/Unified Quranic Annotations and\
Ontologies

Luluh Aldhubayi
Msc Artificial Intelligence

2012/2013

. /

The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

(Signature of student):




Summary

Recently, researchers have shown an increased interest in finding linguistic features of religious text.
Consequently, different linguistics annotations and datasets have been constructed.

This project conducted an approach to unifying different Quranic datasets. The datasets merged in the
project are: Quran Annotations Corpus (Dukes, 2012), Pronoun reference (QurAna) (Sharaf, 2012)
and Qurany concept project (Abbas,2008).

The project started by unifying the dataset formats to XML and then merging them in one XML file.
The merged Quranic dataset has been ported to the Sketch Engine tool to enhance the usability of the
dataset and to allow it to be explored online by typical users.

The second phase of the project was to map the XML file to OWL ontology so as to enhance the
semantic relationships between XML elements. An ontology design proposal was conducted initially,
but then a facility in Protégé editor converting XML to OWL was used.

The final output created a Quranic dataset in which a user can find relationships between text in three
dimensions; word morphology analysis, pronoun reference analysis and verse semantic analysis.



Acknowledgments

First and foremost, I would like to express my gratitude to God Allah. Thanks for giving the will and
the strength to carry on.

I would like to express my sincerest thanks to my supervisor, Dr. Eric Atwell for his guidance and
support. I feel truly privileged to have had the chance to know him and work with him. He is an
exceptional and brilliant advisor and human being.

I would like to thank the project’s assessor Dr. Lydia Lau for her great feedback and guidance during
the project’s interim report and progress meeting.

I would like to sincerely thank my parents, husband and daughter; for their understanding and endless
love and supporting through the duration of my study.



Table of Contents:

CHAPTER 1: INTRODUCTION......ccciiiiiiiiiisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsses 1
UNDERSTANDING THE PROBLEM :.euvteteuteeeureeessreeesuseeessseesssseeessessssseessseesssessssesesssessssseesssssesssseessnseeesses 1
THE PROJECT AIVIZ 1ueteeesiteeenuteeesiteeesuteessaseeessteessstaeesaseeesssaessaseeesaseessnseeesnsesssnsesesnseessseessnseeesnseessnsenesnsees 2
OBJECTIVES: 1etutteesuteeeeteeestteesteeesueeessaeesseeessseessnsseesnseeessseeesasseesnsaeesnsseesnsaeesnsseesnssessseeesnseessnseeesnsseenns 2
MINIMUM REQUIREMENTS: 1etuuteeeuteeeureeesureeanseeesssseeessseessssessssesssssesssaseesssessssseesssesssseesssssesssseessnseeesses 3
DEGREE RELEVANCE: ..vvtteutteeeuteeeseteesuseeessseeensseessnseeesssesssnsesssssesssssesesnsesssssesssnseeesssessssseessnseeessseessnsenesses 3
RESEARCH METHODOLOGY: ..ettuuveeeureeesuresesureesnsreesssseeesssesssssesessesssssesssseesssesssnsseesssessssseesssssesssseessnseeessns 3

BUSINESS UNAEISEANDING .eovvveeeeeeeiiiiieeit ettt e e e e e e eee sttt e e e e e e s eesssssssaneaaaaaaaeessssssarenes 3
[0 oo IV g Lo [=3 63 e T2 Lo 1T AU URPPUURRN 4
Do 1o 0T g=] o To | o A (o] F OO SRR SPTP 4
1Y oo 1=3 T U UEPPUURN 4
EVGQIUGTION ...ttt ettt ettt ettt e e ettt e e e et e e e et e e e e s bteeeessaseeas 4
10T o) (o) 4 T=] £} &S USPPRURRN 5
DELIVERABLES: 1.ttt eutteeeutteessuseeessseesnuseeesssessnssaesssseeesssaesanseessasessnssesesnsesssssesssnsesessssessseeesnsseessseessnseeennsns 5
(o Y] Lot I =Y N PP SR 6

CHAPTER 2: BACKGROUND RESEARCH.........cccoiiiiiiiinsiissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 7
2.1 WHAT IS THE HOLY QURAN? Luttteiiieeetteeetteeetteestteesnteeesseeessseeesnsseesnsaeesnsseesssessnseeesnssessnssessnsenesnsns 7
2.2 THE CURRENT QURAN-RELATED PROJECTS ..eeeuvveeeuvreesureesseeessusessnseessnssessnseessnseeessssessnseesssssesssssessnseessnses 7

2.2.1 Semantic Opposition Ontology in the Holy Quran (SEmMQ)..........ccceeeeevveeeeeecieeaeeeiiveaeeecnen 7
2.2.2 Qurany Concept SEAICH tOOI: ...........uuuiieeeeeeeeiiiieee ettt ee e e e e e e s ss st aaaaeesessesisanes 8
2.2.3 Quranic Arabic COrpuS (QAC) ...ttt e et e ettt e e ettt e e e e e taa e e e s staea e e e sarees 9
2. 2.8 QUIANG ..ottt e e e e e e aaaaaaees 10
2.2.5 QUISIM cciiiiiiiieeeee ettt ettt e et e e e e e e e e ettt e e e e e e e e e 11
2.2.6 Morphological Analysis Of tRe QUIGN ................uuvveeieeiiaeeeeeieeseiiiieeeaaa e e e e eessseiiaeeaaaaaeeesseas 12
2.3 CHOOSING THE PROJECT DATASETS: uvvteeuureeeureeesureessueeessueeesnsseesssseesssseesnsessssseeessssssssseesssssessssesssssenenns 13

CHAPTER 3: ONTOLOGY AND CORPUS REPRESENTATIONS AND TOOLS .......cccoveiinnnisssssssssssssnnssnns 16

3.1 ONTOLOGY DATA MODEL: ...uututtuuuuuuieieieseseseeeeeeeeeeereseeesesssssssssssssmssssmsnnaaaesessesaesesssssesssssssssee 16
B A 210 ol o Yo (-1 USSP 16
3.1.2 Web Ontology Language (OWL) MOGE!:.............cceeecueeeeeeciieieeeeiieeeeeecieeeeesciveeaeesiseeaaeenns 16

3.2 ONTOLOGY EDITORS AND TOOLS: w.eeeuvveeruereeereesssueeessseeesnseeesssseesssesssssseesssessssssesssssssssseesssssessssessssseeenns 18
2 B Yo o P UUPRURN 18
I A o oY (=T [P UUPPURRN 19

3.3 CORPUS TOOLS: 1eeeuuteeeureeenuueeenureesseeessuseesnsseessssessnssessseeesnsseesnssessnsseessessssseeesssseessseessnseesssseessnseeenns 20

3.4 CORPUS REPRESENTATION: .uteteuuveeestteesureeenseeessueeessseessseessnssessssessnssessnsessssssesssssessnseesssseesssseessssenenns 21
3.4.1 Sketch engine representation (fOrmat): ............ccooeecvueeeeeciieeeeeeeiieeeeeceeeeesceeeeessreeaaeenns 21

CHAPTER 4: DESIGN THE SOLUTION........ccoiiiiiiiiisiisiissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 22
B 1 THE DESIGN AIMIS: 1 euuteeeuteeesuteeerureeessteeessseeessseeesssesessseessssesssssassssssesssessssesssssessnseessnseeesssesssnseeennes 22
4.2 PREPROCESSING THE DATA: 11uutteeiureeesureeesiresesseeessesessseesssesessesesssessssessssesssssesssssessssssessssessssseeesnes 23

Processing the thre@ dOUtASELS: .........uuueeeieieeeeeeeeeciieteeee e e e e e eteecect e e e e e e e e esssssstsstaaeaaaaaesesssssnassnnes 25
First dataset: QUIANY CONCEPL: .....uuuveeeeeeeeeeeeeeeeecitteetta e e e e e stse s attetaaaaaeesssssssssstsseasaaaassssssssssssnes 26



