2. Recursively de�ne the value of the optimal solution.

3. Compute the value of the optimal solution.

We will characterise the structure of the optimal solution through all subtrees of a tree. If

we root a tree T in any of its vertices then then structure of the optimal solution is de�ned via

all the rooted subtrees of T or fTugu2V (G). We can recursively de�ne the value of the optimal

solution with the following observation. Starting at the root the longest path in the tree either

goes through the root or is entirely contained in one of the subtrees rooted at the children of the

root. This reasoning can be extended to all rooted subtrees of the tree.

In order to formalise this idea we will make use of two functions. Let T be a rooted tree with

root s. Let h(u) be the height of the subtree rooted at u. The height is de�ned as the longest

path in Tu from u to one of the leaves of Tu. We will also call such a path a height path. Let

D(u) be the length of the longest path contained entirely in Tu. The function D will contain the

value of the optimal solution for all subtrees. The value of D(s) is either equal to the value of

D(u) where u is a child of s or it is equal to combining the two maximum height paths of two of

the children of u. This is summarised by he following formula.

D(s) = max

�
max
u2N(s)

�
D(u)

�
; max
u;v2N(s)

u6=v

�
h(u) + h(v) + 2

�
; max
u2N(s)

�
h(u) + 1

��
:

The �rst terms describes the case when the longest path is contained entirely in one of the

subtrees rooted at a child of s. The second terms combines the two longest height paths in two

distinct children u; v of s and adds an additional 2 to account for the edges us and vs. The last

term is given in the case where s has exactly on child and we cannot combine two height paths.

The base case for this recursive formula is at the leaves of T . If u is a leaf of T then

V (Tu) = fug. This allows us to set h(u) = 0 and D(u) = 0 and consider all leaves as base cases

for the recursive formula. This algorithm can be implemented in linear time using Depth First

Search (DFS) [20, p. 603] by using two auxiliary arrays that hold the values for h(u) and D(u)

for every u 2 V (T). For the implementational details we refer the reader to [4].

Chapter 3

Contour Trees

The Reeb graph of a scalar �eld is connected and acyclic [22, p. 141]. As such we will call the

Reeb graph of a scalar �eld the contour tree. In this chapter we will assemble the theory we have

presented thus far and use it to introduce the state of the art serial and parallel algorithms for

contour tree computation. We will begin with a short discussion on how we treat input data and

what theoretical simplifying assumptions we are making. Afterwards we will present an overview

of contour tree algorithms and then introduce some graph theoretical properties of contour trees.

Next we will describe in detail how the serial and parallel contour tree algorithm work. This

will lead us to de�ning the so called w-structures. We will demonstrate why exactly they are

a pathological case that causes poor performance in the parallel contour tree algorithm. The

�nal topic of this chapter is contour tree simpli�cation. This is the process of identifying and

removing parts of the contour tree that are not topologically signi�cant.

3.1 Typical Input Data

Many scienti�c and medical applications require the sampling of scalar values from a bounded

area or volume in two or three dimensional Euclidean space [12]. The theory we have presented

so far is applicable only in the continuous setting but the resolution of any sampling process is

�nite. If we are to leverage this theory we must assume an underlying continuous function in

the whole of the area or volume and not just at the sampled points. To do so we will construct

an approximation of this function based on the values we have sampled. This is usually done by

constructing a simplicial complex where the data points are the vertices and higher dimensional

simplicies are added to completely �ll the space between them (see Figure 3.1). We will call the

resulting data structure a simplical mesh [12].

20

23

26

27

28 21

25

22

24

(a) Input Data.

20

23

26

27

28 21

25

22

24

(b) Simplicial Mesh.

Figure 3.1: Triangulation of input data to obtain a simplicial mesh.

For simplicity and without loss of generality we will work with two-dimensional domains

13

14 CHAPTER 3. CONTOUR TREES

where the value samples are evenly spaced out in a grid-like fashion (Figure 3.1). The values of

the approximation function at the simplicies are obtained via linear interpolation between the

vertices of each simplex. As long as the original values we have sampled are unique it can be

shown that the linear interpolation function is a Morse function and that all critical points are

the vertices of the mesh [8].

3.2 Existing Contour Tree Algorithms

The �rst e�cient algorithm for constructing contour trees [38] is due to Van Kreveld et al. Its

running time is O(NlogN) on two dimensional domains and O(N2) in higher dimensions whereN

is the number of triangles in the simplicial mesh. Tarasov and Vyalyi [37] extended this algorithm

to work in time O(NlogN) on three dimensional domains. Their approach however involved a

complicated procedure for dealing with multi-saddle points. Both algorithms su�er from lack

of generality and non-trivial treatment of multi-saddle points. Carr et. al [14] introduced an

algorithm with running timeO(nlogn+N�(N)) where n is the number of vertices in the simplicial

mesh and � is the notoriously slow growing inverse Ackerman function. This algorithm works in

any number of dimensions and has simple treatment of multi-saddle points.

More recent developments in the �eld focus on extending the existing algorithms to accom-

modate the distributed [33, 34] and shared memory parallelism paradigms [17, 29]. The focus

of this dissertation will be one of the latest developments in a data parallel shared memory al-

gorithm for contour tree computation [17]. Before introducing how that algorithm operates and

one of the issues related to its parallel performance we will �rst give a more detailed overview of

the most established serial algorithm [14] on which the data parallel one is based on. In order to

talk about any of the two algorithms we must establish some notation and de�ne height graphs

and trees as they are de�ned in [12].

3.3 Height Trees

A height graph is a graph G = (V;E) together with a real valued function h de�ned on the

vertices of G. Height graphs are also known in the literature as weighted graphs. We are

changing our notation to be more indicative of the fact that the weight function is de�ned on

the vertices and that it corresponds to height of points in a simplicial mesh. A height tree is a

height graph which is a tree. Contour trees are height trees because nodes in the contour tree

correspond to nodes in the mesh and can inherit their height (sampled) value. Analogous to

the assumption we have made about uniqueness of values we will also assume all vertices in the

height trees we consider have unique heights. In other words h(u) 6= h(v) for all u; v 2 V (G)

where u 6= v. The function h naturally induces a total ordering on the vertices. From now on we

will assume the vertices of G are given in ascending order. That is to say, V (G) = fv1; v2; :::; vng

where h(v1) < h(v2) < ::: < h(vn). This lets us work with the indices of the vertices without

having to compare their heights directly. In this notation h(vi) < h(vj) when i < j.

Introducing the height function allows us to talk about ascending and descending paths. A

3.4. SERIAL ALGORITHM 15

path in a graph is a sequence of vertices (u1; u2; :::; uk) where ui 2 V (G) for i 2 f1; 2; :::; kg

and uiui+1 2 E(G) for i 2 f1; 2; :::; k � 1g. A path in a height graph is ascending whenever

h(u1) < h(u2) < ::: < h(uk). If we traverse the path in the opposite direction it would be

descending. We will simply call these paths monotone whenever we wish to avoid committing to

a speci�c direction of travel.

When working with height graphs it is useful to extend the de�nition of a degree of a vertex

by taking the height function into account.

De�nition 14. Let G be a height graph and v a vertex of G. The up degree of v is de�ned as the

number of neighbours of v with higher value. It is denoted as �+(v) =
��fu 2 N(v) : h(u) > h(v)g

��.
The down degree of a vertex v is de�ned analogously as ��(v) =

��fu 2 N(v) : h(u) <

h(v)g
��. In the context of height trees the de�nitions of up and down degrees of a vertex allow us

distinguish between two types of leaves - lower and upper leaves.

De�nition 15. Let G be a height graph and v a vertex of G. If �+(v) = 1 and ��(v) = 0 then

v is a lower leaf.

If �+(v) = 0 and ��(v) = 1 then v is an upper leaf. We will see in the next section how

di�erentiating between the two types of leaves is a critical part in the computation of the contour

tree.

3.4 Serial Algorithm

The contour tree is a tree that consists of [38]:

� Vertices or supernodes that correspond to level sets that contain a critical point.

� Edges or superarcs correspond to path-connected regions bounded by two level sets which

both contain a critical point. They connect the supernodes those level sets correspond to.

The contour tree contains information of two types of events - joining and splitting of contours.

We can derive two other height trees from the contour tree that each contain the information of

the joining and splitting events separately. These are called the join and split trees [14]. The

join tree contains information for the contours that join together and the split tree holds the

information for the contours that split apart. The join tree of a contour tree summarises the

evolution of the connectivity of the sublevel sets of the interpolation function and the split tree

of the superlevel sets. You can �nd an example of the join and split trees of Figure 3.2.

The reason we would like to study join and split trees is that the contour tree can be re-

constructed from them. The core idea of the algorithm we will present is that we can derive

the join and split trees directly from the simplicial mesh and then combine them to obtain the

contour tree. We will �rst describe how the join and split trees are computed from the mesh.

We only have to describe the process for the join tree because the computation of the split tree

is symmetrical [14].

De�nition 16. A join component is a connected component in the superlevel set f�1([h;1)) at

some h 2 R.

16 CHAPTER 3. CONTOUR TREES

20

23

26

27

28 21

25

22

24

(a) Simplicial mesh.

5

2

0

4

6

7

3

1

8

(b) Contour tree.

5

2

0

4

6

7

3

1

8

(c) Join tree.

5

2

0

4

6

7

3

1

8

(d) Split tree.

Figure 3.2: The simplicial mesh, join and split trees and contour tree.

Let M be the simplicial mesh from Figure 3.2 (a) and let h : M ! R be the interpolation

function de�ned on it. We will refer to h as the height function. To construct the join tree

we are going to have to keep track of which components merge together in the superlevel sets

of h. We will consider all superlevel sets M t = h�1([t;1)) = fx 2 M : h(x) 2 [t;1)g as a

one parameter family fM tgt2R of nested subsets of M . We can see from this de�nition that

Ma �M b whenever a � b. What the join tree captures is how the connectivity of the superlevel

sets changes as the parameter t is increased. The connectivity of superlevel sets changes either

at local minima where a new component is created or a saddle point that merges two or more

join components.

To visualise this process we can contract every join component to a point much like we did

in the Reeb graph. The only di�erence here is that the equivalence relation is de�ned for all

points in a superlevel set h�1([t;1)) instead of a level set h�1(ftg). Because of this change and

because join components can only merge the join tree is a tree [22]. Furthermore if Mm =M is

the last superlevel set for some m 2 R then all join components merge into one because M is

path connected.

We will brie�y outline the algorithm for constructing the join tree and refer the reader to [14]

3.4. SERIAL ALGORITHM 17

for further implementational details. We know that all critical points are vertices of M and that

it is only at the critical points that changes in the topology of the superlevel sets can happen.

The algorithm works by considering the vertices of the simplicial mesh in ascending order of

their height. If the current vertex is a local minimum we directly add it in the join tree because

it starts a join component. If the current vertex is a saddle that joins two or more components

(join saddle) we add it to the join tree and add an edge between it and the local minima of the

join components it merges. At the end of the computation all vertices will be in the same join

component. In order to keep track of which join components di�erent vertices belong to we can

use the union-�nd data structure. The term �(n) in the time complexity of the contour tree

algorithm comes from the basic operations of �nd and search in the union-�nd data structure.

Not all vertices of the mesh will be in the join tree. Only those which correspond to local

maxima and to join saddles. This will pose a problem later on when we wish to combine the

join and split trees. To avoid this problem we can augment the join tree by adding all missing

vertices. This is done through edge subdivision. Let a and b be two adjacent vertices in the join

tree. Let fv1; v2; :::; vng be vertices in the mesh that are not in the join tree that are given in

ascending order in terms of height. Suppose that h(a) < h(vi) < h(b) for all i 2 f1; 2; :::; ng and

the vertices vi are in the same connected component of Xb� h�1(fbg) = h�1((�1; b)). In order

to augment the join tree with the �rst vertex we subdivide the edge ab and label the new vertex

as v1. Next we subdivide v1b and label the new vertex as v2. We continue to do so and on the

kth step we subdivide the edge vk�1b and label the new vertex as vk .

The procedure of augmentation can be applied to the split tree and contour tree as well. We

can use it to augment the contour tree with all vertices of the mesh which are not critical points.

This is why we will di�erentiate between the contour tree and the augmented contour tree. The

augmented contour tree contains all regular vertices of the simplicial mesh.

The second step of the algorithm is to combine the join and split trees to produce the contour

tree. We will actually combine the augmented join tree with the augmented split tree to obtain

the augmented contour tree. Removing the augmentation of the contour tree is left as an optional

�nal step. The �rst step in merging the two is to identify all leaves of the contour tree and their

incident edges. We can recognize them immediately from the join and split trees using the

following property [12].

Property 1. Let v be a vertex such that its up degree in the join tree is 0, its down degree in

the split tree is 1 and u is its only down neighbour in the split tree. Then v is an up leaf in the

contour tree and vu is an edge in the contour tree.

There is an analogous property in the case of down leaves and their adjacent edges.

Property 2. Let v be a vertex such that its up degree in the join tree is 1, its down degree in

the split tree is 0 and u is its only down neighbour in the join tree. Then v is a down leaf in the

contour tree and vu is an edge in the contour tree.

Now suppose that we have identi�ed v as a leaf and vu as its adjacent edge in the split or

join tree. Another property [12] tells us that if we perform vertex contraction on v (remove v

and form a clique from its neighbourhood) from the join, split and contour trees we obtain the

join and split trees of the contour tree with v removed. This allows us to iteratively remove

18 CHAPTER 3. CONTOUR TREES

leaves from the join and split trees, add them to the contour tree and then delete them from the

join and split tree. We can repeat this process until we have removed all vertices from the join

and split trees and all vertices are present in the contour tree. For a detailed description of this

process we refer the reader to [14].

The Serial algorithm for the construction of the contour tree is a summary of the results we

have obtained so far:

Step 1. Read input data and convert it to a simplicial mesh.

Step 2. Compute the augmented join and split trees from the simplicial mesh.

Step 3. Iteratively remove leaves from the augmented join and split trees and add them to

the augmented contour tree until the augmented join and split trees are empty.

Step 4. Remove regular vertices from the augmented contour tree by contracting them.

3.5 Parallel Algorithm

The data parallel contour tree algorithm [17] is largely based on the serial contour tree algorithm

we just described. The parallel approach borrows the two phase methodology of computing the

join and split trees and then merging them. We will omit describing the process of parallelising

join/split tree computation because it is not directly related to the issue we aim to address. We

will describe how the merge phase is parallelised in detail.

The data-parallel paradigm works best when there are a large number of computational

tasks to be carried out independently. Dependant tasks require some form of synchronisation.

Synchronisation is costly in terms of performance. Removing a leaf in the merge phase of the

serial algorithm requires little synchronisation with other vertices because it is a local operation.

It only involves a few of the vertices of the join and split trees. This means that once we identify

all up and down leaves we can remove them in parallel in a single iteration. The key problem to

solve in the merge phase is to reduce the number of total iterations needed to remove all vertices

from the join and split trees. The amount of parallelism in this computation is limited by the

number of leaves at each iteration. For example a tree which is a path of length n will take at

least n=2 iterations and a tree with one central vertex and n leaves adjacent to it will take only

two iterations.

In a graph with no vertices of degree two at least half of the vertices are leaves (see Appendix

E). If at every iteration half of the remaining vertices are leaves the total number of iterations

would be logarithmic in the number of vertices in the contour tree. In order to ensure this

logarithmic collapse Carr et. al [17] have come up with a way of batching some of the paths

that start at a leaf and consist of vertices of degree two, in a single iteration. We will call such

paths leaf chains. The process of removing them in a single iteration is in e�ect equivalent to

contracting all vertices in the tree of degree two. This leaves only leaves and vertices of degree

three or higher and ensures the logarithmic collapse.