Third dataset: QUIANG GNNOLALIONS: .........ueeveeiiiiieeeeiitee ettt et e sstt e e st e e e saaeeeeeas 29
4.3 DESIGN THE UNIFIED QURANIC ANNOTATION DATASET 1uuvteerureeerireeesreeesneessnreeesseeesseesssseeesssesssseeesnes 30
4.3.1 TRE QUIAN SEIUCLUIE: ....eoeeeiieee ettt e ettt e e e ettt e e e s sbtteeeessutneeeesaanee 30
3.2 XIVIL FUIS: oottt ettt ettt ettt e e sttt e e e ettt e e e s autnaeeesautneeeensanes 30
4.3.3 Distributing the GNNOtALIONS: ........uvveeeiieeeeeeeeececieeteeea e e e e e eseseecatteeraaaeeesessssssseaaeaaaaaeeessnnas 31
CHAPTER 5: IMPLEMENTATION: ....cuiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 34
5.1 CHOOSING THE PROGRAMMING LANGUAGE ... ceeeuureeeereesteeesstreessseeesssseessseesssseeesssseessseesssseesssseessssenenns 34
5.2 USING XML AP IN IMPLEMENTATION . ...ttt etteeeureesueeesseeesnsseessseessssseesnsesssssseesssseessseesssssesssseessssseenns 35
5.3 CONVERTING QURANY TO XML (QURANYTOXML.PY) ..eviieiieeiiieeniieeeiieesieeesieeesieeesveeesneeesaseessnnenenns 35
5.4 CONVERTING QURAN ANNOTATION CORPUS (QAC) TO XML (QACTOXML.PY): cevvvrrreeeiieeeeeeeeeeevvveeeeen. 40
5.5 CONVERTING QURANA TO XML FORMAT (QURANATOXML.PY):ueeeiirieiiieeiiieeeiieesieeesieeesieeesieeesneeenes 43
5.6 MERGING THE THREE XML FILES IN ONE XIMIL FILE (MERGE.PY): w.eeeuviieiiuieesiieesieeesineesieeesneeesaveessneeenns 44
5.7 MAPPING THE UNIFIED XML FILE TO THE ONTOLOGY STRUCTURE: c..vveeevreerereesireeseneesneeesneeessseesssneeenns 46
Mapping the XML to OWL ONtOIOGY: ....ccuceeeeeeeiiieieiees e e eeeesittettaaa e e e e sssseesasaeaaaaaeeesssssissnnes 47
5.8 PORTING THE UNIFIED XML FILE TO THE SKETCH ENGINE TOOL: w.eevuvveeeureerereessureessuneessseeessseeesssnesssseeenns 48
5.8.1 Implementing Sketch ENGine fOrmMQatS: .......ccoccuvvviveieiiieieeeeieeceiiiiieieaee e e eeescccitaeeeeaaaaeeeeeas 49
5.8.2 CoONSigUIING the COIPUS:.....cccoeeeiiieeeieee e eeeeeeette e e e e e e et ettt e e e e e e e s eesessassaaenaaaaaasesannas 50
CHAPTER 6: EVALUATION......cciiiiiiiiiniiiiiissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 51
6.1 EVALUATING THE UNIFIED QURANIC ANNOTATIONS XML DATASET:.....cccocvuiirrireeeeeeeeeesinnns 51
EVAIUALION DISCUSSTON. ©.vvveeiiieieeeeiieeeeeeee ettt e e ettt e e ettt ee e ettt e e e e stseeaaesssseaesasssesaesssseeaanas 52
6.2 EVALUATING THE UNIFIED QURANIC ANNOTATIONS XML DATASET IN SKETCH ENGINE........ 52
Translating the SKE COrPUS 10 AVADIC: ......ococueeeeiieseiiieesieeesiieeesieessiaessiiesssteesssiesssisesssisnsssssees 52
N2 R T 1T AU URUSRR 53
USCIS=EVAIUATION: .....vvveeeeieeee et e et e e ettt e e e ettt a e e sttt e e e eaataeeaesaasaeaaeasssasaaeessseaaasanes 57
6.3 EVALUATING THE UNIFIED QURANIC OWL ONTOLOGY: evvevveiteerreereereeneesreeeeereenseeseesseensssseennes 58
Testing the OWL ontology using SPARQL 0n CRAPIEE 2: ..cc..uvveveeieeeciiassiiieeiieeesiieeeiieessiieessiien 59
CHAPTER 7: CONCLUSION.....ciiiiiiiiiiisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 60
IDEAS FOR FURTHER WORK: ..eeeutvteeutreeeureeesuresaueeessssesssseesssnseessssessnsseesssessnssesssnsesssssessnseessssessnsseessssenenns 60
REFERENCES: ....ciiitiiiitiiitiiiiiiiniiniiiiisinisisissssississssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss |
APPENDIX A: PERSONAL REFLECTION ...cciiiiiiiiiiiiiiiiiiinsiissnisssissssssssssssssssssssssssssssssssssssssssssssssssssssssss v
APPENDIX B: MATERIAL USED. ...ccoiiiiiiiiiiiiniiiniiinniinsiissiisssisssissssssssssssssssssssssssssssssssssssssssssssssssssssssss Vi
APPENDIX C: ETHICAL ISSUES ....ciiiiiiiiiiiiiiiiiiiiiiiisiississssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss Vil
APPENDIX D: PROJECT PLAN ... .ciiiiiiiiiiiiiiiiiiisiiississssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss Vil
THE INITIAL PROJECT PLAN: 1t tuuttteuteeenuteeesuteeenueeessusesesssessnsseeesssessnsseessssessnssessnssessnssessnnsesssssessnssesssssessnses Vil
THE ADJUSTED PROJECT PLAN: ..etttuvteerureeesuteeesseeesseeessseessseesssseessseessnsesssnssssssseesssssesssssesssssessnssessnssessnsees IX
APPENDIX E: CODE OF CONVERT QURANY HTML FILES TO XML FILE (QURANYTOXML.PY )....ccccuu... X
APPENDIX F: CODE OF CONVERTING QURANIC ARABIC CORPUS TXT FILE TO XML FILE
(QACTOXIML.PY) cccuuruunnnnnnnnnssmnssmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssesssssssesses XIv
APPENDIX G: CODE OF CONVERT QURANA XML FILES TO XML FILE (QURANATOXML.PY)............ XIX



APPENDIX H: CODE OF MERGING THE THREE XML DATASETS IN ONE XML FILE (MERGE.PY)........ XXI

APPENDIX I: CODE OF ADDING ARABIC AND LATIN TEXT TO THE MERGED DATASET
(ADDQURANICTEXT.PY).ccoiiiiiiutetiiiiiiiiiiniieeeiiiscississsesssssssssssssseesssssssssssssssesssssssssssasssesssssssnns XXVII

APPENDIX J: SKETCH ENGINE CONFIGURATION FILE ......covvuueiiiimnniiiinniiniinanininsnsininsanenensan, XXIX
APPENDIX K: PART OF UNIFIED QURANIC ONTOLOGY (UNIFIEDQURANICONTOLOGY.OWL) .....XXXII
APPENDIX L: ABDULLAH ALFAIFI EVALUATION .....ciiiiuiiiiiiiniiniiiiiiiinniininsnsninnansissssnanne, XXX

APPENDIX M: SKETCH ENGINE SYSTEM MANUAL PROVIDED TO EVALUATORS.: ........cccceiirirnnnnneee XL

\



Chapter 1: Introduction

Understanding the problem:

The Holy Quran is the Muslims’ sacred scripture, and the Quranic text is considered the most perfect
example of classical Arabic (Sha‘rawi, 1993). Therefore, linguists use computing techniques to
analyse Quranic texts in order to accomplish many goals. In fact, people who are interested in the
Holy Quran have both religious and linguistic motivations, such as studying the behaviour of a word
in every occurrence in the Quran to find a pattern or a Quranic language rule. Usually, to study a
Quranic word, three different levels of language analysis are considered. The first analysis is the
syntactic analysis, which involves mainly studying the relations between words in a sentence or verse.
The second analysis is the morphological analysis, which involves studying the word’s grammatical
features, while the third analysis is the semantic analysis, which mainly describes the word’s
meaning.

In the Quran there are many verses in which the pronouns referring to Allah are plural while in other
verses the pronouns are singular. However, in fact there is only one Allah, as many verses indicate
(e.g. verse, chapter). The reason for having different morphological features is becoming a debate
among Quranic researchers. However, it is agreed that there is a relationship between the verse
concepts and the morphological features, because in some verses the pronoun referring to Allah is in
the singular form-while others are in the plural. Thus, a comprehensive dataset showing the pronoun
reference with its morphological features and verse concepts is needed to resolve Quranic debates.
Another debate is about the synonyms and antonyms of Quranic words. For instance, the word (rain)
is mentioned in the Quran using three Arabic words (gyv, mA’ and mtr). Each has a different root, but
all have the same meaning. By considering the context/verse concept related to that word, we can
infer the purpose of using each word. For example, the words (gyv) and (mA’) have been used in
verses with award and goodness concepts while the word (mtr) has been mentioned in verses with
scourge and bad deeds concepts. Thus, we cannot consider mtr as a synonym for gyv and mA’
because the Quran never uses the word (gyv) in relation to bad deed concepts.

However, taking into account the Quranic researchers’ motivations, there is an obvious demand for a
system which makes it possible to search and analyse Quranic words. This search aims to have three
levels of language analysis to produce a comprehensive word analysis.

In the second chapter, I investigate the current and online available Quran-related projects, and
conclude that these Quranic search tools have some limitations. These limitations can be categorized
in three points. First, some Quranic systems do not use all the Quranic chapters, but instead, restrict

their system to a few chapters because of issues related to the project team. Second, the search tool



used in some projects lacks capabilities in retrieving the Quranic words, for example, it is not possible
to retrieve feminine nouns using the Quranic Arabic Corpus search tools. Third, not all systems use a
common language; some use the Arabic vowelled script and others use the Buckwalter script.
However, it is argued here that unifying the declarations in each dataset will help get more results
from different datasets.

Furthermore, instead of having many systems and datasets sharing the same text but having different
functions and scripts, I argue that merging datasets’ annotations will overcome the keyword retrieval
limitations and solve the difference in scripts by using a common script. In addition, putting the
unified formatted datasets in one dataset helps achieve data integration, where the unified dataset is
independent of other datasets. (Lenzerini et al, 2002). Nonetheless, there is another challenge as each
dataset has its own file format and structure. So, to have a unified Quranic annotations dataset, I need
to unify the datasets’ formats as well.

In addition, by investigating the current Quranic ontologies, I conclude that there is a demand for a
Quranic ontology. Most ontologies are dedicated to describing one aspect of the Quran; for instance,
the ontology that studies antonyms was dedicated to finding the opposite nouns sharing the Time
concept only (Al-Khalifa et al., 2009). However, to date, there has been no research to produce an
otology that describes a word semantically and grammatically. The project aims to develop a unified
ontology describing the Quranic words in relation to their semantic and grammatical features. This
ontology will improve web/text searches. So, if a user searches for a word that has a concept meaning
or morphological features, other similar Quranic words sharing the same features can be shown in the

search results.

The project aim:

The aims of this project are as follows:
1- create a unified annotations dataset by merging three Quranic annotations datasets
2- port the unified annotations dataset to a corpus tool in order to explore the Quranic text and
enhance the dataset’s usefulness by making it accessible online for researchers
3- convert the unified annotations dataset to the ontology format

4- examine the unified ontology by using an ontology editor.

Objectives:

The objectives of this project are as follows:

1- understand the problem by investigating the existing Quranic datasets and ontologies

2- collect the Quranic datasets and understand their annotations, formats and tools if available
3- design three software to convert the three datasets’ formats into a unified format

4- design software to merge the three datasets into one unified dataset

5- find an appropriate corpus system to present the unified annotations dataset



6- test the corpus under the chosen system

7- evaluate the usage and usefulness of the unified corpus to Quranic researchers concerned with
the Arabic language and Quranic researchers

8- map the unified annotations dataset to ontology format

9- find an ontology tool to examine the converted ontology.