The main issue that arises is that leaf chains which are not monotone paths canno be processed

3.6. CONTOUR TREE SIMPLIFICATION 19

in a single iteration. They require multiple iterations to process. When some of the vertices in

the leaf chains have alternating height and we plot them according to their height they form

a characteristic zigzag pattern. We will call paths W-Structures. See for example the path

(5; 2; 4; 3; 8) in the contour tree on Figure 3.2. These w-structures are the core issue we are

addressing in this dissertation. We would like to obtain a better understanding of them and

how and why they a�ect computation. The �rst step to solving such a problem is understanding

it. The next chapter will address this by developing algorithms that analyse contour trees and

determine the largest w-structures that is present in them.

The theoretical issue caused by the w-structures becomes evident in the algorithmic analysis

of the parallel contour tree algorithm. According to that the key question in the merge phase

of the algorithm is how many iterations are needed to collapse the contour tree. Each iteration

takes O(1) steps, because all leaves can be processed in parallel, and O(t) work, where t is the

number of leaves. This leads to an overall complexity of O(log(t)) steps and O(tlog2(t) work if

we assume that no w-structures are present. If however there is a w-structure with more zigzags

than log(t) then the authors of the paper claim that the best formal guarantee they can give for

the steps is the diameter of the contour tree. One of our goals in analysing the w-structures is to

provide a better bound than the diameter of the tree. We will demonstrate how this can be done

by developing some new theory about the w-structures in Chapter 4 and through an empirical

analysis in Chapter 7.

3.6 Contour Tree Simpli�cation

Finally we will introduce the topic of contour tree simpli�cation. A central problem in using

contour trees in visualisation is simplifying their output and presenting only the most important

parts to enable human comprehension. The complexity of a contour tree of a large enough data

set could severely limit its use. This is why it is vital to employ techniques that simplify the

contour trees by removing parts of them that correspond to less "signi�cant" topological features

or sampling noise and error. This process helps to reveal the fundamental topological structures

present in data.

One technique for contour tree simpli�cation is branch decomposition [35]. Branch decom-

position involves decomposing the contour tree into a set of edge-wise disjoint monotone paths

(branches) which cover all edges of the tree. The trivial branch decomposition of any tree is

obtained by taking every edge to be a separate branch. A branch decomposition is hierarchical

when there is exactly one branch that connects two leaves and every other branch connects a

leaf to an interior node. An example of a hierarchical branch decomposition is shown in Figure

3.3.

The branches in this scheme represent pairs of critical points. This pairing of critical points

forms the basis for a topological simpli�cation. The topological simpli�cation consists of remov-

ing branches that do not disconnect the tree. This produces a hierarchy of cancellations like in

Figure 3.3. We de�ne the persistence of a branch to be the bigger of the di�erence between its

end points and the persistence of its children. Branches of high persistence re�ect more promi-

20 CHAPTER 3. CONTOUR TREES

5

2

0

4

6

7

3

1

8

3

4

2

(a) Branch decomposition.

81 3

6 73 4

0 42

52

(b) Heirarchical view of the branches.

Figure 3.3: Hierarchical branch decomposition of the contour tree from Figure 3.2 b.

nent features in the tree. We apply the simpli�cation by removing branches with low persistence

that do not disconnect the tree.

The algorithm for producing the hierarchical branch decomposition of a contour tree is the

following:

� Identify all upper leaves that connect via branches to upwards saddles (merging of compo-

nents).

� Identify all lower leaves that connect via branches to downwards saddles (splitting of com-

ponents).

� Those pairs of leaves and saddles are the candidate branches. We pick the one with the

lowest persistence (di�erence of height between the leaf and the saddle).

� Remove all vertices in the branch without the saddle.

� Continue this process until a single branch that connects two leaves is all that remains.

That is the root branch.

For example let us construct the hierarchical branch decomposition of the contour tree from

Figure 3.2. The �rst two candidate branches we identify are (5; 2) with persistence 3 and (3; 8)

with persistence 5. We take the branch with lower persistence (5; 2). In the next step the

candidate branches are (0; 4) with persistence 4 and (3; 8) with persistence 5. We will take

(0; 4). Afterwards the remaining candidate branches are (3; 7) with persistence 4 and (3; 8) with

persistence 5. After removing (3; 7) in the �nal stage the only remaining branch is (1; 8). It

is the root branch because it connects two leaves. The produced pairs of critical points are

(2; 5); (0; 4); (3; 7) and (1; 8).

In the future we will omit the use of hierarchical and just refer to it as branch decomposition.

Branch Decomposition is a form of topological simpli�cation whose use is limited to the contour

trees. In Chapter 6 we will present a more general topological simpli�cation framework called

persistent homology. Our goal will be to express branch decomposition in the framework of

persistent homology and determine whether the two are equivalent.

Chapter 4

W-structures - Theory and Algorithms

This chapter continues our discussion on the w-structures in a more formal setting. Our con-

tribution in this chapter is to develop new theory that captures their informal description we

outlined previously and to use it to construct three algorithms for the detection of the largest

w-structure in a height tree. We will describe the algorithms with pseudocode and provide the

reader with proofs of their correctness. Finally we will also derive formal bounds on the time

and space complexity of the proposed algorithms.

4.1 Formal Description of the W-Structures

We are interested in describing paths in height trees which form a characteristic zigzag pattern

we described in Chapter 3. Let us �rst establish some of the basic notation we shall make use

of. A path in a graph is a sequence of distinct and adjacent vertices. When dealing with paths

in trees we will refer to them through their �rst and last vertex, because there is a unique path

between any two vertices in a tree. For example when dealing with the path v1; v2; v3; v4 we will

denote it with the shorthand v1 v4. A subpath P 0 of a path P is a path whose vertices are

also vertices of P . We will denote it as P 0 � P .

The �rst important property of paths in height trees is their monotone path decomposition.

The monotone path decomposition of a path is a sequence of vertexwise maximal monotone

subpaths which share exactly one vertex and have alternating direction. An example of the path

decomposition of a path is shown in Figure 4.1. If P is a path in a height tree we can decompose it

into a sequence of monotone paths P1; P2; :::; Pk such that Pi � P for i 2 f1; 2; :::; kg, jPi\Pi+1j =

1 and Pi[Pi+1 is not a monotone path for i 2 f1; 2; :::; k�1g and k � 1. We can use the number

of paths in the monotone path decomposition to characterise paths in height trees. To simplify

this characterisation note that the number of subpaths in the monotone path decomposition

is one more than the number of vertices where an ascending subpath ends and a descending

subpath begins (or vice versa). We shall name those special vertices kinks. In the example path

on Figure 4.1 these vertices are 3 and 6.

A kink in a path is a vertex whose two neighbours are either both higher or both lower

(Figure 4.2). Given the path (u1; u2; :::; uk) an inside vertex ui 6= u1; uk is a kink when h(ui) =2�
min(h(ui�1); h(ui+1)); max(h(ui�1); h(ui+1))

�
. To avoid this cumbersome expression we shall

adopt a slight abuse of notation and in the future write it as h(ui) =2 or 2
�
h(ui�1); h(ui+1)

�
where it will be understood that the lower bound of the interval is the smaller of the two and

the upper bound the larger.

We can use the number of kinks in a path to de�ne a metric on it. We will call this metric

the w-length of a path and use it to measure the number of inside vertices of a path which are

21

22 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

1

2

3

4

5

6

7

(a) The path P = 1; 2; 3; 4; 5; 6; 7.

1

2

3 3

4

5

6 6

7

(b) Monotone path decomposition of P , P1 = 1; 2; 3, P2 = 3; 4; 5; 6 and
P3 = 6; 7.

Figure 4.1: A path and its monotone path decomposition.

kinks. This is similar to how the length of a path is a metric that measures the number of edges

between its vertices. The notation we will adopt for the w-length and length of a path u v

is w(u; v) and d(u; v) respectively. There is no ambiguity here because as we have already said

there is a unique path between any two vertices in a tree. One thing we can already claim is

that w(u; v) � d(u; v) for any two vertices in a height tree. The length of a path with n vertices

is n� 1, but at only the inside vertices of a path can be kinks. The number of inside vertices in

a path of length n � 2 is n� 2.

3

1

2

(a) Upwards kink.

1

3

2

(b) Downwards kink.

Figure 4.2: Two possible types of kinks (vertices are labeled with their height).

In Chapter 3 we foreshadowed our intention of obtaining the largest w-structure in a contour

tree. We can now put this in more precise terms as the path in a height tree that has the

maximum w-length (or the longest w-path). We can immediately obtain a brute force approach

for this problem by considering all paths in the contour tree and computing their w-length to

�nd the maximum one. This can be expressed with the following optimization term

4.1. FORMAL DESCRIPTION OF THE W-STRUCTURES 23

max
u;v2V (T)

fw(u; v)g: (4.1)

The search space is quadratic in the number of vertices and measuring the w-length of a

given path can be done by inspecting the height of every inside vertex and its two neighbours in

the path. The worst case time complexity of this algorithm is O(dn2) where d is the diameter

(longest path) of the tree and n is the number of vertices. This is far from satisfactory given

that the worst case time complexity of the algorithm for computing the contour tree is close to

linear. We can in fact do better.

In Chapter 2 we described two algorithms for obtaining the diameter of a tree. The analogy

we made between w-length and length is that both are a metric on paths in a tree. Therefore

it may be possible to modify those two algorithms to obtain the longest w-path instead of the

longest path. We will call the longest w-path in a tree its w-diameter. Before showing how we

can adapt the two tree diameter algorithms we need to establish the two key properties that will

play a crucial role in proving the correctness of the two new algorithms.

De�nition 17. (Symmetry Property) Let a b be a path. Then w(a; b) = w(b; a).

This property is true because the path a b contains the same vertices as the path b a.

De�nition 18. (Subpath Property) Let a b be a path and c d its subpath. Then w(a; b) �

w(c; d).

This property follows from the fact that all kinks of the path from c to d are also kinks of

the path from a to b. An important thing to note is that in the case of path length if one of the

paths is a proper subpath of the other then the inequality is strict. This does not have to be the

case with w-paths because the w-length decreases only when we reduce the number of kinks in

the path.

De�nition 19. (Path Decomposition Property Property) Let a b be the path (a; u1; u2; :::; uk; b)

and ui be an inside vertex for i 2 f1; 2; :::; kg. Then

w(a; b) = w(a; ui) + w(ui; b) + wa b(ui)

, where

wa b(ui) =

(
0 : if h(ui) 2

�
h(ui�1); h(ui+1)

�
// ui is not a kink

1 : otherwise // ui is a kink.

To see why this property is true observe that ui can be a kink in the path from a to b, but

it cannot be a kink in the paths from a to ui and from ui to b because it is an endpoint of both.

All other possible kinks besides ui are accounted for by either w(a; ui) or w(ui; b). Therefore

when making use of path decomposition property we must account for whether the vertex we

are decomposing a path at is a kink in that path or not.

24 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

4.2 Linear Time Algorithm - 2xBFS

Let us �rst explore how the Breadth First Search based tree diameter algorithm can be adapted

to compute the w-diameter of a height tree. We will call the adaptation 2xBFS for short and

it will follow exactly the same steps. The di�erence is that we will make a modi�catin of the

standard BFS algorithm. We will modifty if to compute w-distances from a given root vertex to

all other vertices in the tree. The algorithm works by �rst running the modi�ed BFS from any

vertex in the height tree and then records the leaf that is farthest in terms of w-length. It then

runs the modi�ed BFS a second time from that vertex and again records the farthest vertex from

it.

The pseudocode for this algorithm is presented in Algorithm 1. In the algorithm we use two

properties of vertices. The property u:d for u 2 V (T) is the w-distance of a vertex from the root

and the property u:� is the parent of a vertex in the modi�ed BFS. We use the function h(u)

for the height of a vertex and we use the variable furthest to record the furthest vertex from

the root in terms of w-length. Note that because of the comparison u.d � furthest.d the furthest

vertex will always be a leaf of tree. This comparison forces us to break ties in w-distance with

distance. Theoretically it does not have to, but it will simplify some of our notation and proofs.

Therefore we will assume that the w-diameter in a height tree is always between two leaves.

Algorithm 1 Computing the W Diameter of a Height Tree.

1: function W_BFS(T, root)
2: root.d = 0
3: root.� = root
4: furthest = root
5: Q = ;
6: Enqueue(Q, root)
7: while Q 6= ; do
8: u = Dequeue(Q)
9: if u.d � furthest.d then
10: furthest = u
11: for all v 2 N(u) do
12: if v.� == ; then
13: v.� = u
14: if h(u) =2

�
h(v), h(u.�)

�
then

15: v.d = u.d + 1
16: else

17: v.d = u.d
18: Enqueue(Q, v)

19: Return furthest
20: function Calculate_W_Diameter(T)
21: s = <any vertex>
22: u = W_BFS(T, s)
23: v = W_BFS(T, u)
24: return v.d

This algorithm however is not guaranteed to produce an optimal solution. It may fail to

produce the tree's w-diameter, but we can bound the error in terms of the w-diameter. The

4.2. LINEAR TIME ALGORITHM - 2XBFS 25

correctness of the algorithm is based on the following Lemma.

Lemma 2. The farthest leaf in terms of w-length from any vertex in a height tree is guaranteed

to be the endpoint of a path whose w-length is at least that of the w-diameter minus two.

Proof. Let T be a height tree and s 2 V (T) be the initial vertex we start the �rst search at.

After running the modi�ed BFS twice we obtain two vertices u and v such that:

w(s; u) � w(s; t);8t 2 V (T); (4.2)

w(u; v) � w(u; t); 8t 2 V (T): (4.3)

Let a and b be two leaves that are the endpoints of a w-path whose length is that w-diameter

of T . For any such pair we know that:

w(a; b) � w(c; d); 8c; d 2 V (T): (4.4)

By this equation we have that w(a; b) � w(u; v). Our goal in this proof will be to give a

formal lower bound on w(u; v) in terms of w(a; b). Let t be the �rst vertex in the path between a

and b that the �rst BFS starting at s discovers. Note that t cannot be a or b unless s is equal to a

or b. The proof will be split into several cases depending on the relative positions of s, t, a, b and u.

Case 1. When the path from a to b does not share any vertices with the path from s to u.

Case 1.1. When the path from u to t goes through s.

u s t

b

a

Figure 4.3: Relative position of vertices in Case 1.1 (dotted lines are paths).

In this case s u is a subpath of t u. This means that w(t; u) � w(s; u). By equation 4.2

we also have that w(s; u) � w(s; a). We can therefore conclude that w(t; u) � w(s; a). As t a

is a subpath of s a then w(s; a) � w(a; t). Upon combining these inequalities we obtain that

w(t; u) � w(a; t).

The vertex t is a inside vertex for both the path a b and the path u b. We can use the

26 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

path decomposition property for both paths at t as follows:

w(a; b) = w(b; t) + w(t; a) + x

w(u; b) = w(b; t) + w(t; u) + y:

where x = wa b(t) and y = wu b(t). In other words x; y 2 f0; 1g depending on whether there

is a kink at t for the path from a to b and from u to b respectively. As w(t; u) � w(a; t) we can

show that:

w(u; b) � w(b; t) + w(t; a) + y

w(u; b) � w(b; t) + w(t; a) + x� x+ y

w(u; b) � w(a; b)� x+ y

w(u; b) � w(a; b) + (y � x)

But as w(u; v) � w(u; b) (by equation 4.3) we obtain that:

w(u; v) � w(a; b) + (y � x)

Considering all possible values that x and y can take, we can see that the minimum value for

the right hand side of the inequality is at y = 0 and x = 1. This occurs when t is a kink in the

path from a to b but not a kink in the path from u to b.

The �nal conclusion we may draw is that w(u; v) � w(a; b)� 1.

Case 1.2. When the path from u to t does not go through s.

s s’ t

u

b

a

Figure 4.4: Relative position of vertices in Case 1.2 (dotted lines are paths).

If the path from u to t does not go through s then the paths s t and s u have a common

subpath. Let s0 be the last common vertex in that subpath. We will produce a proof that is

similar to the previous case by considering s0 in the place of s. We must only account for whether

s0 is a kink in one of the paths s u or s a. Through path decomposition of s a and

s u at s0 we obtain that:

4.2. LINEAR TIME ALGORITHM - 2XBFS 27

w(s; a) = w(s; s0) + w(s0; a) + x

w(s; u) = w(s; s0) + w(s0; u) + y;

where x = ws a(s
0) and y = ws u(s

0). By equation 4.2 we know that w(s; u) � w(s; a) and

therefore:

w(s; s0) + w(s0; u) + y � w(s; s0) + w(s0; a) + x

w(s0; u) + y � w(s0; a) + x

w(s0; u) � w(s0; a) + (x� y):

We know that w(t; u) � w(s0; u) because s0 u is a subpath of t u, so

w(t; u) � w(s0; a) + (x� y):

From the fact that t a is a subpath of s0 a it follows that w(s0; a) � w(t; a). This allows

us to infer that:

w(t; u) � w(t; a) + (x� y):

Now we are ready to proceed in a similar manner as the previous case. We will decompose

the paths from b to a and from b to u at the vertex t as follows:

w(b; a) = w(b; t) + w(t; a) + z

w(b; u) = w(b; t) + w(t; u) + w

where z = wb a(t) and w = wb u(t). Then by w(t; u) � w(t; a) + (x� y) we have that:

w(b; u) � w(b; t) + w(t; a) + (x� y) + w

w(b; u) � w(b; t) + w(t; a) + z � z + (x� y) + w

w(b; u) � w(a; b)� z + (x� y) + w

w(b; u) � w(a; b) + (x� y) + (w � z):

The minimum value for the right hand side of this equation is at x;w = 0 and y; z = 1. Using

the fact that w(u; v) � w(u; b) we �nally obtain w(u; v) � w(a; b)� 2.

Case 2. When the path from a to b shares at least one vertex with the path from s to u.

We can do a path decomposition as follows:

28 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

s t s’

a

u

b

Figure 4.5: Relative position of vertices in Case 2 (dotted lines are paths).

w(s; u) = w(s; t) + w(t; u) + x

w(s; a) = w(s; t) + w(t; a) + y

where x = ws u(t) and y = ws a(t). As w(s; u) � w(s; a) (by equation 4.2)we obtain that:

w(s; t) + w(t; u) + x � w(s; t) + w(t; a) + y

w(t; u) � w(t; a) + (y � x)

If we again decompose the paths from b to a and from b to u at t we obtain:

w(b; a) = w(b; t) + w(t; a) + z

w(b; u) = w(b; t) + w(t; u) + w

where z = wb a(t) and w = wb u(t). Then by w(t; u) � w(t; a) + (x� y) we have that:

w(b; u) � w(b; t) + w(t; a) + (x� y) + w

w(b; u) � (w(b; t) + w(t; a) + z)� z + (x� y) + w

w(b; u) � w(a; b)� z(x� y) + w

w(b; u) � w(a; b) + (x� y) + (w � z):

Where similarly to the previous case the rightful conclusion is that w(u; v) � w(a; b)� 2.

Based on these cases we have shown that that for any input tree the algorithm will produce

a w-path that is at most two kinks less than the actual w-diameter of the tree.

Let us now show some formal bounds on the time and space complexity of the 2xBFS algo-

rithm.

Lemma 3. The time complexity of the algorithm is O(jV j).

4.2. LINEAR TIME ALGORITHM - 2XBFS 29

Proof. The modi�ed BFS function has the same time complexity as BFS. All we have added to

the standard BFS is an "if, then, else" statement. The time complexity of BFS is O(jV j+ jEj),

but in a tree jEj = jV j � 1, so the overall complexity is O(2jV j � 1) = O(jV j). Running the

modi�ed BFS function a second time only adds a linear factor the expression and thus the overall

complexity of the algorithm is linear.

Lemma 4. The space complexity of the algorithm is O(jV j).

Proof. The modi�ed BFS function has the same space complexity as the standard BFS. Therefore

the space complexity of 2xBFS is O(jV j).

4.2.1 Pathological Cases in 2xBFS

Here we will present some examples of pathological cases where the w-diameter outputted by

the 2xBFS algorithm di�ers from the actual w-diameter (Figure 4.6). Each one of the examples

corresponds to one of the cases in Lemma 2. In all examples the initial vertex is taken to be s. We

have that w(s; u) = w(s; a) = w(s; b) = 1, but d(s; u) > d(s; a) = d(s; b) = 1. This ensures that

u is the last vertex with w-distance 1 visited from the modi�ed BFS. After running the algorithm

the vertex outputted by the �rst BFS function is u. After running the second BFS the longest

w-path would be u a or u b. We can see that in all �gures w(u; a) = w(u; b) = 1 or 2, but

w(a; b) = 3.

s

a b

u

(a) Pathological Example for Case
1.1 (-1 of actual w-diameter).

s

u

a b

(b) Pathological Example for Case
1.2 (-2 of actual w-diameter).

s u

a b

(c) Pathological Example
for Case 2 (-2 of actual
2-diameter).

Figure 4.6: Pathological cases in the 2xBFS algorithm (dotted lines are monotone paths of
length at least three).

If we modi�ed the algorithm to output the closest vertex to the root with maximum w-

distance we would obtain the correct output on these example. If however we replace the dotted

monotone path with a single edge then u becomes the closest vertex to s and as such will be the

one outputted by the �rst BFS. In that case the algorithm will still output smaller w-path than

the w-diameter.

30 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

4.2.2 On Resolving the Accuracy of 2xBFS

Here we will present two possible ways of improving the accuracy of the output of the 2xBFS

algorithm and explain why were not able improve upon the theoretical bound of Lemma 2.

One key observation we can make is that on the second run of the BFS we get a w-path

that is necessarily longer or equal to one found in the �rst BFS search. A natural question to

ask is whether running the BFS a third, fourth or for that matter nth time would result in the

actual w-diameter. On every successive iteration we get a w-path that is longer or equal to

the previous one, because w-length is a symmetric path property (w(a; b) = w(b; a)). By doing

this we can hope that we will eventually obtain a w-path closer to the w-diameter. However

there is no guarantee that this will happen. In some cases it is possible that each successive

BFS returns the same path over and over again. As an example consider Figure 4.7. If the

algorithm starts at s then every successive iterrations will go between u and v and then v and

u and so on. This is because w(u; v) > w(u; a) = w(u; b) and w(v; u) = w(v; a) = w(v; b), but

d(v; u) > d(v; a) = d(v; b).

s

v

u

a b

Figure 4.7: In�nite cycle between u and v (dotted lines are monotone paths of length at least
3).

A di�erent heuristic we can apply is to run the algorithm multiple times from di�erent starting

vertices and keep the maximum value found. This approach is most reliable when we run the

algorithm from all vertices in the tree. The we will obtain the obtain the w-diameter. The issue

in doing so is that the time complexity will become quadratic and we would be no better o�

than with the exhaustive brute force approach. If however we run the algorithm for some subset

of the vertices in the tree we lose all guarantees on the accuracy. There may simply be too few

vertices from which the algorithm would obtain the actual w-diameter.

4.3 Dynamic Programming Algorithm - DP

It is encouraging that we have obtained an algorithm that bounds the w-diameter but it is also

unsatisfactory that we were not able to directly obtain it. To remedy this we will resort to

modifying the second tree diameter algorithm. We will use the same optimisation strategy i.e.

dynamic programming by making two key changes. Instead of the function h(u) that stores the

4.3. DYNAMIC PROGRAMMING ALGORITHM - DP 31

height of a subtree with root u we will use the function w(u) that stores the longest w-path that

starts at the root of the subtree (the w-height). We will rename the function that stores the value

of the optimal solutions for subroblems from D(u) to W (u) accordingly. To summarise W (u)

returns the length of the largest w-path in the subtree Tu and w(u) the length of the largest

w-path in Tu that starts at u. Note also that in the case of rooted trees we de�ne N(u) to not

include the parent of u.

Similarly to the modi�cation of the BFS based algorithm all additional di�culties stem from

the di�erence in the properties of length and w-legnth of paths. Let us �rst de�ne the w-height

of rooted height tree. It is the longest w-path that starts at the root of the tree. We will now

examine how w-height can be computed in manner similar to the height of a rooted tree. Let

T be a rooted tree and s 2 V (T) be any vertex. Let us also assume the we have computed

the w-heights of the children of s. In the case of computing the height we can simply set

h(s) = max
u2N(s)

�
h(u)

�
+ 1. We cannot do so with the w-height because w-length can remain the

same if we do not extend the maximum w-path with a kink. To demonstrate this let us assume

that u 2 N(s) is such that w(u) = max
v2N(s)

(w(v)). Then if we wish to extend the maximum w-path

that ends at u to s we must account for whether u becomes a kink in it. If none of the children

of s with maximum w-height form a kink when extending to s then the w-height of s does not

increase.

In order to obtain the w-height of s let u be any of its children and Lu = fu1; u2; :::; ukg be

all children of u through which a w-path with length w(u) passes through. We can compute the

w-height of s as follows: w(s) = max
u2N(s)

fw(u) + max
v2Lu

(ws v(u))g. In other words there may be

multiple w-paths with the same maximal w-length that end at u. If possible we must pick the

one that would make u form a kink with s. If not we can use any of them. It is of no use to

consider paths of lesser w-length because when adding s to them the w-length may increase by

at most one and match any of maximal paths that go through a vertex in Lu.

The second ingredient in the dynamic programming approach of the tree diameter algorithm

was to combine the two longest paths that end at children of the root of the subtree (height

paths). As before let T be a tree and s be its root. We �rst �nd two distinct children u; v 2 N(s)

of s such that h(u) and h(v) is maximum amongst all children and u 6= v (otherwise we do

not get a proper path). Next we will combine the height paths of u and v in order to obtain

the longest path that goes through s. The length of this new path is given by the summation

h(u) + h(v) + 2. The 2 is added to account for the two additional edges us; sv 2 E(Ts). This

method of combining paths of course extends to all subtrees in T .

In the case of w-path combinations we must be vigilant of which vertices become kinks in the

path combinations. Let us observe a similar scenario where s is the root of a rooted tree height

T and u; v 2 V (Ts) are two of the children with maximal values for w(u) and w(v). We would

ideally like to combine w(u) and w(v) like so: w(u)+w(v)+wu;v(s). This however is not correct.

There is a hidden assumption in the sum that the only vertex that can become a kink in this

path combination is s. Contrary to this, in fact u and v can also become kinks. Observe that

w(u) and w(v) are the w-lengths of two paths. One path starting at u and ending in a leaf of Tu

and one starting at v and ending in a leaf of Tv. In the new path both u and v become inside

32 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

vertices and depending on whether they become kinks or not the sum may further increase by

two. To account for this we must also look at the children of u and v through which a maximum

w-path passes. We have already introduced those as Lu and Lv. This process is similar to the

one for obtaining the w-height of a vertex and is described by the following formula:

max
u;v2N(s)

u6=v

�
h(u) + max

t2Lu

�
ws t(u)

�
+ h(v) + max

t2Lv

�
ws t(v)

�
+ wu v(s)

�
:

The longest w-path in a rooted height tree is either entirely contained in one of the subtrees

of the root or is a combination of two maximum w-height paths that end at two distinct children

of the root. Attention must be paid to one special case. This is when the root of a rooted height

tree has exactly one child. We cannot make a path combination in that case so we will use the

w-height instead. By combining what we have shown so far we obtain the following expression

for the optimal solution:

W (s) = max

8>>>>>>><
>>>>>>>:

max
u2N(s)

�
W (u)

�
;

max
u2N(s)

�
h(u) + max

t2Lu

�
ws t(u)

��
;

max
u;v2N(s)

u6=v

�
h(u) + max

t2Lu

�
ws t(u)

�
+ h(v) + max

t2Lv

�
ws t(v)

�
+ wu v(s)

�
:

We will prove the correctness of the algorithm with the following Lemma.

Lemma 5. The computation for the longest w-path that goes through the root of a subtree is

correct.

Proof. Let T be a rooted height tree and s be its root.

Case 1. s has one child.

When s has exactly one child then the w-length of the longest path that goes through s is

equal to the w-height of s by the de�nition of w-height.

Case 2. s has more than one child.

Let u0; v0 6= s be two distinct leaves of T such that the path u0 v0 is the longest w-path

that goes through s. We can decompose the path u0 v0 at s as: w(u0; v0) = w(u0; s)+w(v0; s)+

wu0 v0(s).

Let u and v be the two children of s through which the path u0 v0 goes through. The

paths w(u0; s) and w(v0; s) can be further decomposed at u and v respectively. We obtain that

w(u0; s) = w(u0; u) + w(u; s) + wu0 s(u) and w(v0; s) = w(v0; v) + w(v; s) + wv0 s(v). In both

cases w(v; s) = 0 and w(u; s) = 0 because u and v are adjacent to s. This means that the paths

u s and v s have no inside vertices. Lastly we have that wu0 v0(s) = wu v(s) because

u v is a subpath of u0 v0 and both contains s. By substituting these into the �rst equation

we obtain that:

4.3. DYNAMIC PROGRAMMING ALGORITHM - DP 33

w(u0; v0) = w(u0; u) + wu0 s(u) + w(v0; v) + wv0 s(v) + wu v(s):

This equation is similar to the expression for the optimal solution. By observing the two

carefully we can infer that

w(u0; u) + wu0 s(u) = h(u) + max
t2Lu

�
ws t(u)

�

and

w(v0; v) + wv0 s(v) = h(v) + max
t2Lv

�
ws t(v)

�
:

for otherwise we would be able to assemble a longer w-path that goes through s. This is not

possible because we supposed that u0 v0 is the longest such w-path. Therefore we can conclude

that:

w(u0; v0) � max
u;v2N(s)

u6=v

fh(u) + max
t2Lu

�
ws t(u)

�
+ h(v) + max

t2Lv

�
ws t(v)

�
+ wu v(s)g:

The w-path combination on the right hand side of this inequality is valid path in the tree

that goes through s. It follows that it cannot be strictly bigger than w(u0; v0). Therefore they

are equal and the computation produces the longest w-path that goes through the root of the

tree.

Lemma 6. The DP algorithm produces the w-diameter of a height tree.

Proof. We just showed the longest w-path through the root of subtree is computed correctly. As

the value of the optimal solution is taken in the same way as in the dynamic programming tree

diameter algorithm then the correctness of our algorithm follows directly from it.

The pseudocode of the proposed w-diameter algorithms is shown in Algorithm 2. The algo-

rithm uses the following arrays:

� W[u] - stores the value of the optimal solution.

� h[u] - stores the w-height.

� L[u] - stores a list of all children through which a w-height path passes.

� u.� - stores the parent of a vertex (or itself if is the root).

The algorithm is a modi�cation of the standard DFS algorithm. In the forward phase of the

DFS we set the parents of all vertices in order to root tree and sets the optimal solution to all

leaves to 0 as they are bases cases. In the backtracking phase of the algorithm was know that all

34 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

children of the vertex we are at have been solved for. This is where we implement the recursive

formula we developed. The steps of the algorithm are described via comments in the pseudocode.

Next we will show a formal bound on the space complexity of the algorithm.

Lemma 7. The space complexity of the DP algorithm is O(jV j).

Proof. The sizes of all arrays we use in the algorithm is linear in the size of the tree. Therefore

the space complexity of DP is O(jV j).

Let us provide formal bounds on the time and space complexity of the proposed solution.