Minimum requirements:

1- acquiring datasets from three different Quranic datasets

2- processing the acquired datasets and converting them into one unified format
3- combining datasets to form one unified dataset

4- uploading the dataset into a corpus exploring system

5- converting the unified dataset to an ontology format

Degree relevance:
This project is conducted based on the knowledge and skills achieved from two modules of my MSc

Artificial Intelligence course. The COMP5410M Language module addresses many of the
fundamental principles of computational linguistics, such as corpus annotation, tagging, and tag sets.
In addition, the COMP5450M Knowledge Representation and Reasoning module focuses on the
fundamental principles in knowledge representation, such as logical analyses, description logic,
ontology in general, and Al knowledge bases. Therefore, the two modules have provided me with a

strong background about the project.

Research methodology:
The aim of the project is to create a unified annotations dataset in order to fully understand the

Quranic text and to increase the users’ knowledge. For instance, finding text patterns and clustering
the text with their grammatical and semantic features is a demand made by many Quranic scholars
and Arabic language researchers. However, these goals are considered as data mining tasks as the aim
is to increase the knowledge about the data. A suitable methodology for this project is the CRISP-

DM approach. This approach has several stages, as follows.

Business understanding
This phase defines the main objectives of this project. The project aims to help Quranic researchers

and Arabic language experts and learners. Its objective is mainly to understand clients’ needs by
investigating and analysing their requirements of having unified annotations datasets and ontologies.
According to Abbas et al. (2013), the current text search is limited to the keyword itself and works by
introducing the semantic web and tagging each word with its semantic and grammatical features. The

search output might show other un-typed words sharing similar features.



Therefore, this project aims to address the requirements of Quranic researchers by investigating and
merging three of the current Quranic annotations datasets and uploading the unified annotations
dataset to an exploring and search tool. By having a unified annotations dataset, a user can perform a
comprehensive analysis of words, verses and chapters as well. The unified annotations dataset aims to

increase the users knowledge by showing different annotations per word.

Data understanding:
The aim is to acquire and understand a range of annotations datasets and decide whether each

annotations dataset is appropriate to accomplish our goals. To understand a dataset, a comprehensive
reading of the project is needed.

In addition, this study aims to investigate the datasets by inspecting the covered chapters. In fact,
some projects have covered a few chapters of the Quran (Dror, 2004), while others have published a

domain model without the instances (Al-Khalifa et al., 2009).

Data preparation
After understanding the datasets, it is important to inspect the dataset format to consider whether the

data need to be prepared before implementing the merging process. I investigated the formats and
concluded that I would need to prepare the dataset by converting each dataset to a standard format
(XML file). This phase makes merging the prepared datasets in the modelling phase a much more
straightforward task.

Modelling
The purpose of merging the three datasets is to increase the data knowledge by organising the way

that clients can use them. The model phase involved designing an appropriate solution to merge the
three datasets in order to accomplish the project’s objectives. Chapter Four discusses the solution
design. In addition, to make it possible to use the dataset, a corpus tool needed to be specified. The
aim of having a corpus tool is to allow users to browse the dataset with annotations and to make the

resource available through the Internet.

Evaluation
The project produces three main outputs: first, the unified dataset, which merges the three datasets in

a standard format (XML); second, the unified dataset ported to the corpus tool (Sketch Engine) so
users can explore and search the dataset in an advanced level such as using Regular expressions; and
third, an OWL ontology version of the unified dataset ported to Protégé, an open source ontology
editor.

Stage one: The unified annotations XML dataset




To evaluate the unified annotations XML file, I used Xpath expressions to validate the merging
process. The Xpath outputs were compared to the equivalent information in each selected dataset.
This was during the design phase.

Since unifying the datasets would involve pre-processing the three datasets individually, I converted
each dataset to an XML version. Thus, these XML files needed to be verified and evaluated. To
accomplish that, I used again the Xpath expressions to query the XML file, then compared and

validated the results with the actual datasets tool output.

Stage two: Evaluating the Sketch Engine corpora

After the annotations had been merged and the unified file ported to the Sketch Engine tool, some
contributed typical users (Quranic researchers and Arabic language experts) evaluated the unified
dataset using the Sketch Engine tool. The aim of their evaluation was mainly to find concordance,
frequencies and thesaurus. According to dukes et al (2010), the Quranic Annotation corpus has made
a verb and lemma concordance listing the words with their frequencies. I used his words as a

foundation for the Sketch Engine tool. Identical results would show that the tool is perfect.

Stage three: Evaluating the unified OWL ontology through Protégé editor:

The evaluation was achieved by porting the unified Quranic ontology to Protégé editor and evaluating
the OWL ontology by querying the Quranic words using SPARQL language. The evaluation was
made by questioning the ontology and getting the answers. Then, the query results were validated by
comparing them with previous known answers. Identical results would indicate that the OWL

ontology is accurate.

Deployments:
Unifying the datasets is not the end of the project. The clients’ feedback is vital in developing the

dataset accuracy and presentation. The feedback involved Re-implementing the data mining process

to add/change the solution design.

Deliverables:

At the end of the project, four software prototypes will have been developed based on two main
functions.

The first function was to convert each dataset to a standard format. Since there are three datasets, then
creating a single converter prototype was a hard task. Thus, each dataset had to have its own format
converter.

The second function was the merging process. The fourth prototype merged the three datasets into
one dataset. The output of the fourth prototype is the unified annotations dataset and the Sketch

Engine corpus.



There was another planned prototype to convert the unified XML dataset to OWL ontology, but then
this was accomplished by using Protégé XMLTab.

Project plan:

The first project plan was changed due the unexpected long prototypes implementation and
background reading as well. The project direction was changed to address two main parts: the unified
Quranic dataset and the unified Quranic ontology. Thus, more tasks were need such as ontology
background research, finding an ontology editor and evaluating the ontology. The old project plan is

in appendix B.

Feb-13 Mar-13 Apr-13  Apr-13 May-13 Jun-13 Jun-13  Jul-13 Aug-13 Aug-13

Project aim and requirement

Background reading

Corpora collection (]
Interim report =~
Unifying the corpora format e—'
Merging the corpora into one corpus had
Evaluating the XML files 'l
Finding and understanding a corpus tool —d
Evaluating the corpus with corpus tool T
Background reading [

L

Finding ontology editor =]

Preparing for progress meeting M
Evaluation phase hT

Writing up the final report
Proofreading and reviewing the report (=]

Figure (1.1): Project plan




Chapter 2: Background research

2.1 What is the Holy Quran?

The Holy Quran is the religious text of Islam. The Quranic text is divided into 114 chapters, and each
chapter consists of a varying number of verses. A verse consists of a group of words. The Holy Quran
is Prophet Mohammed’s miracle and the most accurate resource of the Arabic language. Therefore,

finding incorrect syntax in the Quran is unusual.

2.2 The current Quran-related projects

There are many existing Quran-related projects, each having different purposes and functions.
However, all Quranic projects share the same Quranic texts but produce different annotations, such as
annotations focusing on the morphological analyses of each word, while others focus on the semantic
analyses for each verse. In addition, these projects have different data models, such as using OWL to
describe the relations between Quranic vocabularies, while others use XML and HTML to present
their projects’ outputs. The following sections will provide more detail about these projects and

annotations.

2.2.1 Semantic Opposition Ontology in the Holy Quran (SemQ)
SemQ is a framework that comprises many steps to produce the output. The main purpose of SemQ is

to find the antonyms for an input verse. This project was developed by King Saud University in Saudi
Arabia. There are two basic components in the SemQ framework: the ontology file and the SemQ tool
(Al-Yahy et al., 2010). The ontology used in the framework is a domain ontology, or OWL model,
which describes the relations between Quranic vocabularies without listing and indexing every
occurrence of the Quranic words. The aim was to pass the verse’s noun words to the ontology model
via a tool to investigate the relations between any two nouns in the verse. However, the output of the
framework depends on whether the input verse has an opposite noun associated with a certain degree
of relationship, such as absolute and scalar. Nonetheless, the project addressed the problem of finding
an accurate tool to discover the antonyms of Arabic words. Studying semantic opposition is
considered a helpful resource in understanding a word’s meaning by presenting the opposite meaning
(Al-Khalifa et al., 2009).

Since finding the opposite words in the Quran requires a huge effort, the objective was reduced to
presenting one concept feature (Time features). Basically, the domain shows the Arabic nouns
associated with Time concepts in the Quran. The domain was restricted to the noun words describing
Time features only (Al-Khalifa et al., 2009). Thus, it can be indicated that the SemQ is concerned

with the word level only.



2.2.2 Qurany Concept search tool:
Qurany is a search-by-concept tool which was developed by the postgraduate student Noorhan Abbas

at the University of Leeds as an MSc research project. The tool is available online

http://www.comp.leeds.ac.uk/nora/html, Figure 2.2. The purpose of the project is to search for a

keyword’s concept. So, searching for a keyword leads to finding similar keywords in every Quranic
verse, and then the search outputs lists verses containing the targeted keyword associated with many

concepts.

Search by Concept Print Save Verses Contactus About Q

Quranyesid ... . S

Search Results

It is He Who produceth gardens, with trellises and without, and dates, and tilth with produce of all kinds, and olives and
006:141 Yusufali  :pomegranates, similar (in kind) and different (in variety): eat of their fruit in their season, but render the dues that are
proper on the day that the harvest is gathered. But waste not by excess: for Allah loveth not the wasters.

® e
N
=]

FRERER

Concepts/Themes Covered:

Lo uadlly a¥y ssbie ol dani < @llad bl sm s < sl < a3l IS,

Pillars of Islam> Islamic> Oneness of Allah> His Gifts on his Worshippers and His Order to Speak about them
Slisaally 3831 < syl SIS0

Pillars of Islam> Due Alms and Charities

il syl < Lasadll BHAYI < LEAYI Slistally oLy

Man and The Moral Relations>The Dispraised Morals>Extravagance

el < Lasadll BYAYI < LAY olidlly oLyl

Man and The Moral Relations>The Dispraised Morals>Extravagance

Figure 2.2: Qurany tool website

For example, in a search for the English keyword (olive), which is mentioned in the Quran, the search
tool will retrieve every verse that has the keyword (olive) and any words associated with the lists of
concepts. One of these concepts is the Agriculture concept, which is related to the olive concept. In
addition, the concepts list has a hierarchical structure, which means the concepts listed as one line
have angle brackets between them:

Science and Art> The Scientific Facts and the Indication to Facts which have been supported by the
Scientific Discoveries>Agriculture

This line is read as follows:

1 [Science and Art
2 The Scientific Facts and the Indication to Facts which have been supported by the Scientific Discoveries
3 Agriculture

Moreover, the input keyword is lemmatized to increase the similarity measure. Then, the tool finds
the verses that match the lemmatized keyword. To increase the accuracy of the similarity, eight
English translations have been attached for each verse beside the Arabic verse text. Using these
translations, the system performance for extracting the (English) keywords is increased to 87%
(Abbas, 2009) but the search for Arabic keywords has a low performance, showing some unwanted
results. Nonetheless, tagging the Quranic words with their morphological annotations, such as the root
and lemma, would increase the retrieval performance.

Qurany has two module tools; the first module is the concept search tool as mentioned earlier, and the
second module is the Tree of concepts browser, which presents hierarchal predefined Quranic topic

groups. Each verse in the Quran is classified to one or more of these predefined concepts. The



Quranic concepts were taken from Mushaf Al Tajweed’s book and are considered as the gold standard
for evaluating the system classification. In Mushaf Al Tajweed, each topic has a list of all common
verses in the Quran (Abbas et al., 2009).

Qurany was developed to deal with the semantic retrieval of the verses’ keywords. So, each verse has
been annotated with many semantic tags to make it possible to search for similar verses sharing the
same concepts. Moreover, some verses were untagged with semantics due to implantation issues
(Abbas, 2009). However, having verses annotated with their semantic tags helps in finding
relationships between verses in general and words in principle as well.

Finally, the verse-concept files are stored in HTML format. The usefulness of the Concept tree is in
finding all verses under a topic easily. The results will be considered a valuable resource for Quranic
students and linguistic researchers.

The Qurany project has some limitations in retrieving Arabic keywords, and furthermore, does not
present the morphological and syntactic analyses for a target keyword. Thus, I argue that merging

Qurany with the Quranic Arabic Corpus will increase the retrieval performance for Arabic keywords.

2.2.3 Quranic Arabic Corpus (QAC)
The Quranic Arabic Corpus is published through the web and available at http://corpus.quran.com.

The website has many services such as a Quranic dictionary, an English translation of the Quran, and
the syntax Treebank. These services use the Quran Annotation Corpus as a dataset.

The Quranic dictionary has many advantages, such as the verb concordance, lemma concordance, and
morphology search tool. The verb and lemma concordances list the most frequent verbs in the Quran
and the most frequent lemma with their frequencies while the morphological search tool aims to
retrieve the morphological annotations for the input keyword. As Figure 2.4 shows, the tool makes it
possible to search for part-of-speech tags, such as searching for all adverbs in the Quran. Other
options are form, root, lemma and stem. The search tool accepts Arabic keywords and the Buckwalter

translation as well (Dukes et al., 2012).

Morphological Search

You can search for words in the Quran by part-of-speech or by using morphological features. Select
from the options below then press "search” to find words. See below for a list of examples.

Part-of-speech | (al)

Form )
Root
Lemma

Stem

* may be specified in Arabic or using Buckwalter trc

Search

Figure (2.4): The QAC morphological search tool.
In QAC, each word in the Quran is given its morphological and syntactical annotations. However, the
project lacks the addition of the semantic meaning to each Quranic word. This is because the aim was

to analyse each Quranic word morphologically and syntactically.



The annotation tag set is the syntactic and morphological features of the Arabic language, such as
POS tag, Stem/prefix/suffix feature, Gender, Person, Number, Aspect, Case, Mood, Verb form, Prefix
features and other grammatical features.

The corpus format is a text format with tab separation. Each segment or word appears on a line
beside the morphological annotations and its location information. The location is presented between
parentheses in the pattern (x:y:z:w), where x is the chapter number, y is the verse number in chapter x,
z is the segment number in verse y, and w is the token number in word z. As shown in Figure (2.5)
not all words have more than one token. If a word has many tokens, such as words with the
determiner ‘{I’ , a syntactic analysis has to be applied in order to find the appropriate tag annotation

for each segment (Dukes et al., 2011).

LOCATION FORM TAG FEATURES

(1:1:1:1) bi P PREFIX|bi+

(1:1:1:2) somi N  STEM|POS:N|LEM: { som|ROOT: smw|M|GEN

(1:1:2:1) {ll~ahi PN STEM|POS:PN|LEM:{ll~ah|ROOT:Alh|GEN

(1:1:3:1) {1 DET PREFIX|Al+

(1:1:3:2) r~aHoma'ni ADJ STEM|POS:ADJ|LEM:r~aHoma' n|ROOT:rHm|MS|GEN
(1:1:4:1) {1 DET PREFIX|Al+

(1:1:4:2) r~aHiymi ADJ STEM|POS:ADJ|LEM: r~aHiym|ROOT: rim|MS | GEN
(1:2:1:1) {lo DET PREFIX|Al+

(1:2:1:2) Hamodu N  STEM|POS:N|LEM:Hamod |ROOT : Hmd |M|NOM

Figure (2.5): The morphological annotation in the Quran Annotation Corpus

2.2.4 QurAna
QurAna is a search tool for the Text mining of the Quran project which can be found on the website

http://www.textminingthequran.com/apps/pron.php . This tool aims to show the pronoun references

by entering the verse and chapter numbers. Thus, this system retrieves the pronoun references by
entering an index consisting of chapter and verse indices, but cannot retrieve the verse by entering a

keyword. The user must know beforehand which verse s/he is going to search for (see Figure 2.6).

Pronoun References for 27:65

Verse 27:65

e | Ll 23 b 2,91 il 03 5 a3 Y B
Cgasd G061 agsadl

e e U0 gy B0 (st Ly 4 ) LA o KT
: o peale

o e e ARG Gyl

Letme know your

Figure (2.6): The pronoun references tool
The project’s purpose is to tag each pronoun in the Quran with the reference concepts. For example,
verse 5 in chapter 1 has the pronoun <yaka, which mainly refers to Allah. The discourse level in the
corpus is word level and the project covers all chapters in the Quran (Sharaf et al., 2012).
As shown in Figure (2.7), the QurAna tool uses a dataset formatted with XML. Thus, each chapter has
a <chapter> tag with id, each verse has a <verse> tag with id, and each verse segment has a <seg> tag
with id. If a segment is a pronoun, then the pronoun reference annotation is also applied. The pronoun

annotation theme contains three main parts.

10



The corresponding concept in the concept XML file will be referred to as <con> with the reference id.
The tag <pron> is the pronoun index in its chapter; <ant> is the segment id where the antecedent is
found in any chapters.
1- The pronoun id <pron id="X’>: the pronoun index in a chapter.
2- The concept id: <con id="X">: the tool uses the concept file to find the corresponding
reference’s concept by using the id. The concept id retrieves the English and Arabic concepts,
(see Figure 2.8).
3- The antecedent id <ant id="X">: this mainly refers to the reference position in the Quran,
such as the reference concept in <yaka is Allah, which has the segment id 11. Returning to the

segment id, we find the same reference concept ‘Allah’ (Sharaf, 2012).

' con='304'><seg id='64795'> </seg></pron>

><seg 1d=164797'> 4 </seq>
64798'> | </seg>
19" ant='64766 64766' con='304'><seg id='64799'> g </seg></pron>
64800"> J$ </seq>
'10" ant='64766 64766' con='304'><seg id='64801'> & </seg></pron>

Figure 2.7: Part of QurAna corpus file

J<con id='303'>

</con>

<english> news of the unseen </english>
</con>

Figure 2.8: Concept file in QurAna.
By examining the difference between the antecedent id and the reference concept, we infer that both
of them represent the same information. In addition, the pronoun reference tool shows the antecedent

id by replacing the segment id with the referred segment text.

2.2.5 QurSim
QurSim is another search tool for the Text mining of the Quran project. This tool retrieves similar

verses by entering any verse id. The search output lists any similar verses as shown in Figure 2.9. This
tool focuses on finding semantically related pairs of verse in the Holy Quran. The relatedness is based
on ‘Tafsir’, a book written by the Quranic scholar Ibn Kathir (Sharaf, 2012).

This tool could be a valuable resource in understanding and discovering similar verses, which might
have common patterns. In addition, the discourse level in the QurSim corpus is verse level, where

each verse has been tagged with the most similar verse.

11



You Entered Verse 27:65

S2 (9 Muhommad): None in§ arth knoweth the Unscen
Laly 1 ) il 02915 I o 5o Alad ¥ b e o S they Know ot when they wil be aised (a0aim):
usi\-i-uul-ﬂuw Pronoun Referents:

Following are 3 verses directly related to 27:65 from Ibn Kathir:

No. Arabic

laiy 52 ¥ Lyalay ¥ cashll Eilda by
y|u4,wh&m|.,_,;u|,_,u|usu

Figure (2.9): QurSim outputs

In Tafsir Ibn Kathir, the total number of related verses in the Quran is 7,679 pairs. Many verses
sharing the same word root have an understandable relatedness. On the other hand, 883 verses have
an ambiguous relationship and therefore are flagged as ‘not obvious’. The total number of obviously
related verses is 6,796. Thus, the tool has flagged each pair with their degree of relevance (Sharaf,
2012).

The dataset format used in the QurSim tool is formatted by XML as shown in Figure (2.10). Each
verse has seven XML tags as follows:<uid> is the incremental index of verse; <ss> the source
chapter; <sv> the source verse; <ts> the target chapter; <tv> the target verse; <common> is the
number of shared root words between the pair;; and <relevance> is the degree of similarity, which
takes a value of 0 or 1 or 2. A value of 0 means the verses are related but, to understand the relation,
you need to read the explanation of the two verses in Tafsir Ibn Kathir. A value of 1 means the verses
are related, but still inappropriate for training purpose. A value of 2 means the verses are very similar

and are ideal for training purposes (Sharaf, 2012).