We can summarise the time complexity in the following formula:

O

�
jV j+ jEj+

X
u2V

X
v2N(u)

d(v) +
X
u2V

d(u)2
�
;

where we use d(u) for the degree of a vertex. The term jV j+ jEj comes from executing the Depth

First Search, the term
P

u2V

P
v2N(u) d(v) is the nested double loop over all children of children

of all vertices (on line 15 and 22) and
P

u2V d(u)
2 is the nested double loop over all children in

the �nal path combination (on line 31). We will begin by showing that

O

�X
u2V

X
v2N(u)

d(v)

�
= O(jV j):

When running DFS on a tree it is not possible to visit a vertex as a child of a child more

than once. Suppose for the sake of contradiction that it were possible. Let T be a height tree

and suppose we execute DFS to root T from the vertex s. Let and u; v be two distinct vertices

such that the vertex t is a child of a child of both. Then s u t v s is a cycle in T .

Trees have no cycles so this is a contradiction.

Let us now move on to the last term
P

u2V d(u)
2. We can immediately bound it from bellow

via the inequality
P

u2V d(u)
2 �

P
u2V d(u) = 2jEj. This inequality holds because the degree

of a vertex is a positive integer and for any x 2 Z+ x2 � x. Let us now show how it can be

bounded from above.

A triangle is a complete graph on three vertices. Trees have no cycles thus they cannot have

induced triangles. Therefore for any edge in a tree uv 2 E(T) we have that d(u)+ d(v) � jV j. If

there were a vertex t that is in both N(u) and N(v) then uv; tu; tv 2 E(T) would be an induced

triangle which is a contradiction. If we use this to sum over all edges we obtain that:

X
uv2E(T)

d(u) + d(v) � jEjjV j:

The key to transforming this inequality is to expand the summation
P

uv2E(T) d(u) + d(v).

When it is expanded every term d(u) will be present exactly d(u) times. One time for each one

of its adjacent edges and there are exactly d(u) adjacent edges. Therefore:

4.3. DYNAMIC PROGRAMMING ALGORITHM - DP 35

X
u2V (T)

d(u)2 =
X

uv2E(T)

d(u) + d(v) � jEjjV j:

To summarise what we have obtained so far:

O

�X
u2V

X
v2N(u)

d(v)

�
= O(jV j); O

� X
u2V (T)

d(u)2
�
= O(jV jjEj):

Therefore a upper bound on the worst case time complexity of our dynamic programming

solution is:

O
�
jV j+ jEj+ jV j+ jV jjEj

�
= O

�
jV jjEj

�
:

The worst case running time we obtained for the DP algorithm is quadratic. This not good

because the time complexity of the brute force approach is quadratic as well. We do however

believe that the worst case running time is rarely exhibited and that the algorithm has the

potential for good practical performance. One reason that we believe so is that for every vertex

of high degree in a tree there are at as many leaves as the degree of that vertex which require

constant processing time as the base cases of our recursion. We will however abstain from further

theoretical inquiries and instead test this informal hypothesis by implementing both the 2xBFS

and DP algorithms and comparing the running time of the implementations. We will do so in

Chapter 7.

36 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

Algorithm 2 Computing the W Diameter of a Height Tree.

1: FunctionW_DFS(T, s)
2: // Base Case
3: if T.Adj[s] == ; AND s.� 6= s then
4: W[s] = 0
5: h[s] = 0
6: return
7:

8: // DFS Visit
9: for all u 2 T.Adj[s] do
10: if u.� == ; then
11: u.� = s
12: W_DFS(T, u)

13:

14: // Calculate w-height of s
15: for all u 2 T.Adj[s] do
16: if L[u] == ; then
17: h[s] = max(h[s], h[u]);
18: else

19: for all v 2 L[u] do
20: h[s] = max(h[s], h[u] + wv;s(u));

21:

22: // Find all children of children that contribute to the a w-height path
23: for all u 2 T.Adj[s] do
24: if L[u] == ; AND h[s] == h[u] then
25: L[s] = L[s] [u
26: else

27: for all v 2 L[u] do
28: if h[s] = h[u] + wv;s(u) then
29: L[s] = L[s] [u

30: // Find the maximum w-height path combination
31: maxCombine = 0
32: for all u 2 T.Adj[s] do
33: for all v 2 T.Adj[s] do
34: if v == u then
35: continue
36: temp = h[u] + h[v]
37: if L[u] 6= ; then
38: for all t 2 L[u] do
39: if wt;s(u) == 1 then
40: temp = temp + 1
41: break
42: if L[v] 6= ; then
43: for all t 2 L[v] do
44: if wt;s(v) == 1 then
45: temp = temp + 1
46: break
47: if wu;v(s) == 1 then
48: temp = temp + 1

49: maxCombine = max(maxCombine, temp)

// If there is exacly one child maxCombine will not have been
50: maxCombine = max(h[s], maxCombine);

4.3. DYNAMIC PROGRAMMING ALGORITHM - DP 37

Algorithm 3 Computing the W Diameter of a Height Tree. Part 2

1: // Find maximum subproblem solution
2: for all u 2 T.Adj[s] do
3: W[s] = max(W[s], W[u])

4: // Take the bigger of the two
5: W[s] = max(W[s], maxCombine)
6: function Calculate_W_Diameter(T)
7: s = <any vertex>
8: s.� = s
9: W_DFS(T, s)
10: return s.W

38 CHAPTER 4. W-STRUCTURES - THEORY AND ALGORITHMS

Chapter 5

Homology

In this chapter we will shift our attention back to algebraic topology and cover the last pieces of

background material we need. Those are Homology and Persistent Homology. We will introduce

Homology and as tool to analyse the connectivity and number of the holes and voids in a

simplical complex. Using Homology we will de�ne the concept of Persistent Homology. Persistent

homology makes use of homology to analyse how the connectivity of a simplicial complex changes

as we attach new cells to it.

5.1 Homology

The guiding principle behind the Euler Characteristic was to decompose a space into cells,

count them and perform cancellations based on the parity of the dimension of the cells. This

approach yields valuable information about a topological space, but we can hope to gain more by

generalising it. We shall accomplish this by leveraging the mathematical machinery of Homology.

Homology is a tool that was �rst developed to measure the topological complexity of manifolds

[23]. For example with homology we can recognize that there is a hole in the torus and a 3-

dimensional volume enclosed in the sphere. The theory of Homology comes in two �avours -

simplical and singular. Simplicial homology is geared towards analysing simplical complexes

and singular homology its generalisation to arbitrary topological spaces. In this dissertation

we will restrict our attention to singular homology because we are primarily interested in the

computational aspect of homology.

2c

2a 2d

2b

Figure 5.1: A simplical complex.

Homology is built around the interplay between the two key concepts of cycles and bound-

aries. Let us consider the simplical complex depicted on Figure 5.1 as an example. It consists of

four vertices fa; b; c; dg, �ve edges fab; bc; ac; bd; bcg and one face fabcg. Let us �rst explain what

a boundary is. The boundary of a simplex consists of all faces of the simplex whose dimension

is one less. We will also call these the codimension-1 faces of the simplex. For example the

39

40 CHAPTER 5. HOMOLOGY

boundary of the 1-dimensional simplex (1-simplex) ab consists of the 0-simplices a and b. The

boundary of the 2-simplex abc consists of the 1-simplices ab; ac and bc.

A cycle consists of the simplices that form the boundary of a simplex that is of one dimension

higher (regardless of whether that simplex is in the complex). In our example we can observe

that the edges ab; bc; ac and bd; cd; bc form a 1-dim cycle (1-cycle) because they are the boundary

of the 2-simplices abc and bcd. The �rst simplex abc is in the complex while bcd is not. The

de�nition of one dimensional cycles is similar to the graph theoretic de�nition of a cycle. The

�rst and last vertex of the paths formed by those edges are the same. A more geometric way

explain this is to say that a 1-cycles is a set of edges that completely enclose a 2-dimensional

area. To expand this de�nition to higher dimensional cycles consider the codimension-1 faces of

a tetrahedron (four triangles). They form a 2-cycle as they completely enclose a 3-dimensional

volume. In general an n-cycle consists of simplices that are the boundary of a (n+1)-simplex.

The interplay between between cycles and boundaries is best described by the following

question. Which cycles in the complex are not the boundary of a higher dimensional simplex?

Such cycles are important because they introduce a void in the complex. Cycles which are the

boundary of a higher dimensional simplex can be disregarded because the void they introduce

is �lled by that higher dimensional simplex. Coming back to our example the cycle ab; bc; ac is

the boundary of the 2-simplex abc, but the cycle bd; cd; bc it not the boundary of a simplex that

is in the simplical complex. The cycle bd; cd; bc represents a 2-dimensional hole in the simplical

complex. Note that the cycle ab; bd; cd; ac is in a sense equivalent to the cycle bd; cd; bc because

both describe the same 2-dimensional hole in the complex - namely the missing 2-simplex bcd.

Finally observe that the paths formed by the edges bc; ac; ab and ac; ab; bc represent the same

cycle. The only di�erence is which vertex is the starting and ending point. To emphasise that

these two cycles are the same we will completely disregard the concept of starting and ending

point in a cycle by introducing additive algebraic notation. In this notation the same cycle would

be written as ab+ bc+ ca.

Additive notation implies associativity but it does not have the sole purpose of illustrating

the point of disregarding edge order. Its more important aspect is that it allows us to treat sums

of edges as linear combinations in an abstract vector space. We will work with vector spaces

over the �eld of coe�cients Z2 = f0; 1g together with the standard operations of addition and

multiplication modulo two. We will call the elements of these vector spaces n-chains.

Let X be a simplicial complex. An n-chain of X is a formal sum of n-simplices of X [22, p.

79]. The notation we will use for an n-chain is
P

ai�i where ai 2 Z2 and �i is an n-simplex of

X. We can add two n-chains component wise much like we would add polynomials. For example

(ab + bc) + (ab + cd + bd) = 2ab + bc + cd + bd = bc + cd + bd because 2 = 0 in Z2. Based on

the n-chains of X we can de�ne the chain complex of X. It is made up of the following vector

spaces and linear maps between them:

� The group of n-chains Cn(X) of X. These are vector spaces where the vectors are all

possible n-chains of X and the coe�cients are Z2.

� The boundary maps @n between the groups of n-chains of X. These are linear maps

5.1. HOMOLOGY 41

between consecutive groups of n-chains @n : Cn(X)! Cn�1(X).

What we have de�ned as the chain complex of X is no more that a collection of vector spaces

together with linear maps between. When n is smaller than zero or bigger than the dimension

of X then the vector spaces Cn(X) are trivial. They consisting only of the zero element. We

can visualise the chain complex of X with the so called quiver representation. For our example

simplical complex it would look like:

0
@3�! C2(X)

@2�! C1(X)
@1�! C0(X)

@0�! 0

In the general case for an n-dimensional simplical complex X the full chain complex would

be:

::: �! 0
@n+1
�! Cn(X)

@n�! Cn�1(X)
@n�1
�! ::: �!

@1�! C0(X)
@0�! 0 �! :::

where we can extend both the right and left-hand sides with the zero vector spaces and zero

maps in�nitely. More speci�cally in this sequence @n+1 and @0 are zero maps. The boundary

map @n+1 sends the zero vector of 0 to the zero vector of Cn(X) and the map @0 sends all vectors

in C0(X) to the zero vector in 0.

Let us now explain how the groups of n-chains and the boundary maps of a simplical complex

are constructed explicitly. In our working example C0(X) is the vector space that is spanned by

all possible linear combinations of the vertices fa; b; c; dg of the complex. Therefore fa; b; c; dg is

a basis for C0(X) and we write this as C0(X) = span(fa; b; c; dg). A vector in C0(X) is a linear

combination of the basis vectors using coe�cients in Z2. Let � 2 C0(X) be an 0-chain, then we

can express it as � = �0a+ �1b+ �2c+ �3d where �i 2 f0; 1g for every i = 0; 1; 2; 3.

Going a dimension up C1(X) = span(fab; bc; ac; cd; bdg). As we pointed out earlier the cycle

that consists of the edges bc; cd; bd is represented by the sum or linear combination bc+cd+bd =

0ab+ 1bc+ 0ca+ 1cd+ 1bd and has coordinates (0; 1; 0; 1; 1) in C1(X) with respect to the basis

fab; bc; ac; cd; bdg. We may of course work use a di�erent basis for the groups of n-chains. For ex-

ample C0(X) = span(fa+b; b; c; c+dg) because the vectors (1; 1; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0) and (0; 0; 1; 1;)

are linearly independent. In this basis the 0-simplex a+ b+ c+ d has coordinates (1; 0; 01).

The boundary maps are de�ned analogously to how we presented them in the beginning of

the section. The e�ect a boundary map has on a simplex � 2 Cn(X) is that it returns the linear

combination of the simplices of Cn�1(X) that are codimension-1 faces of �. If � is the convex

combination of the vertices [v0; v1; :::; vn] then we de�ne its boundary as

@(�) = @([v0; v1; :::; vn]) =
nX
i=0

[v0; :::; v̂i; :::; vn];

where the hat on top of vi in the sum signi�es that we omit it in the convex combination. From

this de�nition we can extend @ to all n-chains in Cn(X) linearly by allowing it commute with

vector addition and scalar multiplication like so:

42 CHAPTER 5. HOMOLOGY

@

�X
�

a��

�
= @

�X
�

a�[v�0 ; v�1 ; :::; v�n]

�
=
X
�

a�

nX
i=0

[v�0 ; :::; v̂�i ; :::; v�n]:

Going back to our working example on Figure 5.1 let � = ab+bc+ac be an n-chain in C1(X).

Then @(ab+ bc+ ac) = @(ab) + @(bc) + @(ac) = a+ b+ b+ c+ a+ c = 2a+ 2b+ 2c = 0. This

examples allows us to observe an important fact. We know that the n-chain ab + bc + ca is a

cycle and we obtained that its boundary is zero. This is no coincidence. The de�ning feature of

a cycles is that they have zero boundary. The n-cycles in Cn(X) are de�ned as the n-chains that

go to zero under the boundary map. The set of all vectors that go to zero under a linear map is

known as the kernel of the linear map. The kernel of the boundary map @n : Cn(X)! Cn�1(X)

is denoted as:

Zn = ker(@n) =
n
� 2 Cn(X) : @n

�
�
�
= 0
o
:

We can also translate the boundaries in the language of linear algebra. The boundaries in

Cn(X) are given by the image of Cn+1(X) under @n+1. We write this as:

Bn = im(@n+1) =
n
@n+1(�) 2 Cn(X) : � 2 Cn+1(X)

o
:

Now that we have the means of describing the cycles and boundaries the only thing that

we are missing is a way to partition the cycles into groups that di�er from each other only by

their boundary. This would make precise the notion that the cycles ab; bd; cd; ac and bd; cd; bc

in Figure 5.1 are equivalent because they both represent hole caused by the missing simplex

bcd. We must �rst understand how Zn and Bn are related through the fundamental Lemma of

Homology.

Lemma 8. (Fundamental Lemma of Homology) @n�1(@n(�)) = 0; for every � 2 Cn(X).

Proof. We will only sketch the intuitive outline of the proof and refer the reader to [26, p. 105]

for a more comprehensive version.

Let us consider the boundary of � 2 Cn(X) which is @n(�). It contains all of the n-1 faces

of �. Furthermore every n-2 face of � belongs to exactly two n-1 faces of �. Therefore they will

cancel out in the second boundary operation @n�1(@n(�)) = 0.

Corrolary 1. For every two consecutive boundary maps @n and @n�1 in a chain complex im(@n) �

ker(@n�1).

Proof. If the image of @n were not in the kernel of @n�1 then there would be at least one n-chain

� for which @n�1(@n(�)) 6= 0. By the Fundamental Lemma of Homology this is not possible.