- <database name="related-verses">

<!-- Table kathir -->

- <table name="kathir">
<column name="uid">1</column>
<column name="ss">1</column>
<column name="sv">1</column>
<column name="ts">1</column>
<column name="tv">2</column>
<column name="common">0</column>
<column name="relevance">2</column>

</table>

Figure 2.10 : QurSim dataset format.

2.2.6 Morphological Analysis of the Quran
A morphological analysis of the Quran project has been developed by the University of Haifa in

Israel. The project has two main parts; the first part is the morphological annotated corpus and the
second is the GUI search tool, mainly to retrieve Quranic words with specific morphological features
(Dror et al., 2004).

The Arabic language has complicated morphological analyses. Each Arabic root can have many
derived word forms. Therefore, a simple retrieval system will fail to find Arabic word occurrences in

a corpus, and the result will be restricted to the same lemma form in the source word. The system of

12



morphological analyses of the Quran has solved this issue by exhaustively analysing each Arabic
word. So, the system will retrieve all the derived forms of that lemma (Dror et al., 2004).

The dataset format is a plain text format with tab separation (see Figure 2.11). This type of dataset is
called an annotated corpus, where each word has its own annotation. The purpose of this corpus is to
be run under the SQL server or GUI interface in order to retrieve the Quranic word. So, the main

function of the corpus is to retrieve as much word information as possible in the Quran.

1 suurat-u swr+fuglat+Noun+Triptotic+Fem+Sg+Nom

3 l-faatiHat-i Def+ftH+Verb+Triptotic+Steml+ActPart+Femt

5 bi-smi o iptotictMasctsy

7 1llaah-i Def+llaah+ProperName+Gen

S l-raHmaan-i Def+rHm+fa&laan+Noun+Triptotic+Adjective+Masc

1 l-raHiim-i Def+rHm+fasiil+Noun+Triptotic+hdjectivetMasct

3  1l-Hamd-u D &l iptoti g

Figure (2.11): Part of the dataset format
As Figure (2.11) shows, the file is simply a text file, and each line has a single root word with its affix
and suffix separated by the ‘-’ character. In contrast, the morphological annotations are shown beside

each word. The annotations might have the following structure:
Root + Pattern + Part of speech + Case marking + gender + number + case.

The “+’ character is used as a separator between the structural analyses.

The purpose of this project was to retrieve the Quranic words associated with the morphological
annotations. The retrieving performance guarantees that each word sharing the same root will be
shown in the search outputs (Dror et al., 2004).

Unfortunately, this project came to a halt due to project team issues, and only a few chapters were

covered in the project.

2.3 Choosing the project datasets:

This project aims to merge three datasets. To choose the dataset, we had to consider many criteria,

such as the chapter’s coverage, and the project’s completeness and function, as shown in Table 2.1.

Dataset Function Format Discourse Corpus Completeness
Level coverage
SemQ ontology  The opposite semantic OWL Word Only one word
ontology ontolog feature has been
y covered. No
YA QurSim dataset  The relatedness verses XML Verse All chapters Yes
l dataset
&MY Qurany dataset  Find the verse concept =~ HTML Verse All chapters Yes
l dataset
B QurAna dataset Antecedence XML Word All chapters Yes
assignment for each dataset
pronoun

13



Dataset Function Format Discourse Corpus Completeness

Level coverage
QAC Morphological Plain Word All chapters Yes
Corpus analyses text
corpus
Morphological Comprehensive Plain Word A few chapters
Analyses of the  morphological analyses text No
Quran corpus of Quranic words. corpus

Table (2.1): summary of the existing Quranic datasets

SemQ ontology: To consider the SemQ ontology as one of the targeted datasets, I considered the

following:
1- SemQ ontology is an OWL model, which does not list all the Quranic words sharing the same
relations. For instance, the class (TimeFeaturel) should be associated with certain instances
such as the instance word _id 1, which is located in chapter id 1 and verse id 1.
2- SemQ addresses only one feature type (Time feature). Therefore, I could not rely on the
ontology to express any opposite occurrences.
For the above reasons, it was concluded that SemQ has a different philosophy and cannot be proposed

in our unifying annotations ontologies.

Morphological Analyses of the Quran corpus: This project was not completed; therefore, it was

excluded from the targeted datasets because I was seeking to cover all Quranic chapters.

Quranic Arabic Corpus (QAC): This is one of the ideal datasets. The project was completed and

covers all Quranic chapters. This corpus has an obvious structure and can be pre-processed for
merging with other datasets.

The aim of choosing this corpus was to develop the morphological analysis search tool by adding
more annotations to it, such as the pronoun reference. In addition, I aimed to add all the
morphological and syntactic features that were not listed in the morphological search tool, such as

retrieving all words in the Quran having the feminine gender.

The pronoun reference search tool (QurAna): This is another of the ideal datasets. The dataset

format has an obvious structure; therefore, merging it with the QAC dataset would develop the output
by showing the QAC and QurAna annotations.

In fact, there is a previous study which merged the QurAna and QAC datasets. This merge was done
by the undergraduate student Zainb Algassem in her final year project. The integrated file was
uploaded to a linguistic tool ‘Sketch Engine’ on the web. By using the Sketch Engine tool, many users

around the world will be able to use the integrated file easily. Her project produced four corpora files:

14



an Arabic language vowelled corpus , an Arabic language unvowelled corpus, a Latin alphabetic
vowelled corpus, and a Latin alphabetic unvowelled corpus (see Figure 2.11).

In fact, the merged file has some limitations, such as the lack of any search for the words according to
their grammatical features, such as the morphological search tool does partially. For example, it is not
possible to retrieve a specific type of grammar annotations, such as the feminine nouns in the
Algassem project. More limitations regarding her project can be found in Chapter Four. Thus, I

needed to re-merge QAC and QurAna to add the annotations labels.

Qurany search tool dataset: Qurany is a verse-based dataset. Since we do not have semantic concepts

at the word level and the available semantic concepts are at the verse level, I aimed in this project to
add a diversity of language analyses annotations. Since we have the morphological and syntax

annotations (QAC and QurAna), I chose Qurany to add the semantic analyses annotations.

QurSim: QurSim and Qurany share the same objective, that is, finding similar verses. However,
Qurany adds the concepts to each verse. Thus, choosing one of them would be enough to accomplish
the third dataset. There were more advantages to adding Qurany than to adding Qursim. In fact,
Qurany adds the concepts which might be inherited to the word level, but this inheritance can be seen

as a disadvantage because not every word in the verse can express the same concept.

The selected datasets: Thus, the target datasets were the Quranic Arabic Corpus (QAC), QurAna and

Qurany datasets. The challenge of this merging is the different discourse levels each; for example, the

QAC and Qurana datasets have a word level while Qurany has a verse level.

15



Chapter 3: Ontology and Corpus Representations and Tools

This chapter discusses the representation of datasets and ontology data models and investigates some

frequently used corpus tools and ontology editors.

3.1 Ontology data model:

Ontology aims to represent a domain by defining its vocabularies and their relationships. According
to Noy et al (2001), ontology can help researchers to share the common vocabulary in such a domain.
Moreover, ontology has extendability and re-usability features, so it can be extended to cover more
vocabularies by further researches. This kind of data model assumes that using the ontology in a
search engine will increase the retrieval performance by finding other inferred instances.

Examples of data models encoding the semantic are as follows:

3.1.1 RDF model:
This stands for Resource Description Framework (RDF). According to Lassila et al (1999), the syntax

used in RDF is much closer to XML syntax. In addition, one version of the popular RFD model is the
abstract model, which describes two related instances called a graph or triple. A triple has a subject
and object nodes which are related components. The subject is an entity and the object might be
another entity or a value (Lassila et al, 1999).

An example of Quranic RDF triples produced by Protégé editor is shown in the following figure(3.1):

<rdf:RDF xmlns:rdf="&rdf;"
xmlns:kb="8&kb;"
xmlns:rdfs="&rdfs;">
<kb:chapter rdf:about="&kb;chapter_0"
kb:_id="1"
rdfs:label="chapter_0">
<kb:verseSlot rdf:resource="&kb;verse_1"/>
<kb:verseSlot rdf:resource="&kb;verse_2"/>
<kb:verseSlot rdf:resource="&kb;verse_3"/>
</kb:chapter>

Figure(3.1): An example of RDF triples.
The RDF model has limitations in describing the relationship feature between subject and object.
Such transitive and symmetric relations cannot be represented in RDF. The relationship types have

the ability to infer more knowledge.

3.1.2 Web Ontology Language (OWL) model:
According to Antoniou (2004), the semantic web layers in figure (3.2) indicates that Ontology Web

Language (OWL) is built on top of the RDF model.

16



Rules TI'USt
Proof
Logic
Self-

Ontology vocabulary

Digital Signature

RDF + rdfschema

XML + NS + xmlschema

Figure(3.2): The semantic web layers; adopted from Antoniou (2004)
Moreover, OWL solved some RFD weaknesses such as adding the features types to the relationships.
Therefore, OWL adds the semantic to the data by defining the relation type. There are lots of relation
types and there are relation types specific to OWL such as the following:
* Functional Property:
If a relationship between an individual A and literal B is Functional Property, this means each
individual must have at least one relation to B. For example, in the unified uranic dataset
every segment must have Functional Property to POS literal, because every segment must
have a POS tag.
* Inverse Functional Property:
If two individuals A and B have an inverse relation R, it means that this is a unique
relationship and B cannot be shared with other individuals. For example, a verse id has an
inverse Functional Property in relation to its segments. So segment id 5 is the only feature

with a relation with verse id 1.