Since Bn = im(@n+1) and Zn = ker(@n) then Bn is a subset of Zn. We can make an even

stronger statement. From linear algebra [7, p. 59] we know that the kernel and image of a linear

map are linear subspaces of the domain and range of the linear map. Therefore Bn and Zn are

linear subspaces of Cn(X). As Bn � Zn we can infer that Bn is a linear subspace of Zn. In order

5.2. REDUCED AND RELATIVE HOMOLOGY 43

to partition all cycles in Zn into equivalence classes of cycles which only di�er by a boundary in

Bn we can take the quotient of the two spaces. This quotient is is what we call the homology of

the chain complex.

De�nition 20. The n-th homology group of a chain complex is the quotient Hn(X) = Zn

�
Bn =

ker(@n+1)
�
im(@n).

We know two important things about the quotient Hn(X). The �rst one is that the quotient

of a vector space and its subspace is a vector space [7, p. 91]. The second one is that the

dimension of the quotient space is equal to the di�erence of the dimension of the vector space

and the dimension of the subspace [7]. Therefore Hn(X) is a vector space and dim(Hn(X)) =

dim(Zn)� dim(Bn). The elements of Hn(X) are called homology classes. For a cycle � 2 Zp we

denote its homology class in the quotient Hp(X) as [�]. Two cycles are in the same homology

class exactly when they only di�er by a boundary. In our working example this means that

[ab + bd + cd + ac] = [bd + cd + bc]. To verify this let us compute the di�erence of the two

(ab + bd + cd + ac) � (bd + cd + bc) = (ab + bd + cd + ac) + (bd + cd + bc) = ab + ac + bc.

The n-chain ab + ac + bc is the boundary of the simplex abc. We have shown that both cycles

di�er by a boundary. Therefore they are both representatives of the same homology class. In

the language of abstract algebra we would say that they are in the same coset.

The dimensions of the homology groups are a summary of the topological information about

the connectivity of the n-dimensional simplicies of a complex. They are called Betti numbers

and they have the following interpretation.

� Betti zero or �0 = dim(H0) is the number of connected components in a simplicial complex.

� Betti one or �1 = dim(H1) is the number one dimensional holes in a simplicial complex or

simply holes.

� Betti two or �2 = dim(H2) is the number two dimensional holes in a simplicial complex or

simply voids.

The higher Betti numbers represent the number of higher dimensional voids. In a simplicial

complex of �nite dimension the Betting numbers higher than the dimension of the complex are

all zero. We refer the reader for examples of more homology computation to [22, p. 88].

5.2 Reduced and Relative Homology

There are two extensions of homology we need to discuss so that we may to be able to fully

harness the power of persistent homology in the following section. Those are reduced and relative

homology.

The need for reduced homology arises from a slight inconsistency in the interpretation of the

homology groups. Take for example the simplical complex that consists of a single vertex. All

of its homology groups except for H0 are trivial. It is convenient in many application to force

H0 to behave like the rest of the homology group. More speci�cally, we would like for the 0th

homology group it to be trivial as well. In order to do this we must force all path-connected

simplical complexes will have a trivial 0th homology group.

44 CHAPTER 5. HOMOLOGY

The geometrical interpretation of this extension is the reduced 0th homology classes represent

the number of voids that completely separate path connected components and not the path

connected components themselves [22, p. 83]. In order to accomplish this we will augment

the chain complex of a simplical complex X with one additional group Z2 and one linear map

� : C0(X)! Z2. The resulting chain complex is

::: �! C1(X) �! C0(X)
�
�! Z2 �! 0 �! ::: ;

where the function � : C0(X) ! Z2 is de�ned as �
�P

i ni�i
�
=
P

i ni. The value of � is equal

to the parity of the number of simplicies in the chain. We will de�ne the reduced homology

as the homology of the augmented chain complex or
�
Hn(X). From [26, p. 110] we have that

�
Hn(X) = Hn(X) for n > 0 and

�
H0(X)

L
Z2 = H0(X). The reduced homology of a chain

complex e�ectively reduces the dimension of the 0th homology group by one.

Another crucial concept is that of relative homology. Relative homology aims to simplify

the homology of a simplical complex X by discarding all chains that belong to a subcomplex

A of X. We do so by taking the quotient of the chain groups of X and the chain groups of A.

We will de�ne this quotients as Cn(X;A) = Cn(X)=Cn(A) and call Cn(X;A) the relative chain

groups. As the boundary maps take Cn(A) to Cn�1(A) they induce relative boundary maps from

Cn(X;A) to Cn�1(X;A). The relative boundary maps take a relative class from [�] 2 Cn(X;A)

to a relative class [@n(�)] 2 Cn(X;A). By taking the relative chain groups together with the

relative chain maps we obtain the relative chain complex.

::: �! Cn(X;A) �! ::: �! C1(X;A) �! C0(X;A) �! 0:

We will de�ne the relative homology groups of the relative chain complex as Hn(X;A) =

ker(@0n)=im(@0n�1) where @0n and @0n�1 are the relative boundary maps. The most important

thing to note is that Hn(X;A) is not the quotient Hn(X)=Hn(A), but the homology of the

relative chain complex.

Intuitively here is how we can think of the relative homology classes [26, p. 115].

� A relative chain � is a relative cycle when its boundary @n(�) is in Cn�1(A).

� A relative cycle � is trivial in the homology when it is the sum of a boundary @n+1(�) of

� 2 Cn+1(X) and a chain 2 Cn(A).

There is a connection between the relative chain complex and the reduced chain complex [25,

p. 69]. In fact they are equal when we quotient by a single vertex of X. Let p be a 0-simplex

of X then
�
Hn(X) = Hn(X; p). The reason for this is that the 0th homology class of p becomes

trivial when we quotient it out.

The relative homology classes are a purely algebraic construction, but for simplical complexes

there is an appropriate geometric intuition that goes along with them. It is expressed through

the following theorem [22, p. 92].

Theorem 1. (Excision Theorem) Let K0 � K and L0 � L be two pairs of simplicial complexes

that satisfy L � K and L� L0 = K �K0. Then they have isomorphic relative homology groups

5.3. INCLUSION MAPS AND INDUCED MAPS ON HOMOLOGY 45

Hn(K;K0) ' Hn(L;L0).

A corollary of the Excision Theorem [25, p. 71] is that if A is a subcomplex of X then

Hn(X;A) ' Hn(X=A;A=A) '
�
Hn(X=A) where A=A is a single point in X=A. This will allows

us to leverage our geometric intuition about quotient spaces to compute homology groups. The

quotient space of a simplicial complex however is generally not a simplicial complex. Simplicial

Homology is well de�ned for such spaces (known as � complexes), but we will not be able to

cover this extension in detail.

In this dissertation we will only need to compute the 0th homology of quotient spaces and

for this we can use our geometric intuition to visualise them and count the number of connected

components. We will make use of this geometric intuition when we are presenting examples in

the next chapter. In particular when X is a small enough simplical complex we will use the

Excision Theorem to compute the dimension of
�
H0(X=A) by simply counting the number of

connected components of X=A and subtracting one.

5.3 Inclusion Maps and Induced Maps on Homology

We will devote this section to introducing inclusion maps between chain complexes and how they

induce linear maps between the homology and relative homology groups of the chain complexes.

We will begin by de�ning inclusion maps:

De�nition 21. Let X be a simplicial complex and A be a subcomplex of X. A function i : A! X

is an inclusion map when i takes a simplex � in A to � in X.

In other words i(�) = � and when A = X then the inclusion maps is the identity map.

Inclusion maps are a special case of a simplicial maps [27, p. 52]. A simplicial map between

two simplical complexes takes simplicies from one to simplicies of the other. We are opting for

introducing the special case directly because we will only use inclusion maps in the following

sections.

Inclusion maps between simplical complexes allow us to obtain inclusion maps maps between

the groups of n-chains of A and X.

De�nition 22. Let X be a simplicial complex and A be a subcomplex of X and i : A ! X be

an inclusion map. Then i induces an inclusion map i# : Cn(A)! Cn(X) for all n 2 Z.

In order to de�ne i# we just have to extend i linearly from simplices to n-chains of Cn(A) as

follows: i#(
P

a��) =
P

a�i(�). Note that i# is also an inclusion maps because every n-chain in

Cn(A) is also an n-chain of Cn(X) and i maps simplicies to themselves. Upon obtaining inclusion

maps between the chain complexes of A and X we can take a step further and use that inclusion

map to induce a linear map between the homology groups of A and X.

De�nition 23. Let X be a simplicial complex and A be a subcomplex of X and i# : Cn(A) !

Cn(X) be an inclusion map. Then i# induces an linear map i� : Hn(X) ! Hn(Y) such that

i�([�]) = [i#(�)] for all n 2 Z.

Where [�] is the homology class of the n-chain � in Cn(A) and [i#(�)] is the homology class

of the n-chain i#(�) = � in Cn(X). A crucial thing to note here is that i� does not have to be

46 CHAPTER 5. HOMOLOGY

an inclusion map between the homology groups. Take for example a cycle which is not trivial in

Hn(A). The same cycle could become trivial in Hn(X) if X contain a simplex whose boundary

is �, but A does not not.

Lastly we will expand the de�nitions we have made so far to relative homology groups.

De�nition 24. Let X be a simplicial complex. Let A and B be two subcomplexes X such that

A � B. Then the identity map i : X ! X induces a linear map i� : Hn(X;A) ! Hn(X;B) for

all n 2 Z.

The general case of this de�nition is for two topological spacesX and Y , two subspaces A � X

and B � Y and a continuous function f : X ! Y such that f(A) � B. For a demonstration of

how the map between Hn(X;A)! Hn(Y;B) is induced we refer to [26, p. 118]. The result shown

here holds because inclusion maps are continuous and because as A � B then i(A) � i(B). We

will not have to construct such a maps explicitly we just need the reader to be aware of how

they are de�ned.

5.4 Persistent Homology

We will now turn our attention to one of the tools that has made topological data analysis so

viable in recent years. This tool is called Persistent Homology (PH) and it is primarily used for

measuring the signi�cance of topological features [40]. The primary motivation for introducing

persistent homology in the �rst place was the practical need to cope with noise in data [21]. The

general idea is that once we extract the topological features from data we can attribute a metric

to them. We can then use that metric to extract the important topological features by ignoring

all features we deem of low signi�cance (they are considered noise).

Persistent homology emerged in the early 2000s in the works of Herbert et. at [23] as a

tool for automated topological simpli�cation. The building blocks of persistent homology are

sequences of nested simplicial complexes called �ltrations. A �ltration of a simplicial complex X

is a one parameter family of simplicial complexes fXtgt2f0;:::;ng where Xi � Xj whenever i � j

and X = Xn. If we arrange the consecutive Xi in a linear sequence we obtain the following:

X0 � X1 � ::: � Xn�1 � Xn = X:

21

2

(a) X0

21

22

(b) X1

23

21

22

(c) X2

23

21

22

24

(d) X3

23

21

22

24

(e) X4 = X

Figure 5.2: Example of a �ltration of a simplicial complex.

Another way to think about a �ltration is that we start with simplicial complex and iteratively

add new simplicies to it. It is customary to call the index of this �ltration time to make it more

5.4. PERSISTENT HOMOLOGY 47

indicative of a process that evolves over time. The key insight in persistent homology comes from

realising that we can track individual homology classes in the homology groups of the Xk as we

go from one simplical complex to the next. This is made possible by the subset relation between

subsequent complexes in the �ltration. Since Xk is a subcomplex of Xk+1 we have inclusion maps

i : Xk ! Xk+1 for k 2 f0; 1; :::; n � 1g. Using those inclusion maps we can build the following

chain of simplicial complexes.

X0
i

�! X1
i

�! :::
i

�! Xn�1
i

�! Xn:

We have already shown in the previous chapter that inclusion maps induce linear maps be-

tween homology groups. By invoking this property we obtain the following sequence of homology

groups and maps between them:

Hp(X0)
i��! Hp(X1)

i��! :::
i��! Hp(Xn�1)

i��! Hp(Xn)

for all p 2 f0; 1; 2; :::g. The induced linear maps encode the information about the topologi-

cal changes in the homology of consecutive complexes in the �ltration. We will introduce the

following terminology to help us interpret this information [25, p. 104]:

� A homology class is born if it is not in the image of the homology group of the previous

complex in the �ltration under i�.

� A homology class dies if its image under i� is the zero element or it merges with an older

class.

� A homology class persists if its image under i� is not the zero element and it does not

merge with an older class.

Let us now expand on the case when two classes merge in a �ltration. Suppose that [�] 6= [�]

are two homology classes of some Hp(Xi) such that i�([�]) = i�([�]) in Hp(Xi+1) because of

the introduction of a new boundary. For example the classes [0] and [1] in H0(X1) are not

equivalent. They represent two distinct connected components. By introducing the edge 01 in

X1 they become one connected component and [0] = [1] in H0(X2). We must choose which one

of the classes dies and which one of them persists. It does not matter what we choose as long as

we commit to the choice in the future.

In order to be consistent in choosing we will apply the Elder Rule [22, p. 150]. According to

the elder rule the class whose birth time is smaller will persist and the other one will die. In the

case of merging multiple classes all will die except for the oldest. In the example where [0] = [1]

in H0(X2) we will pick [0] as the representative of the homology class because it is older and say

that [1] dies at time 2 because it merges with [0].

Using the language of birth and death we can de�ne the persistence of a homology class. Let

� be a homology class that is born inXi and dies inXj . We call the di�erence j�i the persistence

of �. Some classes however do not have a de�ned death time. These are the classes of the �nal

complex in the �ltration. We will call those classes essential and set their persistence to 1.

Classes that have persisted for a large number of timesteps are deemed signi�cant. Ephemeral

48 CHAPTER 5. HOMOLOGY

classes on the other hand are not. Such classes are often considered to correspond to statistical

noise or sampling error.

One way to visualise persistent homology is by producing the so called persistence pairs and

plotting them. A persistence pair (t1; t2) of a homology class � is a pairing of two timestamps -

the birth and death time of �. The essential classes are the exception to this rule. A persistence

pair of an essential class is formed as (t;1) where their birth time is t and we set their death

time to 1 due to the lack of one.

Persistence pairs are visualised by plotting them as points in the plane. This is called a

persistence diagram. We denote the essential classes as triangles above the last simplex in the

�ltration and other classes as circles (Figure 5.3 a, b). We can see that there are two pairs in the

0th persistent homology of the �ltration on Figure 5.2. The �rst pair is (1; 2) and it corresponds

to the birth of the second connected component in time 1 and its death in time 2 where it merges

with the �rst connected component. The second pair (0;1) is an essential class that corresponds

to the single connected component of X0 that persists until the end of the �ltration at X4.

In the 1st persistent homology we have two pairs. One is (3; 4) and the other is (3;1). These

correspond to two 1-cycles that are born at time 3. Those are 13+ 14+ 34 and 23+ 24+ 34. At

time 4 the cycle 13+ 14+ 34 becomes trivial in H1(X4) because we add the boundary 234. The

cycle 23 + 24 + 34 however persists in H1(X4) and therefore corresponds to the pair (3;1).

Another way to visualize persistent homology is via a barcode diagram [24]. A barcode

diagram is a graphical representation of the persistent homology as a collection of horizontal line

segments in the plane. The horizontal axis corresponds to the current homology group and the

vertical axis corresponds to an arbitrarily chosen basis for the current homology group. A line is

drawn between two basis elements [�] 2 Hk(Xt) and [�] 2 Hk(Xt+1) whenever i�[�] = [�]. A line

is cut short when a basis element in Hk(Xt) dies upon entering Hk(Xt+1). The persistent pairs

correspond uniquely to lines in the barcode diagram. If there is a persistence pair (t1; t2) then

we draw a line from t1 and cut it o� at t2. For example the barcode diagram for the persistent

homology of the �ltration on Figure 5.2 is depicted on Figure 5.3 c).

0 1 2 3 4

0

1

2

3

4

(a) Persistence pairs in H0.

0 1 2 3 4

0

1

2

3

4

(b) Persistence pairs in H1.

0 1 2 3 4

H1

H2

Time

(c) Barcode Diagram.

Figure 5.3: Examples of visualising persistent homology of the �ltration on Figure 5.2.

Now let us apply the general theory of persistent homology to a more familiar domain. Let

M be a simplicial mesh that is the triangulation of a bounded area in R2 and let f :M ! R be

a linear interpolat based on the vertices of M . We would like to obtain a �ltration of M that

5.5. EXTENDED PERSISTENCE 49

we can analyse with persistent homology. The �ltration that is proposed in the literature [22,

p. 161] for manifolds and Morse functions is de�ned via the sublevel or superlevel sets of the

manifold.

From Chapter 3 we know thatM is a manifold and that f is a Morse function. The following

claims hold:

� f has �nitely many critical points,

� changes in the topology of the sublevel sets of M happen only at critical points and

� critical points are at the vertices of M .

Therefore we need only consider the sublevel sets at the critical values of f . Let c1 < c2 <

::: < ck be all critical values and let Mci = f�1((�1; ci]) be the sublevel sets at the critical

values where we do not include all simplices which are not entirely contained in Mci in order to

obtain a simplicial complex. This lets us obtain a �ltration of the sublevel sets:

Mc1 �Mc2 � ::: �Mcn�1 �Mck =M:

From this �ltration we can produce the following sequence of homology groups and maps

between them:

Hn(Mc1)
i��! Hn(Mc2)

i��! :::
i��! Hn(Mcn�1)

i��! Hn(Mck) = Hn(M):

If we had taken the superlevel sets of M we would have obtained a di�erent �ltration. We

will call that the descending �ltration of M .

Hn(M
c1)

i��! Hn(M
c2)

i��! :::
i��! Hn(M

cn�1)
i��! Hn(M

ck) = Hn(M):

We can use both �ltration to compute the persistent homology of the ascending and descend-

ing �ltrations of M .

5.5 Extended Persistence

When M is a triangulation of a bounded area in R2 and f :M ! R is a linear interpolat not all

critical points are paired by persistent homology. Some are left out because pairs that include

essential homology classes have in�nite persistence. Such pairs only pair one critical point, not

two. The purpose of extending persistence is to devise a way to pair the critical points that

correspond to essential homology classes with remaining unpaired critical points [18].

The main idea behind extended persistence is to follow the ascending �ltration of persistent

homology with a descending �ltration. In the descending �ltration we remember which the

essential homology classes are. While in the descending �ltration once we reach a class that

is homologous to an essential class we consider it to be destroyed and thus paired. Extended

50 CHAPTER 5. HOMOLOGY

persistence consists of two consecutive sequences. The �rst sequence is the made up of homology

groups going up

0! Hn(Mc1)! Hn(Mc2)! :::! Hn(Mck�1)! Hn(Mck) = Hn(M):

Just like in ordinary persistence the linear maps between consecutive homology groups are

induced by the inclusion maps betweenMci �Mci+1 . The second sequence is made up of relative

homology groups that come back down:

Hn(M) = Hn(M;M ck)! Hn(M;M ck�1)! :::! Hn(M;M c2)! Hn(M;M c1)! 0:

The linear maps between the relative homology groups in the relative sequence are induced

by inclusion of pairs. The pairs (M;M ci) and (M;M ci�1) are such that M ci � M ci�1 and by

De�nition 24 induce linear maps between Hn(M;M ci) and Hn(M;M ci�1). When we combine

the two sequences at Hn(Mck) = Hn(M) = Hn(M;M ck) we obtain the following single sequence:

0! Hn(Mc1)! :::! Hn(Mck) = Hn(M;M ck)! :::! Hn(M;M c1)! 0:

The extended persistence sequence of homology groups start from the trivial group and ends

at the trivial group. This means that all classes that are born will eventually die in a �nite

amount of time steps. Extended persistent is symmetric. If we instead start with a descending

�ltration

0! Hn(M
ck)! Hn(M

ck�1)! :::! Hn(M
c2)! Hn(M

c1) = Hn(M)

and follow that with a relative ascending �ltration

Hn(M) = Hn(M;Mc1)! Hn(M;Mc2)! :::! Hn(M;Mck�1)! Hn(M;Mck)! 0

we would get the extended persistence of the descending �ltration of M

0! Hn(M
ck)! :::! Hn(M

c1) = Hn(M;Mc1)! :::! Hn(M;Mck)! 0:

A good aid in understanding extended persistence is the Excision Theorem. We can use it

compute the relative homology groups Hn(M;M ck) by computing the reduced homology groups

of the quotient space
�
Hn(M=M ck). We refer the reader [39] for more details examples of this.

Chapter 6

Extended Persistence and Branch Decomposi-

tion

We have seen in the previous chapter that the idea behind persistent homology is akin to that

of contour tree simpli�cation. Both are used to measure the topological signi�cance of features

in data, but persistent homology is a more general framework. The contribution we will make

in this chapter is to explore the relation between the pairs of critical points obtained via branch

decomposition and via extended persistence. We will introduce the historical relation between

the two in the literature and then proceeded to compare them by computing both on an example

data set.

6.1 Persistence of Branches

In 2004 Pascucci et. al published the original paper that introduced contour tree simpli�cation

through branch decomposition [35]. In that paper it is clearly stated that there is a similarity

between the new method they have developed and the more general and recently established

method of persistent homology (as it was originally introduced in [23]). They do not go further

in describing in detail how the persistence of branches is derived formally within the framework

of persistent homology. The relation between the two is not fully explored in the paper nor

in subsequent publications. Describing it formally in a complete and rigorous manner is be-

yond the scope of this dissertation. We will however pose and answer one question that relates

branch decomposition and persistent homology. Are the pairs of critical points produced by

branch decomposition the same as the pairs produced by the persistent homology of the zeroth

homology?

We can immediately show that they are not based solely on the fact that essential classes have

in�nite persistence and all branches have �nite persistence. As we have seen this issue can be

remedied by the use of extended persistence, but extended persistence was introduced in a paper

by Herbert et. al [18] published �ve years later in 2009. However the concept of pairing essential

classes was probably not unheard of at the time of publishing of [35]. A previous paper [6] by

Herbert et. al �rst published in 2004 outlines a method of pairing the essential homology classes

of 2-manifolds. It is completely reasonable to assume that Pascucci et. al were aware of this

recent development. Since the method introduced in [6] is a special case of what was later de�ned

as extended persistence we will extend our comparison to the pairs of critical points obtained

by extended persistence. Are the pairs of critical points produced by branch decomposition the

same as the pairs produced by the extended persistent of the zeroth homology?

51

52 CHAPTER 6. EXTENDED PERSISTENCE AND BRANCH DECOMPOSITION

6.2 Persistence Pairs vs Branch Decomposition Pairs

In this section we will present an example which demonstrates that at least one pair of critical

points is di�erent in branch decomposition and in extended persistence. This example will be

based on the simplicial mesh we presented in Figure 3.1 and our familiar w-structures. A de�ning

feature of this example is that the w-structure in the contour tree of the simplicial mesh prevents

the existence of a monotone path between the global minimum and global maximum. Since

monotone paths in the contour tree correspond to monotone paths in the simplicial mesh [14]

then branches obtained via branch decomposition correspond to valid topological cancellations

in the simplicial mesh [35]. Therefore the critical points obtained via branch decomposition will

correspond to critical points in the simplicial mesh and as such will be directly comparable to

critical points produces by the extended persistence of a �ltration of the mesh.

Conversely the 0th persistence homology can be computed either on a �ltration of the sim-

plicial mesh or on a �ltration of the contour tree directly. The output will be the same because

the contour tree records the changes in connectivity of level sets of the simplicial mesh. For com-

pleteness we will present the ascending and descending �ltration of the contour tree in Appendix

C and Appendix D, but we will not use them here directly. To conclude we will compute and

compare the following:

� The join tree (Figure 6.1 a), split tree (Figure 6.2 a) and contour tree (Figure 6.3 a).

� The branch decomposition of the join tree (Figure 6.1 b), split tree (Figure 6.2 b) and

contour tree (Figure 6.3 b).

� Ascending �ltration (Figure 6.4) and Descending �ltration (Figure 6.5) of the simplicial

mesh.

� The extended persistence in the 0th homology of the ascending (Figure 6.6 a) and descend-

ing (Figure 6.6 b) �ltration of the simplicial mesh.

We will compute the branch decomposition of the join, split and contour trees �rst. We

already computed the branch decomposition of the contour tree in Chapter 3. For the join tree

the candidate branches are (2; 5), (3; 7) and (3; 8). We remove them in order of persistence.

First we remove (2; 5), then (3; 7) and afterwards we remove the root branch (0; 8) as the only

remaining branch. In the split tree there are only two candidate branches. Those are (0; 4) and

(1; 4). We remove (1; 4) because it has lower persistence. This leaves us with the root branch

(0; 8).

The next thing we will present is the ascending �ltration of the simplicial mesh and its extened

persistence. The ascending �ltration of the mesh is obtained by adding all vertices (and edges

between them) one at a time in order of their height. We can obtain the persistence pairs by

inspection because connected components correspond to persistence homology classes. Observe

that a connected component is born at time 0 and at time 1. Those connected components merge

at time 4. By enforcing the Elder Rule the component born at time 1 will die at time 4 and 0

will persist. The �rst persistence pair is (1; 4). The following complexes of the �ltration consist

of a single connected component. Therefore the component born at time 0 is an essential class

6.2. PERSISTENCE PAIRS VS BRANCH DECOMPOSITION PAIRS 53

5

2

0

4

6

7

3

1

8

(a) Join tree.

8 13 02

67 4 3

5 2

(b) Branch decomposition.

Figure 6.1: Branch decomposition of the join tree.

5

2

0

4

6

7

3

1

8

(a) Split tree.

8

1

6 7

3 4

0 42 5

(b) Branch decomposition.

Figure 6.2: Branch decomposition of the split tree.

that never dies. We have to use extended persistence to obtain a pairing.

In order to do so we must �nd where in the relative �ltration the homology class 0 dies. Let

us �rst consider the last homology group of the ascending �ltration H0(X8) = H0(X). Since X

has one connected component H0(X8) = Z2. Now let us consider the next homology group in

the extended �ltration and obtain the induced map between them. The next homology group

is H0(X;X
8) = H0(X; f8g). By the Excision Theorem we have that H0(X; f8g) =

�
H0(X=f8g).

We also know that a quotient space of a path-connected topological space is path-connected.

Therefore X=f8g has a single connected component and consequently H0(X=f8g) = Z2. By the

de�nition of reduced homology we know that dim(
�
H0(X=f8g)) = dim(H0(X=f8g)) � 1 = 0.

A zero dimensional vector space is the trivial vector space consisting only of the zero vector.

The map i� : H0(X8) ! H0(X;X
8) is the zero map because H0(X;X

8) = H0(X; f8g) =
�
H0(X=f8g) = 0. Therefore the homology class that persists in H0(X8) dies in H0(X;X

8) and

the �nal pair we obtain from extended persistence is (0; 8). The two extended persistence pairs

of the ascending �ltration are (1; 4) and (0; 8).

We will compute the extended persistence pairs of the descending �ltration in the same

54 CHAPTER 6. EXTENDED PERSISTENCE AND BRANCH DECOMPOSITION

5

2

0

4

6

7

3

1

8

(a) Contour tree.

81 3

6 73 4

0 42

52

(b) Branch decomposition.

Figure 6.3: Branch decomposition of the contour tree.

manner. Observe that one Figure 6.5 three 0th homology classes are born. They are born at

times 0; 1 and 3. The component 1 dies at time 5 when it is merges with the component born at

time 0. The component 3 dies at time 6 when it is merged with component 0. The component 0 is

the only essential homology class. We can compute its extended persistence pair in a completely

analogous way to that of the ascending �ltration. We obtain that the extended persistence pairs

of the descending �ltration are (1; 5); (3; 6) and (0; 8). Those pairs correspond to vertex pairs

(3; 7); (2; 5) and (0; 8) because the vertex 3 is added at time 5, 7 is added at time 1, 2 at time 3,

5 at time 6, 0 at time 8 and 8 and time 0.

The barcode diagrams of the ascending and descending �ltrations are presented on Figure

6.6.

We are now ready to answer the primary question set forth in the beginning of the section.

Are the pairs of critical points produced by branch decomposition the same as the pairs produced

by the extended persistent of the zeroth homology? They are not. In both the ascending and

descending �ltrations the global minimum 0 pairs with the global maximum 8. In the contour

tree however there is no monotone path between them. Therefore they cannot be a pair in the

branch decomposition.

To go a step further we will also examine the similarity of the join tree branch decomposition

to the extended persistence of the descending �ltration and the split tree branch decomposition

to the extended persistence of the ascending �ltration. We have depicted each of these side by

side on Figure 6.7. The only change we have made is to relabel the time component of the

descending �ltration to correspond to the vertex that appears at that time.

We can see that in this example the two computations are equivalent. This does indeed

make intuitive sense. The join tree captures topological information of how the connectivity

of superlevel sets changes and so does the 0th extended persistent homology of the descending

�ltration. The same holds for the split tree and the 0th extended persistence of the ascending

�ltration. This is further supported by the fact that the book [22, p. 158] describes an algorithm

for computing the 0th persistent homology that is almost identical to the algorithm for computing

join/split trees. Whether they are equivalent in the general case remains to be proven rigorously.

6.2. PERSISTENCE PAIRS VS BRANCH DECOMPOSITION PAIRS 55

0

X0

20

21

X1

20

21

22

X2

20

23

21

22

X3

20

23

21

22

24

X4

20

23

21

25

22

24

X5

20

23

26

21

25

22

24

X6

20

23

26

27

21

25

22

24

X7

20

23

26

27

28 21

25

22

24

X8

Figure 6.4: Ascending �ltration of the dataset.

56 CHAPTER 6. EXTENDED PERSISTENCE AND BRANCH DECOMPOSITION

8

X8

27

8

X7

26

27

28

X6

26

27

28

25

X5

26

27

28

25

24

X4

23

26

27

28

25

24

X3

23

26

27

28

25

22

24

X2

23

26

27

28 21

25

22

24

X1

20

23

26

27

28 21

25

22

24

X0

Figure 6.5: Descending �ltration of the data set.

0 1 4 5 6 7 82 3
Time

(a) Ascending Filtration

0 1 4 5 6 7 82 3

Time

(b) Descending Filtration

Figure 6.6: Barcode diagrams of the persistent homology of the ascending and descending �l-
tration.

6.2. PERSISTENCE PAIRS VS BRANCH DECOMPOSITION PAIRS 57

8 7 4 3 2 1 06 5

Time

(a) Descending �ltration (time relabeled).

8 13 02

67 4 3

5 2

(b) Branch decomposition of the join tree.

0 1 4 5 6 7 82 3
Time

(c) Ascending �ltration.

8

1

6 7

3 4

0 42 5

(d) Branch decomposition of the split tree.

Figure 6.7: Branch decomposition of the join/split trees and extended persistence of the �ltra-
tions.

58 CHAPTER 6. EXTENDED PERSISTENCE AND BRANCH DECOMPOSITION

Chapter 7

Empirical Study

In this chapter we will supplement our theoretical investigation of the w-structures with an

empirical study. The goal of this study if twofold. Firstly it is to verify the theoretical claims

we have made on the correctness and running time of the w-diameter algorithms we developed.

This will be done by implementing and testing them on a range of datasets. The second and

most important goal of the empirical study is to analyse the w-structures that are present in

contour trees of real life data sets using the w-diameter algorithms we have implemented.