<owl:InverseFunctionalProperty rdf:ID="PartOf">
<rdfs:domain rdf:resource="#seg"/>
<rdfs:range rdf:resource="#seg"/>

</owl:InverseFunctionalProperty>

Figure (3.3): The inverse Functional Property
* Symmetric Property:
If A and B have a symmetric property relationship, then this means that A infers B and B
infers A. A and B together is literally an instance of the one class. However, in this study’s
unified dataset there is no example of this relationship. However, assume that segment id 1
and 2 represent a compound segment which forms a symmetric relationship with part of such

as the following figure:

<owl:SymmetricProperty rdf:ID="PartOf">
<rdfs:domain rdf:resource="#seg"/>
<rdfs:range rdf:resource="#seg"/>

</owl:SymmetricProperty>

Figure (3.4): the symmetric relation

17



» Transitive Property:
If A infers B and B infers C, then A and C individually have a transitive relationship. An
example is if Qurany Concept Pillars of Islam infers Islamic, and Islamic infers Oneness of
Allah, then Pillars of Islam infers the Oneness of Allah. Therefore, Pillars of Islam and

Oneness of Allah have a transitive relationship (figure 3.5 ).

<owl:TransitiveProperty rdf:ID="subConceptOf">
<rdfs:domain rdf:resource="#QuranyConcept"/>
<rdfs:range rdf:resource="#QuranyConcept"/>

</owl:TransitiveProperty>

Figure (3.5): the transitive property

3.2 Ontology editors and tools:
The ontology Editor is defined as editors enabling the knowledge modelling which might have the

following features:
- Editor has a friendly graphical user interface.
- It can create ontology by writing the classes and instances with relations.
- Some editors can generate ontology from XML files and spreadsheets.
- It can explore the ontology’s class, instances and relations.
- Some editors can present the classes with relations as a graph view.
- A reasoning engine which applies the properties of the instances and obtains new knowledge.
- Can query the ontology by using a query language such as SPARQL.
There are lots of current ontology editors, which cannot all be listed in this project. According to
Alatrish (2012), Apollo and Protégé editors are the most frequently used in designing and processing

ontologies. He stated that Apollo and Protégé have significant features which are listed below.

3.2.1 Apollo:
Apollo is a free ontology, editor-developed by the Knowledge Media Institute of The Open University

and it is available through http://apollo.open.ac.uk. This editor has many significant features, such as
the robust consistency engine, which ensure that individuals and relations are consistent. In addition,
Apollo has the ontologies inheritance feature, so an ontology can inherit other external ontology
vocabularies, because they are a single ontology. However, Apollo lacks supporting importing XML
files, an important criterion in choosing the project ontology editor. Moreover, Apollo does not
support the graphical view of ontology, which might improve understanding of the ontology design

(Alatrish, 2012).

18



Apolio 0.28.0
File Edit Options View Help

B (5 [R  R R [ [ 2 [ | [ 8| (@) [%e[ %] 5
;f::,l,:,ma,dm o Super-classes Slots using focus
9 @ diagn X

® gen dical-knowledge

oW

disease-i disorder
istot [Type [vatue Cardinality [Documen/
string R

0
I

eneral-medical-knowledge [4]

Q9 ¢

Docimengton | sios | Relatonal |
Sub-classes and instances | Classes used by focus
el I string

?

?

3 PERRERRE ¢ ¢ ¢ sREERE

2\¢

Figure(3.6): Apollo editor interface (adopted from Apollo website
http://apollo.open.ac.uk/index.html).

3.2.2 Protégé:
According to Alani et al (2005), Protégé has been described as “the killer app”. Protégé has many

significant features that make it a distinctive ontology editor. Protégé is a free application developed
by Stanford University and it is available through http://protege.stanford.edu. Protégé has a friendly
GUI that enables browsing of the ontology in hierarchal view.

Protégé has the ability to add an external plug-in to the application, enhancing its features. Some
plug-ins need to be installed by the user and some are built in features of the full version of Protégé.
The purpose of a plug-in is to add features such as visioning and merging ontologies, importing XML
files and many more features.

Jambalaya is a graphical viewer plug-in used by Protégé. It presents the ontology design in a dynamic
graphical view thereby visualizing ontology summaries by the main concepts /classes with relations.
In Jambalaya, classes are represented in square shapes and by clicking inside a square it shows the
class’s instances. The relations between classes are shown by red arrows. The representation shows
the type of relations between classes representing the property type, such as the transitive property
links between two un-successive classes.

Another important plug-in is the Protégé-OWL. It is a part of the Protégé full version. This plug-in
enables the use of the ontology reasoning by inferring the relation property.

The most important feature in Protégé is the ability to import XML files. It accepts XML through the
XML tab, which can be enabled through configuration options. Then, the imported file is mapped to
an ontology format such as OWL or RDF. This facility does not accept XML schema and accepts
only (.xml) files. Unfortunately, a research study examining the efficiency of importing XML file and
mapping to OWL ontology could not be found, but it seems like a novel approach.

Protégé has an efficient ability to manipulate ontologies of large size, which might be helpful in
dealing with the Unified Quranic ontology.

An example of using Protégé in developing Quranic ontology is the ontology based semantic search

in the Holy Quran project developed by Khan et al (2013). This project aims to build a question-and-

19



answer knowledge base. Queries can be constructed using SPARQL to retrieve instances having an
inferred relationship property.

Because of the above features, Protégé has been chosen as the ideal editor for this study’s XML
unified dataset. Using protégé’s facilities, an OWL ontology version of this XML file can be

generated.

3.3 Corpus tools:

Undoubtedly, having a corpus without a tool enabling an explore function will not obtain the aim of
this project. Thus, a corpus tool must be determined. There are many corpus tools that met the project
requirement and can be used. Algqassem (2013), in her final year project, examined many corpus tools
such as the aConCorde, IntelliText and Sketch engine. But, Sketch Engine tool, a recent online corpus
tool which has many significant features. Another corpus using Sketch engine is the Arabic massive
corpus arTenTen (Habash et al, 2013). However, it is argued that Sketch engine has a significant
analyses features and it is able to operate the Arabic text. It has facilities enabling the manipulation of
Arabic text such as building the concordance and Thesaurus. But Sketch Engine has extraordinary
features that make it distinctive from other tools. This feature is the Corpus Query Language CQL,
which is involved in querying the corpus by using regular expressions. CQL is considered as an
advanced tool feature. Using CQL, words with specific grammar features or genre can be retrieved,

see figure (3.7) (3.8).

Figure(3.7): Sketch engine Search options in Brown Corpus.

Query .*, FICTION::ADVENTURE 70,714 (60,147.6 per million)

Page [1 of 3,536 [ Go | |Next| Last

The Killer Marshal. , and that only when | get out of pain . Dan ,y Morga
The Killer Marshal. and that only when | get out of pain . Dan  Morgan ;. 5/, told h
The Killer Marshal. only when | get out of pain . Dan Morgan told ,y himse
The Killer Marshal. when | get out of pain . Dan Morgan told  himself he we
The Killer Marshal. get out of pain . Dan Morgan told himself he would
The Killer Marshal. out of pain . Dan Morgan told himself he would forget
The Killer Marshal. pain . Dan Morgan told himself he would forget , Ann T
The Killer Marshal. Dan Morgan told himself he would forget Ann Turne
The Killer Marshal. Morgan told himself he would forget Ann Turner ,y .Hev
The Killer Marshal. told himself he would forget Ann Turner - He wz
The Killer Marshal.  told himself he would forget Ann Turner . He was w
The Killer Marshal. himself he would forget Ann Turner . He was well r
The Killer Marshal. himself he would forget Ann Turner . He was well rid of
The Killer Marshal. he would forget Ann Turner . He was well rid of her
The Killer Marshal. would forget Ann Turner . He was well rid of ;1 her .

The Killer Marshal. would forget Ann Turner . He was well rid of her . Hec
The Killer Marshal.  forget Ann Turner . He was well rid of her - /SED He ce
The Killer Marshal. forget Ann Turner . He was well rid of her . He certai
The Killer Marshal. Ann Turner . He was well rid of her . He certainly did <g
The Killer Marshal. . He was well rid of her . He certainly did <g/>r
Page |1 of 3,536 | Go Next | Last

Figure(3.8): The concordance of all Adventure words in Brown Corpus in Sketch engine

20



Another Corpus tool dedicated for Quranic text is LAMP tool, available in http://corpus.quran.com.

The tool mainly deals with two databases; the Quraic text database and the Quranic audio and visual
database. The tool is able to search for morphological features on Quranic text (figure 3.9), show the
syntactically parsing verses and visualize the initial Quranic ontology for Quranic nouns and
pronouns (Dukes, 2012). However, the tool can do search only for morphological features and has
limitations in search options as been described in chapter two. The tool is customized to Quran Arabic

Corpus and therefore can’t be adapted to be used in this project.

Morphological Search

You can search for words in the Quran by part-of-speech or by using morphological features. Selec
from the options below then press "search” to find words. See below for a list of examples.

Part-of-speech | (all)

Form (@l

Root *
Lemma *
Stem
* may be specified in Arabic or using Buckwalter transliteration.

Search

Figure(3.9): Morphological search tool in Quran Corpus (dukes,2012).

3.4 Corpus representation:
A corpus can be defined as a bunch of text which can be plain text or text tagged with linguistics

annotations such as POS tags (annotated corpus), the Brown corpus, or a structured text in XML
syntax, such as Wikipedia XML Corpus by Denoyer et al (2006). Hence, the Unified Quranic

Annotation dataset is considered to be an XML corpus.

3.4.1 Sketch engine representation (format):
The corpus in Sketch engine could be in plain text format; successive words in a txt file or an XML

file, or an xml tag specifying sentences and words. In fact, there are many standard file formats that
are accepted by Sketch Engine; tools such as PDF, MICROSOFT DOCUMENT, HTML, XML and
TXT. However, of more interest is XML, used in this study’s unified dataset. According to Sketch
Engine wiki, complex XML files such as schema will not be processed properly, but simple XML

files will be accepted and processed.

21



Chapter 4: Design the Solution

This chapter discusses the most suitable and reasonable design and format for unifying different
Quranic datasets. As we have different file formats, and we want to merge them in one file, we need to
unify each file format to make merging them much easier.