7.1 Algorithm Implementations

For the purpose of conducting the empirical study we implemented all three w-diameter algo-

rithms we developed in Chapter 4. Those are the brute force algorithm (NxBFS), the 2xBFS

and DP algorithms. We implemented the brute force algorithm by running the modi�ed version

of BFS from 2xBFS from every vertex in the tree. The implementation of the 2xBFS algorithm

was based entirely on the pseudocode we provided in Chapter 4. Initially we made a recursive

implementation of the DP algorithm based on the pseudocode we provided. This approach was

not e�cient enough because the recursion added a substantial amount of overhead and slowed

down computation on large data sets. We resorted to converting our recursive solution to an

iterative one.

When converting a dynamic programming algorithm from a recursive to an iterative solution

one �rst identi�es all base case subproblems and solves them. Afterwards one works their way

up to subproblems that depend only on the base case solutions and solves those. This process

is repeated until all subproblems are solved. In our particular example the base cases are the

leaves of the tree. The subproblems that depend on those are the vertices whose distance from a

leaf is one. Once those are solved we move on to vertices whose distance from a leaf is two and

so on.

To begin with we �rst have to root the tree using a standard Breath First Search. The root

of the tree can be any vertex. Using the BFS we not only assigning parents to all vertices, but

we also rank them based on their distance from the root. By processing vertices from furthest to

the root we ensure that the subproblems of any vertex are solved for because its children have a

bigger distance. In order to solve a subproblem at a vertex we can use the code we have provided

in the backtracking part of the DFS in the pseudocode in Chapter 4.

Finally we also implemented the serial contour tree algorithm as it is described in [14]. The

reason for doing so is that we needed to use it to compute the contour tree of test data and

then execute the w-diameter algorithms on those contour trees. This required us to make some

modi�cations to the output of the contour tree algorithm to better suit the expected input of the

59

60 CHAPTER 7. EMPIRICAL STUDY

w-diameter algorithms. All four algorithms we developed were written in C++ and their source

code can be found in their GitHub repositories listed in Appendix F.

7.2 Data sets Overview

Before describing our testing methodology we will �rst elaborate on the types of data sets we will

be using throughout our tests. The �rst type of data sets we will use are randomly generated

height trees. In testing the correctness and running time of the w-diameter algorithms we would

ideally like to run them on as many di�erent data sets as possible in order to con�rm our

theoretical claims for all of them. Generating height trees randomly will allows us to produce

new data sets for testing on demand. We will now describe the algorithm we implemented for

generating random trees.

Starting with a disconnected graph G with n vertices we generate pairs of vertices u; v with

random labels generated uniformly in the range f1; 2; :::; ng. If adding the edge uv to the graph

does not create a cycle we keep the edge. If it does create a cycle we discard it. We continue

generating edges until G is fully connected. Upon reaching this point G will be a connected

graph with no cycles. This is exactly the de�nition of a tree. In order to produce valid height

trees we assign a random height to each of the vertices of the tree. In order to detect whether

adding an edge produces a cycle we use the union-�nd data structure to keep track of which

connected components vertices belong to. We add an edge between two vertices only when they

belong to a di�erent connected component and then merge the two components together.

The second type of data sets we will use is real life data taken from the GTOPO30 [5].

GTOPO30 is a digital elevation model of the world. The dataset is a two dimensional data grid

containing the elevation of points on Earth with a resolution of approximately one kilometer.

Due to the overwhelming size of the whole data set we have taken several smaller subsets of

GTOPO30 provided to us by Dr. Hamish Carr.

The data sets are chosen based on their their topographic complexity. All of them are

both mountainous and lowland regions in Canada. The data sets we will use are named vanc

(18x21), vancouverSWSW (25x49), vancouverSWNE (25x50), vancouverSWNW (25x50), van-

couverSWSE (25x51), vancouverNE (49x99), vancouverNW (49x100), vancouverSE (50x99), van-

couverSW (50x100), ice�elds (240x240), pukaskwa (551x1600) and gtopo30w020n40 (6000x4800).

The vanc and all other vancouver data sets are taken from the North Shore Mountains that over-

look Vancouver in British Columbia, Canada. The data set pukaskwa is taken from the Pukaskwa

National Park located south of the town of Marathon, Ontario, Canada. The data set ice�elds

straddles the continental divide. It is taken from Ice�elds Parkway in the heart of the Canadian

Rocky Mountain. Finally gtopo30w020n40 is the data set that contains all other data sets.

7.3 W-detector Algorithms

In this section we will use our implementations of the NxBFS, 2xBFS and DP algorithms to

empirically test whether our claims on their correctness and running time are correct. The �rst

7.3. W-DETECTOR ALGORITHMS 61

test we will present is on the correctness of all three algorithm. The main issue we encountered

in this test is that all three algorithm solve a problem that to our knowledge has not been been

considered extensively. The only way to establish ground truth on their output is to manually

inspect the w-diameter of a height tree and compare it with their output. This is neither reliable

nor scalable to height trees with more than a few a few dozen vertices.

To overcome this issue we opted for using the output of the NxBFS algorithm as ground truth.

The reason is that it is the most straightforward to implement and that its correctness is a trivial

consequence of its formulation. We believe that this makes it the most reliable of the three. A

further complication arises with the fact the NxBFS algorithm's running time is quadratic and

not linear like 2xBFS and possibly DP. This leaves us unable to use this methodology for large

enough trees where the NxBFS algorithm's computation simply scales to unreasonable time. This

is why we have limited ourselves to only testing correctness for trees of up to 10,000 vertices.

For this test we have used the following testing methodology:

� Generate a random tree.

� Run all three algorithms on the tree.

� Check whether the output of DP and NxBFS are the same and if the output of 2xBFS is

within two of their output.

This methodology was used on one hundred trees of sizes 50, 100, 150, ..., 5500 resulting in

1000 individual tests all together. The output of all tests was in line with what we predicted in

Chapter 3. The algorithms DP and NxBSF had identical output. A somewhat suprising result

was that the 2xBSF algorithm did not output the wrong w-diameter on any of the tests.

The second test that was performed was on the running times of the algorithms. The algo-

rithms were separated in two groups. The �rst group contained NxBFS and the second group

contained 2xBFS and DP. They were separated because we expect the running time of NxBFS

to be quadratic, 2xBFS to be linear, DP to be close to linear. We want the results within each

group to be comparable. We tested the NxBSF algorithm on �ve randomly generated trees with

sizes in the range f1000; 1500; :::; 10000g. We avaraged the running time for each tree size. The

results from testing the NxBSF algorithm were in line with what we expected. The running time

the algorithm produces on Figure 7.1 �ts a quadratic curve.

NxBSF

Figure 7.1: Running time of NxBFS on randomly generated trees.

62 CHAPTER 7. EMPIRICAL STUDY

The test of the running time of the 2xBFS and DP algorithms provided more insight. The

test consisted of generating �ve trees per tree size in the range of f5000; 10000; 15000; :::; 200000g.

We ran both algorithms on all �ve trees for all tree sizes totalling 195 tests altogether. We plotted

the average running time across all �ve trees per tree size on Figure 7.2. This chart shows that

the performance of both 2xBFS and DP scales linearly with randomly generated height trees in

the [5000; 200000] vertex range.

This comes as no surprise as regards to the 2xBSF algorithm. We showed that its running

time is linear. What is interesting to see is that the DP algorithm's performance scales linearly

as well. We must note however that these tests use randomly generated trees and are a very

limited sample so this trend may not hold for all possible inputs and especially for larger trees.

Despite these reservations this test gives credibility to the claim we made in the Chapter 4 that

the DP algorithm has potential for good practical performance despite its quadratic worst case

time complexity.

DP

2xBFS

Figure 7.2: Running time of 2xBFS (blue) and DP (red) on randomly generated trees.

The next test we made was on the running time of the algorithms on the GTOPO30 data

sets. We ran the tests for both the augmented and unaugmented contour trees and recorded how

many times faster 2xBFS is than DP in the "Factor" column of the tables. The �rst test was

with the augmented contour tree.

Dataset Vertices 2xBFS DP Factor

vanc 378 0.000413 0.000497 1.20

vancouverSWSW 1225 0.000918 0.002317 2.52

vancouverSWNE 1250 0.000937 0.001858 1.98

vancouverSWNW 1250 0.000798 0.002454 3.08

vancouverSWSE 1275 0.001009 0.00204 2.02

vancouverNE 4851 0.003637 0.005493 1.51

vancouverNW 4900 0.002893 0.005612 1.94

vancouverSE 4950 0.002958 0.005863 1.98

vancouverSW 5000 0.002795 0.005658 2.02

ice�eld 57600 0.036430 0.066978 1.84

pukaskwa 881600 0.520608 0.962897 1.85

gtopo30w020n40 28800000 19.103233 34.427916 1.80

7.4. DATASET W-DIAMETER ANALYSIS 63

The results from this test are completely in line with what we obtained in Figure 7.2. The

linear relationship between the running times of two still holds. DP is within the range of 1.2 -

3 times slower than the 2xBSF algorithm. In our next test we tested the same data sets, but we

computed their unaugmented contour tree.

Dataset Vertices 2xBFS DP Factor

vanc 29 0.000136 0.000057 0.42

vancouverSWSW 58 0.000372 0.000127 0.34

vancouverSWNE 148 0.000355 0.000237 0.67

vancouverSWNW 88 0.000412 0.000163 0.40

vancouverSWSE 109 0.000351 0.000193 0.55

vancouverNE 946 0.001888 0.001730 0.92

vancouverNW 911 0.001505 0.001292 0.86

vancouverSE 782 0.001466 0.001107 0.76

vancouverSW 380 0.001756 0.000802 0.46

ice�eld 7655 0.013704 0.010280 0.75

pukaskwa 65826 0.183262 0.100899 0.55

gtopo30w020n40 2436622 6.609592 3.742080 0.57

The results here are quite surprising and they required us to double check the test multiple

times. On the outlook it seems that the two algorithms had exchanged their positions. The

DP algorithm is 1.2 - 3 times faster than the 2xBFS algorithm on all data sets. The di�erence

between the augmented and the unaugmented contour tree is that in the unaugmented contour

tree all vertices of degree two are removed. One explanation for this is that such vertices may

be processed faster by the 2xBFS algorithm and that the DP algorithm has some overhead

associated with them. Further tests will be needed to determine what the cause of this is.

7.4 Dataset w-diameter Analysis

In this section we will examine the w-structures present in real life data sets. Our goal is to

demonstrate that they not only pose a theoretical di�culty, but also hinder practical perfor-

mance. In this test we will execute our w-diameter algorithms on the mountain range data sets

taken from GTOPO30. We will compare the w-diameters we obtain from the contour trees of

the data sets with the diameters of the unaugmented and the augmented contour tree. We will

demonstrate that the w-diameter of a contour tree is a better theoretical upper bound on the

time complexity of the parallel contour tree algorithm than either of the two diameters.

Secondly we will compare the w-diameter of a contour tree with the number of iterations

that are need to collapse the join and split trees. We hope to �nd a correlation between the

two that would support our theoretical claim that it is the largest w-structure in a contour tree

that prevents logarithmic collapse in the merge phase. We have taken the number of iterations

needed to merge the join and split trees by compiling and running an implementation of the

data-parallel contour tree algorithm based on [17] provided to us by Dr. Hamish Carr.

64 CHAPTER 7. EMPIRICAL STUDY

Dataset 2xBFS DP NxBFS Aug Diameter Diameter Iterations

vanc 2 2 2 311 11 2

vancouverSWSW 2 2 2 845 17 3

vancouverSWNE 5 5 5 423 34 4

vancouverSWNW 3 3 3 712 23 3

vancouverSWSE 3 3 3 759 30 3

vancouverNE 4 5 5 1338 128 5

vancouverNW 5 5 5 1456 98 5

vancouverSE 6 6 6 1306 118 5

vancouverSW 4 4 4 1977 48 4

ice�eld 7 7 7 12280 886 6

pukaskwa 180 180 N/A 374866 1046 94

gtopo30w020n40 8 8 N/A 15766966 305290 8

We could not run the NxBFS algorithm on the largest data sets - pukaskwa and gtopo30w020n40

due to its slow poor performance.

The �rst inference we can make is about the pukaskwa data set. Both the w-diameter and

number of iterations are drastically bigger than all of the other data sets. If logarithmic collapse

was taking place in the merge phase of the construction of the contour tree of pukaskwa then we

would expect that to take dlog2(881600)e = 20 iterations. Instead it takes 94 iterations. This

is consistent with the w-diameter of the data set. Indeed the w-diameter at 180 kinks is almost

twice as big as the number of iterations 94. Consier that the algorithm can process exactly

two branches on opposite sides of the w-diameter in a single iterations. It follows that at least

180=2 = 90 iterations are needed for the full w-diameter to be collapsed.

Secondly, we can con�rm that the w-diameter in almost all of the data sets (except for

vancouverSWSW) is bigger than or equal to the number of iterations. This leads us to believe

that the two may be correlated. In the case of pukaskwa we have already given an interpretation

of this correlation. By that reasoning we would expect that in other data sets the w-diameter to

be twice as much as the number of iterations. This is not the case and this may very well be due

to how di�erent w-structures interact with one another in the merge phase. This is something

we have not investigated as we only record the size of the largest w-structure.

Finally we turn our attention to the diameter of the augmented and unaugmented contour

trees. The parallel contour tree algorithm currently uses those as an upper bound on the time

complexity of the merge phase [17]. We have already shown theoretically that the w-diameter of a

height tree is necessarily smaller than its diameter. This test demonstrates how big the di�erence

between the two can be in practice. In the most extreme example, that of gtopo30w020n40, the

w-diameter of the augmented contour tree is 1,970,870 times smaller than its diameter. If the

w-diameter of that data sets were equal to the actual diameter, than we would expect the merge

phase to take a far larger number of iterations and severely limit the available parallelism in it.

Chapter 8

Conclusion

In this dissertation we examined a particular tree structure that hinders the parallel algorithmic

performance of the state of the art data-parallel contour tree algorithm. These structures are

long paths in height trees with a characteristic zigzag pattern. We call them w-structures. In

order to better understand them we developed three algorithms for the detection of the largest

w-structure in a contour tree. We proved those algorithm are correct and showed formal bounds

on their time and space complexity. We implemented these algorithms and used them to establish

the existence of w-structures in contour trees of real life data. An empirical study releaved that

that the largest w-structure in a height tree does impact available parallelism in one of the two

phases of the data-parallel contour tree algorithm.

In addition to this we explored the use of a tool from Topological Data Analysis called Persis-

tent Homology. Persistent homology is a general framework for topological simpli�cation. Our

interest was in whether it is equivalent to a contour tree speci�c tool for topological simpli�cation

called branch decomposition. We demonstrated that they are not equivalent by computing both

on a counter example based on the w-structures.

8.1 Personal Re�ection

The most di�cult part of the project was learning the prerequisite mathematics. Those spanned

the �elds of Topology, Algebraic Topology and Computational Algebraic Topology. I had cov-

ered some of these topics in my second semester with a module on Topology that included an

introduction to Algebraic Topology. Throughout the summer the most time consuming part was

to learn Homology and to then learn how to apply it via persistent homology and by extension

extended persistence. The main di�culty was in making sense of the all the moving components

that enable extended persistence. Those are Morse Theory, Point Set Topology, Homology, Co-

homology, Spectral Sequences and the Poincare-Lefschetz duality. In the end I did not have to

use all of them for the speci�c problem I was trying to solve. Despite this I still had to learn

how the ideas borrowed from those �elds work and relate to one another and I had to pick out

exactly the ones I needed for my speci�c proofs.

My approach to learning those �elds was not optimal. I overcommitted a lot of my time and

energy by trying to immediately learn how extended persistence is computed. Without su�cient

prerequisite knowledge this attempt was futile. Henceforth I decided to make my approach more

systematic and disciplined. I did this by outlining all of the di�erent ideas, de�nitions and

theorems that build the foundation of extended persistence. I used this to go through all of them

in a bottom up fashion. I went through the relevant books and papers slowly and carefully and I

made sure I can convince myself of the theory by creating small scale examples and giving myself

65

66 CHAPTER 8. CONCLUSION

simple problems to prove. Overall I am satis�ed with the results I have obtained. This gave me

valuable experience in teaching myself new mathematics and approaching novel research areas.