The first step in designing the solution is to have the selected datasets in a unified format or to

preprocess the datasets.

4.1 The design aims:

There are many formats that can be used in unifying the datasets, such as XML, CSV (comma
separated value) and txt. However, finding a prober format is a vital decision. So, it is crucial to
consider the main goals of the design:
1- to have unified datasets to be used by a corpus exploring system (sketch engine).
2- for, the unified datasets to be mapped at the same time to the ontology format (OWL
ontology).

Sketch engine Unified
corpus ontology

Figure (4.1): The aim of merging the three datasets

Sketch engine is a corpus exploring system which enables users to extract information and summarize
it efficiently. Sketch engine uses XML to define the corpus structure and hierarchy (Kilgarriff et al.,
2004). However, it does not accept the files format such as OWL or RDF. In addition, there are many
available approaches in mapping XML to the OWL ontology (see the Ontology chapter).

However, XML is a common file format in many corpus tools and would be considered as a proper
structure to accomplish our goals. Moreover, comparing XML to CSV, XML has the ability to describe
the hierarchy and relationships in an obvious and readable structure.

Regarding the XML complexity level, Sketch engine does not accept complex XML files, such as the
XML schema (Kilgarriff et al., 2004). So we have to restrict the XML complexity to a simple XML

dataset by describing the data without its constraints and data type definitions as the schema describes.

22



The eXtensible Markup Language provides robust information storage. Its importance comes from its
ability to store data with its description or metadata. An obvious feature of XML is the ability to
describe the hierarchal data, as will be seen in the Qurany concepts files; each concept is in a hierarchy
structure. Therefore, XML can describe these concepts in a multilevel structure.

Furthermore, XML is machine- and human-readable. Anyone who reads the XML file can initially
understand the main structure, but to retrieve specific content, the Xpath technique can be used.
Another advantage of XML is that it is an extensible file, which means it is applicable to extend the
dataset with more annotations (Fawcett et al., 2012).

Perhaps the most serious disadvantage of the final unified XML dataset is the increase in the file size.
Since each annotation is described by an attribute, then this adds more size to the file (Fawcett et al.,

2012). However, the final output has a size of 20MB and can be ported to Sketch engine successfully.

4.2 Preprocessing the data:
Algassem merged file:

By looking at the available datasets, one merged dataset was done by Zainab Algassem in her final year
project at the University of Leeds. She merged two datasets, namely, Quranic Arabic Corpus (QAC)
and QurAna. Both datasets have syntactic and morphological annotations per words. Algassem merged
them and ported the merged file to Sketch engine. However, this project “A unified Quranic
Annotations and ontology” aims to extend the last merged dataset by Algassem by merging one more
dataset (Qurany Concept) with the previous two. Therefore, I had to investigate her merged dataset and
decide if the merged file would be consistent with the third dataset (Qurany Concept). Consequently, I
came with following problems:

Algassem used a combination of XML structure and vertical structure to define the word attributes as
the Sketch engine corpus format does. In the vertical line, each segment has been associated with its
POS tag, lemma, QAC features, and QurAna features. QurAna is concerned with annotating each
pronoun in the Quran Annotations corpus. In other words, any pronoun should have two kinds of
annotations: a QAC feature and a QurAna feature. Other kinds of words (verb, adjective, etc.) do not
have a particular annotation in QurAna. However, Algassem decided to give each segment its QurAna
annotations (antecedent, aconcept and econcept) (see Figure 4.2 ); if the word is not a pronoun, a
NONE value has been given.

In exploring her merged file, I found many parts that were inconsistent with my aims, such as the
following:

1- Compound segments such Prefix and Stem have the same <seg id>, which leads to inconsistency

of segments ids, Figure (4.2).

23



2-

<verse id="3">
<seg id="92469">

y VOCy PREFIX|ya+ NONE NONE NONE

<q/>

>yhA N >yhA STEM |POS:N| |[NOM NONE NONE NONE
</seg>

Figure (4.2): Two segments share the same <seg id>.

The QAC grammar features were undivided. Therefore, retrieving words with a specific grammar
function is not applicable in her approach. For instance, if someone is interested in finding
feminine nouns in the Quran, unfortunately, this is not applicable. Sketch engine gives facilities to
restrict the search by typing the features as CQL or ticketing from the check box, but to have this
feature in Sketch engine, each grammar feature needs to be declared by an XML attribute or a

vertical line attribute separately.

The POS filter in her corpus does not work perfectly. I examined it by retrieving all nouns in the
corpus leading to incorrect results, and the result showed unwanted POS tags as shown in Figure
(4.3). In fact, this is a common problem in Sketch engine. To solve this issue, POS tags must be

declared as an XML segment’s attribute as well.

user: Ms. Zainab Algassem  corpus: Latin_unvowelled Search

Concordance

e | Make Concordance |
::r:us::ch Query types Text types Context

Find X Query type (simple ()lemma (phrase (word (_)character (3)CQL

Sketch-Diff

2

cQL: | (word="*" | Default attribute:| word + | Tagset summary
Parallel Query
(] Latin_vowelled (Latin_vowelled)
Context
Lemma filter Pos filter
Window: | both :| |5 :| tokens. Window: | both +| |5 ¢ tokens.
Lemma(s): [all + | of these items. pos: [noun all 3| of these items.

pronoun
adverb

Derived nominals
verb

Figure (4.3): Searching for all nouns in the Quran retrieved incorrect results.

24

Query .* > Positive filter (excluding KWIC) N|PN 120,907 (942,796.1 per million)

Page [1 of 6,046 | Go | |Next|| Last

1 sm {lth {l rHmn {l rHym {l Hmd ( lh rb b

1 {lth {L rHmn {l rtHym {l Hmd L Lh rb {l SM . b

1 {L rHmn {l rHym {l Hmd | lh rb {l Elmyn {lth bsm

1 rHmn {l rHym {l Hmd L th rb {l Elmyn {l {l b sm {lth

1 {l rHym {l Hmd L th rb {l Elmyn {l rHmn rHmn b sm {lth {l

1 rHym {l Hmd L Lh rb {l Elmyn {l rHmn {1 il b sm {llh {l rtHmn

1 {l Hmd L th rb {l Elmyn {l rHmn {l rtHym rHym . b sm {lth {l rHmn {l

1 Hmd L th rb {l Elmyn {l rHmn {l rHym mlk { b sm {ith {l rHmn {l rHym

1 Lth rb {l Elmyn {l rtHmn {l rHym mlk ywm  Hmd b sm {lth {l rtHmn {l rHym {l

1 th rb {l Elmyn {l rHmN {l rHym mik ywm | b sm {lth {l rHmn {l rHym {l Hmd

1 rb {l Etmyn {l rHmN {l rHym mlk ywm {l Ih b sm {llh {l rHmn {l rHym {l Hmd |

1 {l Elmyn {l rHmn {l rHym mlk ywm {l dyn D feb/N/rbir b sm {lth {l rHmn {l rHym {l Hmd | Lh

1 Elmyn {l rHmn {l rHym mlk ywm {l dyn <yAk { b sm {lth {l rHmn {l rHym {l Hmd L Lh rb
1 {lrHmn {l rHym mik ywm {l dyn <yAk nEbd Elmyn ,; sm {lth {l rHmn {l rHym {l Hmd L Lh rb U
1 rHmn {l rHym mlk ywm {l dyn <yAk nEbd w { {L rHmn {l rHym {L Hmd L th rb {l Elmyn
1 {l rHym mlk ywm {l dyn <yAk nEbd w <yAk rHmn rHmn {l rHym {l Hmd L (A rb {l Elmyn {l
1 rHym mlk ywm {l dyn <yAk nEbd w <yAk nstEyn { {l rHym {l Hmd L th rb {l Elmyn {l rHmn
1 mlk ywm {l dyn <yAk nEbd w <yAk nstEyn rHym rHym {l Hmd L th rb {l Elmyn {l rHmn {l
1 ywm {l dyn <yAk nEbd w <yAk nstEyn {hd mlk {L Hmd L lh rb {l Elmyn {l rHmn {l rHym
1 {l dyn <yAk nEbd w <yAk nstEyn fhd nA {l  ywm Hmd L th rb {l Elmyn {l rHmn {l rHym mik
Page [1 of 6,046 | Go | Next | Last



4- Some QurAna annotations had a missed value in the English concept as shown in Figure (4.4).

<seg id="90207">
<g/> ¢

lhm PRON  hm SUFFIX|PRON:3MP 90199 90203 st 5 sl

</seg>

<seg id="90208">

w CONJ w PREFIX|w:CONJ+ NONE  NONE  NONE

</seg>

<seg id="90209">

<q/>

twkl V. twkl  STEM|POS:V|IMPV|(V)||ROOT:wkl1|2MS ~NONE  NONE  NONE

</seg>
Figure (4.4): Missed value in QurAna English concept value.

However, the merged file by Algassem had missed some annotations and needed to be revised.

Therefore, re-preprocessing the two annotations would solve these issues. The processing strategy must

be done in such a way that each segment must have a unique id. This is because we aim to convert the

XML to an ontology format (OWL), and in ontology, each instance should have a unique id.

Processing the three datasets:
The final merged XML file aims to merge three datasets: Quranic Arabic Corpus (QAC), QurAna

annotations and Qurany concepts. To merge the three datasets, I investigated two approaches:

First approach:
This involved merging the datasets by reading the three datasets in their actual format and fetching the

identical chapter id and verse id and segment id together. Then the three outputs were merged into one
line and written as an element in the XML tree. Using this approach, the processing took hours to cover
a few chapters in the Quran. In addition, two of the datasets are inconsistent in the segment id. The
Quran Corpus Annotation file has a segment id with a maximum of 128,119, while QurAna has a
segment id with a maximum of 127,795. The result has 1,000 segments without QurAna annotations.

So, this approach was not practical.