What I am most proud with in this dissertation is creating and implementing the w-diameter

algorithms. I started o� with a well-de�ned problem that had not been solved before and I had

to come up with an algorithm for it. The �rst thing I did was to try and come up with de�nitions

that capture the problem statement and allow me to work with it in a formal setting. It took me

some experimentation to come up with the characterisation of w-paths via kinks and to realise

this characterisation can be used as a metric much like path length. This helped me recognise

that it may be possible to modify existing tree diameter algorithms.

The �rst algorithm I worked on was the 2xBFS algorithm. I started o� with just the idea and

�rst implemented it to test whether it holds in practise. Upon obtaining satisfactory results I

began to look for ways to modify the proofs of correctness of the original tree diameter algorithm.

My intial plan was to dissect proofs of tree diameter algorithms and see exactly which of their

components I have to modify. The most challenging aspect of proving the correctness of 2xBSF

was in discovering all of its pathological cases and working on adjusting the proof to accomodate

them.

Initially I did not have a clear idea how I can implement the DP algorithm. Through trial and

error on numerous small scale example height trees I came up with the theoretical formulation of

the solution. For this algorithm my mathematical proof preceded my implementation. My initial

proof however was not correct. The way I reaslied this was by implementing it and observing a

discrepancy in the output. I used that discrepancy to trace my mistake and correct my proof.

The part of the dissertation I believe I could have developed more is the empirical study.

The empirical study was supposed to be a more central topic, in the case that I failed to produce

meaningful results with extended persistence. After committing more time that I had planned

on the w-diameter algorithms and extended persistence I had already covered enough material

and I had little time to produce a more detailed and insightful empirical study.

Overall I believe that the project was successful. I acomplished all of the tasks I set out to

do. In the end it turned out to be more theoretical than I had originally planned. I am glad

that this is the case. This gave me the opportunity to advance my mathematical and analytical

skills. It has also given me the foundation to continue my research in new research directions.

8.2 Future Work

In this section we will present a number of possible direction for future work. They will be split

in two parts. The �rst part will be related to the empirical study of the w-structures and second

part to the further exploration of the use of extended persistence in contour tree simpli�cation.

One obvious starting point would be to extend the empirical study by obtaining more real life

data to analyse. Before doing so however we would need to develop better tools to analyse the

w-structures in that data. One way to advance our w-diameter algorithms would be to integrate

them with the contour tree algorithm and use them to analyse how di�erent w-structres interact

8.2. FUTURE WORK 67

with one another in the merge phase. This would require us to modify our algorithms to �nd

more than just the w-diameter of the tree. It would be most useful to use them to obtain the

�rst few biggest w-structres.

Another useful direction we can take is to try and develop an algorithm that can compute

the w-diameter from input data directly, without having to compute the contour tree �rst. One

hope we have is that this will enable us to spot patterns in data that correspond to w-structures

in the contour tree and use this prior knowledge in the contour tree construction to obtain better

parallel performance. By spotting these patterns in data we would hopefully be able to cateogrize

them. This would ideally lead to a formal proof that limits the number of patterns in data that

produce large w-structures.

Finally we would like to propose an idea for a future direction a purely theoretical line of

research can take. We saw that we can express the branch decomposition of the join and split

tree with the extended persistence of the ascending and descending �ltration. But is it possible

to also express the branch decomposition of the contour tree with some other �ltration?

Consider for example a simplicial mesh M and its level sets Mi. Homology gives us tools to

identify the connected components of theMi by computing their 0th homology. In order to track

how the homology classes evolve as we vary the parameter i we would need a way of relating the

homology classes of di�erent level sets. This can take the form of a squence:

:::! H0(Mi)! H0(Mi+1)! :::! H0(Mj)! H0(Mj+1)! ::: :

The question is what the linear maps between the homology groups would be. We cannot

induce them via inclusion maps because the level sets are not subsets of one another. A research

direction is this area would be to �nd another way of obtaining simplicial maps between the

level sets. Obtaining such maps will allows us to induce linear maps between their respective

homology groups.

68 CHAPTER 8. CONCLUSION

References

[1] Double breadth �rst seach tree diameter algorithm. http://courses.csail.mit.edu/6.

046/fall01/handouts/ps9sol.pdf. Accessed: 2017-09-11.

[2] Double breadth �rst seach tree diameter algorithm implementation. http://www.

geeksforgeeks.org/longest-path-undirected-tree/. Accessed: 2017-09-11.

[3] Dynamic programming tree diameter algorithm. https://users.cs.duke.edu/~ola/

courses/cps100spr96/tree/trees.html. Accessed: 2017-09-11.

[4] Dynamic programming tree diameter algorithm implementation. http://www.

geeksforgeeks.org/diameter-n-ary-tree/. Accessed: 2017-09-11.

[5] Gtopo30 data set. https://lta.cr.usgs.gov/GTOPO30. Accessed: 2017-09-11.

[6] P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation on a 2-manifold.

In SCG '04 Proceedings of the twentieth annual symposium on Computational geometry,

pages 357�365. ACM, 2004.

[7] S. Axler. Linear Algebra Done Right. Springer, 3 edition, 2015.

[8] T. Bancho� et al. Critical points and curvature for embedded polyhedra. Journal of Dif-

ferential Geometry, 1(3-4):245�256, 1967.

[9] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and

applications. Theoretical Computer Science, 392(1-3):5�22, 2008.

[10] P.-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A topological hierarchy

for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer

Graphics, 10(4):385�396, 2004.

[11] G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255�

308, 2009.

[12] H. Carr. E�cient generation of contour trees in three dimensions. Master's thesis, University

of British Columbia, 2000.

[13] H. Carr, Z. Geng, J. Tierny, A. Chattopadhyay, and A. Knoll. Fiber surfaces: Generalizing

isosurfaces to bivariate data. In Computer Graphics Forum, volume 34, pages 241�250.

Wiley Online Library, 2015.

[14] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computa-

tional Geometry, 24(2):75�94, 2003.

[15] H. Carr, J. Snoeyink, and M. Van De Panne. Flexible isosurfaces: Simplifying and displaying

scalar topology using the contour tree. Computational Geometry, 43(1):42�58, 2010.

[16] H. Carr, J. Tierny, and G. Weber. Pathological and test cases for reeb analysis.

69

http://courses.csail.mit.edu/6.046/fall01/handouts/ps9sol.pdf
http://courses.csail.mit.edu/6.046/fall01/handouts/ps9sol.pdf
http://www.geeksforgeeks.org/longest-path-undirected-tree/
http://www.geeksforgeeks.org/longest-path-undirected-tree/
https://users.cs.duke.edu/~ola/courses/cps100spr96/tree/trees.html
https://users.cs.duke.edu/~ola/courses/cps100spr96/tree/trees.html
http://www.geeksforgeeks.org/diameter-n-ary-tree/
http://www.geeksforgeeks.org/diameter-n-ary-tree/
https://lta.cr.usgs.gov/GTOPO30

70 REFERENCES

[17] H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak pruning for scalable

smp contour tree computation. In Large Data Analysis and Visualization (LDAV), 2016

IEEE 6th Symposium on, pages 75�84. IEEE, 2016.

[18] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using poincaré and

lefschetz duality. Foundations of Computational Mathematics, 9(1):79�103, 2009.

[19] M. L. Connolly. Shape complementarity at the hemoglobin �1�1 subunit interface. Biopoly-

mers, 25(7):1229�1247, 1986.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT

Press Cambridge, Mass, USA, 2001.

[21] H. Edelsbrunner and J. Harer. Persistent homology-a survey. Contemporary mathematics,

453:257�282, 2008.

[22] H. Edelsbrunner and J. Harer. Computational Topology, An Introduction. Americal Methe-

matical Society, 1 edition, 2013.

[23] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simpli�ca-

tion. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on,

pages 454�463. IEEE, 2000.

[24] R. Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathematical

Society, 45(1):61�75, 2008.

[25] R. Ghrist. Elementary Applied Topology. Createspace, 1 edition, 2014.

[26] A. Hatcher. Algebraic Topology. Cambridge University Press, 1 edition, 2002.

[27] D. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and Computation in

Mathematics. Springer, 1 edition, 2008.

[28] C. Li, M. Ovsjanikov, and F. Chazal. Persistence-based structural recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1995�2002,

2014.

[29] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel algorithm for com-

puting and tracking level set topology. In High Performance Computing (HiPC), 2012 19th

International Conference on, pages 1�10. IEEE, 2012.

[30] Y. Matsumoto. An Introductino to Morse Theory, volume 208 of Translation of Mathematical

Monograms. American Mathematical Society, 1 edition, 2002.

[31] B. Mendelson. Introduction to Topology. Dover, 3 edition, 1990.

[32] J. Milnor. Morse Theory. Princeton University Press, 1 edition, 1963.

[33] D. Morozov and G. Weber. Distributed merge trees. In ACM SIGPLAN Notices, volume 48,

pages 93�102. ACM, 2013.

[34] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets.

Algorithmica, 38(1):249�268, 2004.

REFERENCES 71

[35] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution computation and pre-

sentation of contour trees. In Proc. IASTED Conference on Visualization, Imaging, and

Image Processing, pages 452�290, 2004.

[36] Y. Shi, J. Li, and A. W. Toga. Persistent reeb graph matching for fast brain search. In

International Workshop on Machine Learning in Medical Imaging, pages 306�313. Springer,

2014.

[37] S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3d in o (n log n) steps. In

Proceedings of the fourteenth annual symposium on Computational geometry, pages 68�75.

ACM, 1998.

[38] M. Van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and

small seed sets for isosurface traversal. In Proceedings of the thirteenth annual symposium

on Computational geometry, pages 212�220. ACM, 1997.

[39] S. K. Verov²ek and A. Mashaghi. Extended topological persistence and contact arrangements

in folded linear molecules. Frontiers in Applied Mathematics and Statistics, 2:6, 2016.

[40] S. Weinberger. What is... persistent homology? Notices of the AMS, 58(1):36�39, 2011.

[41] A. J. Zomorodian. Topology for Computing. Cambridge University Press, 1 edition, 2009.

72 REFERENCES

Appendices

73

Appendix A

External materials

Two external materials that were used in this dissertation:

� The the GTOPO30 [5] data set. It is publically availabe on https://lta.cr.usgs.gov/

GTOPO30.

� Source code for the parallel contour tree algorithm [17]. The source code is not publicly

available. It was provided with the persmission to use by Dr. Hamish Carr.

� All �gures and pictures in the dissertation were made by the author using the free software

packages Graphviz and Inkscape.

75

https://lta.cr.usgs.gov/GTOPO30
https://lta.cr.usgs.gov/GTOPO30

76 APPENDIX A. EXTERNAL MATERIALS

Appendix B

Ethical Issues Addressed

B.1 Data Sources

For this project data sources were required to compute contour trees. The data sources that were

used are publicly available on the Internet. They did not require any special permissionssions to

use.

B.2 Software

All software that was used is publicly available on the internet and free except for the source

code for the parallel contour tree algoritm. Permission for the use of the parallel contour tree

algorithm source was granted by Dr. Hamish Carr. All used software has been referenced and

acknowledgement in the text.

77

78 APPENDIX B. ETHICAL ISSUES ADDRESSED

Appendix C

Ascending Filtration of the Contour Tree

0

CT (X)0

0

1

CT (X)1

2

0

1

CT (X)2

2

0

3

1

CT (X)3

2

0

4

3

1

CT (X)4

5

2

0

4

3

1

CT (X)5

5

2

0

4

6

3

1

CT (X)6

5

2

0

4

6

7

3

1

CT (X)7

5

2

0

4

6

7

3

1

8

CT (X)8

Figure C.1: Ascending �ltration of the contour tree from Figure 3.2 b.

79

80 APPENDIX C. ASCENDING FILTRATION OF THE CONTOUR TREE

Appendix D

Descending Filtration of the Contour Tree

8

CT (X)9

7

8

CT (X)8

6

7

8

CT (X)7

5

6

7

8

CT (X)6

5

4

6

7

8

CT (X)5

5

4

6

7

3

8

CT (X)4

5

2

4

6

7

3

8

CT (X)3

5

2

4

6

7

3

1

8

CT (X)2

5

2

0

4

6

7

3

1

8

CT (X)1

Figure D.1: Descending �ltration of the contour tree from Figure 3.2 b.

81

82 APPENDIX D. DESCENDING FILTRATION OF THE CONTOUR TREE

Appendix E

Additional Proofs

Lemma 9. In a tree with no vertices of degree two at least half of the vertices are leaves.

Proof. Let T = (V;E) be a tree with no vertices of degree two and let L � V be the set of all

leaves. As all leaves have degree one we have that L = fu 2 V : d(u) = 1g. Furthermore for any

tree we know that jEj = jV j � 1. Let us now use the handshake lemma:

X
u2V

d(u) = 2jEj = 2(jV j � 1) = 2jV j � 2:

We will not separe the sum on the leftmost hand side of the equation in two parts. One for

the vertices vertices in L and one for the vertices in V nL.

X
u2L

d(u) +
X

u2V nL

d(u) = 2jV j � 2:

All the vertices in L are leaves. By de�nition the degree of a leaf is one. ThereforeP
u2L d(u) = jLj. This leads us to the following:

jLj+
X

u2V nL

d(u) = 2jV j � 2

jLj = 2jV j � 2�
X

u2V nL

d(u):

There are no vertices in T of degree two and all vertices of degree one are in L. This means

that all vertices in V nT have degree at least three. We can conclude that:

X
u2V nL

d(u) � �(T � L):jV nLj = 3(jV j � jLj)

Combining this with the previous equation we obtain that:

jLj � 2jV j � 2� 3(jV j � jLj)

jLj � 2jV j � 2� 3jV j+ 3jLj

�2jLj � �jV j � 2

jLj �
jV j

2
+ 1

83

84 APPENDIX E. ADDITIONAL PROOFS

Which is exactly what we set out to proove.

Appendix F

Github Repositories

DP Algorithm - https://github.com/famouscake/w-detector

2xBFS Algorithm - https://github.com/famouscake/w-detector

Contour Tree Algoritm - https://github.com/famouscake/ContourTree

85

https://github.com/famouscake/w-detector
https://github.com/famouscake/w-detector
https://github.com/famouscake/ContourTree

	Introduction
	Background
	Point Set Topology
	Differential Topology
	Reeb Graph

	Algebraic Topology
	Simplicial Complexes
	Euler Characteristic

	Graph Theory
	General Graph Theory
	Tree Diameter Algorithms

	Contour Trees
	Typical Input Data
	Existing Contour Tree Algorithms
	Height Trees
	Serial Algorithm
	Parallel Algorithm
	Contour Tree Simplification

	W-structures - Theory and Algorithms
	Formal Description of the W-Structures
	Linear Time Algorithm - 2xBFS
	Pathological Cases in 2xBFS
	On Resolving the Accuracy of 2xBFS

	Dynamic Programming Algorithm - DP

	Homology
	Homology
	Reduced and Relative Homology
	Inclusion Maps and Induced Maps on Homology
	Persistent Homology
	Extended Persistence

	Extended Persistence and Branch Decomposition
	Persistence of Branches
	Persistence Pairs vs Branch Decomposition Pairs

	Empirical Study
	Algorithm Implementations
	Data sets Overview
	W-detector Algorithms
	Dataset w-diameter Analysis

	Conclusion
	Personal Reflection
	Future Work

	References
	Appendices
	External materials
	Ethical Issues Addressed
	Data Sources
	Software

	Ascending Filtration of the Contour Tree
	Descending Filtration of the Contour Tree
	Additional Proofs
	Github Repositories