Second approach:
This involved converting each dataset into the XML version, and then selecting the wanted data using

Xpath expressions. Xpath makes it possible to extract a specific type of data in the file without reading
every line and to make comparisons each time. For example, Xpath could be used to extract the English

Qurany Concept element with the “tree” attribute by using python Element Tree API:
if verse qurany.getchildren():
for QC in verse_qurany.findall'ENQuranyConcepts/[@tree]"):
QuranyConceptElem = ET.SubElement(verse MT, 'QuranyConcepts')

In implementing this approach, the merging processing went quickly; it took about minutes to merge

the three datasets into one file. In addition, having an XML version for each dataset can be useful in

25



further research as it can be uploaded in a corpus tool like Sketch engine to make it accessible to other

researchers.
Quran_Corpus_Annotat An 1 o ts.html
Rl wiiawl el
B QO
Qnran_Corpus_Annohdo QurAna.xml Qurany_concepts.xml J

-

Sketch engine Unified
corpus ontology

Figure (4.5): Merging the three datasets in the second approach

First dataset: Qurany Concept:
As mentioned in Chapter One, Qurany Concept is a search tool for Quranic keywords. The tool

retrieves verses that have the target keyword associated with the verse concepts. In addition, verses are
clustered according to their concepts. In contrast, some verses have no concepts, while other verses
might have more than one concept. However, we are concerned more about the verse clusters, which
might be used as a genre for each verse in each chapter. The data are published as html files in the

website http://www.comp.leeds.ac.uk/nora/html/. Each html file contains the information and concepts

for one verse.

By following the second approach, the 6,323 html files will be converted completely to one XML
structure. This conversion reduces the number of output files. So, instead of building 6,323 XML files,
it is possible to build one XML file containing the information regarding 6,323 verses; this leads to a
reduction in the time consumed and in the computer’s memory usage in reading the Qurany files. The

XML file contains all the information listed in the html file as the following elements and attributes:

Element Attribute Level
Quran Nothing Root
chapter Id Quran’s sub element
verse Id Chapter’s sub element
text Lang (Arabic/English), author Verse’s sub element
QuranyConcept Lang(Arabic/Engish), tree Verse’s sub element

There are nine English translations for the verse. Each translation has been done by a different Islamic

scholar. In addition, I kept the original verse concepts without splitting the verse. The only modification

26



I did was to replace the angle bracket (>) with a semi colon (;). This is to avoid problems in translating
to XML entity references.
Figure (4.6) shows a sample of the desired XML design for the first chapter, first verse in the dataset.

<Quran>
<chapter id="1">
<verse id="1">
<text lang="Arabic">
par) e W e
</text>
<text Author="Khan" lang="English">
In the Name of Allah , the Most Beneficent, the Most Merciful.
</text>
<text Author="Maulana" lang="English">
In the name of Allah, the Beneficent, the Merciful.
</text>
<text Author="Pickthal" lang="English">
In the name of Allah, the Beneficent, the Merciful
</text>
<text Author="Rashad" lang="English">
In the name of GOD, Most Gracious, Most Merciful.
</text>
<text Author="Sarwar" lang="English">
In the Name of Allah, the Beneficent, the Merciful
</text>
<text Author="Shakir" lang="English">
In the name of Allah, the Beneficent, the Merciful.
</text>
<text Author="Sherali" lang="English">
In the name of ALLAH, the Gracious, the Merciful.
</text>
<text Author="Yusufali" lang="English">
In the name of Allah, Most Gracious, Most Merciful
</text>
<QuranyConcepts lang="Arabic" tree="ugp Lol sgomos oo o & & W agea ageali Ul ol />
<QuranyConcepts lang="English" tree="Pillars of Islam;Islam neness of Allah Praise be to Him"/>
<QuranyConcepts lang="Arabic" tree="wUi o Wl olie;gles Ul agess sy Ul ol />
<QuranyConcepts lang="English" tree: Plllars of Islam; Islamlc Oneness of Allah His Glory's Characteri
<QuranyConcepts lang="Arabic" H 3 H
<QuranyConcepts lang="English"
<QuranyConcepts lang="Arabic" St
<QuranyConcepts lang="English" tree=" Plllars of Islam Islamlc

59
Allah His Glory's Characteri
ageaally Ul ol />

eness of Allah;His Glory's Characteri

Figure (4.6): The XML version of Qurany Concept dataset

Second dataset: Quranic Arabic Corpus (QAC):
The Quranic Arabic Corpus file is a tab separated text file. Each line has four main parts as shown in

Figure (4.7). These parts are location, form, tag and features respectively.

Location describes the segment’s location in four levels (chapter id: verse id: word id: token id). The
form part is the token text in the Buckwalter translation. The tag part is the token’s POS tag. The last
part is the grammar features of the token including Stem/Prefix/Affix, lemma and root, gender, number

and many other features.

‘ath v : ~/Documents/QAC.txt

<> [5 QaCext =
LOCATION FORM TAG FEATURES

1: 1) bi P  PREFIX|bi+

(1: 2 somi N STEM|POS:N|LEM: {som|ROOT: smw|M|GEN

{l1l~ahi PN STEM|POS:PN|LEM:{1l1~ah|ROOT:Alh|GEN

{1 DET PREFIX|Al+

r~aHoma'ni ADJ STEM|POS:ADJ|LEM: r~aHoma  n|ROOT: rHm|MS | GEN
{1 DET PREFIX|Al+

r~aHiymi ADJ STEM|POS:ADJ |LEM: r~aHiym |ROOT : rHm |MS | GEN
{lo DET PREFIX|Al+

Hamodu N  STEM|POS:N|LEM:Hamod |ROOT:Hmd |M |NOM

1i P PREFIX|Ll:P+

l~ahi PN STEM|POS:PN|LEM:{1l1~ah|ROOT:Alh|GEN

rab~i N STEM|POS:N|LEM: rab~|ROOT: rbb|M|GEN

{lo DET PREFIX|Al+

Ea'lamiyna N  STEM|POS:N|LEM:Ea’ lamiyn |ROOT:Elm|MP|GEN
{1 DET PREFIX|Als

r~aHoma ni ADJ] STEM|POS:ADJ|LEM: r~aHoma n|ROOT: rHm|MS | GEN
{1 DET PREFIX|Al+

r~aHiymi ADJ] STEM|POS:ADJ|LEM: r~aHiym |ROOT : rHm |MS | GEN
ma®liki N STEM|[POS:N|ACT |PCPL|LEM:ma" 1ik |[ROOT:mlk |M|GEN
yawomi N  STEM|POS:N|LEM:yawom|ROOT:ywm|M|GEN

{1 DET PREFIX|Al+

2) d~iyni N STEM|POS:N|LEM:diyn|ROOT:dyn |M|GEN

Figure (4.7): Quranic Arabic Corpus text file.

27



Converting the file to XML format by adding the following elements and attributes:

Element Attribute Level
Quran nothing Root
Chapter id Quran’s sub element
Verse id Chapter’s sub element
4 Seg Id, POS tag, lemma, root, gender, Verse’s sub element

number, person, grammar, token id

The token_id indicates whether a segment has more than one part. For example, Arabic words may be
linked with determiners (J') as a prefix. There is no white space dividing the segment’s tokens, but each
token has its grammar features. This attribute will be significant in adding the Glue tag in Sketch
engine file format.

The grammar line has many features but no labels. For example, a grammar of D,M,3MP or EMPH has
no obvious meaning to the user. Thus, labelling each feature leads to more clarity than the actual QAC
list. To do this, each grammar line has been split and then labelled according to each Quranic Arabic

Corpus tag set in Figure (4.8).

Tag Arabic Name

Prepositions P A
EMPH 28530 oY

1am Prefixes IMPV ER
PRP Syl Y
CONJ ik dia
sus golaa i
Acc ual i a
AMD &) G
ANS s dia
AVR g s
CAUS LIS 3N
CERT Gdiad i
CIRC Jada
com Al gly
COND bhda
EQ Lguiddp
EXH Al di s Exhortation particle

Figure (4.8): Sample of the tag sets in the Quran Corpus web site.

The implemented design is shown in Figure (4.9):

<Quran>

<chapter id="1">

<verse id="1">

<seg id="1" Morpheme="PREFIX" P0STag="P" Prefix_features="bi+">

bi

</seg>

<seg id="2" Case="GEN" Gender="M" Lemma="{som" Morpheme="STEM" P0STag="N" Root="smw" >
somi

</seg>

<seg id="3" Case="GEN" Lemma="{ll~ah" Morpheme="STEM" POSTag="PN" Root="Alh" >
{1l~ahi

</seg>

Figure (4.9): Quran Corpus Annotations in XML format.
With this XML structure, it is possible to retrieve a specific word with a specific grammar feature or

POS tag using Xpath, such as the following python code:
import xml.etree.ElementTree as ET

root = ET.parse(‘QAC.xml’).getroot()

for segment in root.findall('.//seg/[@POSTag="N"]"):

28



print segment.attrib, segment.text

The results of Xpath are shown in Figure (4.10).

{'Case': 'GEN', 'Morpheme': 'STEM', 'Gender': 'M', 'Number': 'P', 'POSTag': 'N', 'Lemma': 'n~aAs', 'Root': 'nws', 'id': '128195'}
n~aAsi

{'Case': 'GEN', 'Morpheme': 'STEM', 'Gender': 'M', 'Number': 'S', 'POSTag': 'N', 'Lemma': 'malik', 'Root': 'mlk', 'id': '128196'}
maliki

{'Case': 'GEN', 'Morpheme': 'STEM', 'Gender': 'M', 'Number': 'P', 'POSTag': 'N', 'Lemma': 'n~aAs', 'Root': 'nws', 'id': '128198'}
n~aAsi

{'Case': 'GEN', 'Morpheme': 'STEM', ‘'Gender': 'M', 'Number': 'S', 'POSTag': 'N', 'Lemma': '<ila‘h', 'Root': 'Alh', 'id': '128199'}
<ila'hi

Figure (4.10): Xpath to retrieve all nouns in QAC.xml dataset

Third dataset: QurAna annotations:
In the QurAna dataset, there are 114 XML files and one concept file as well. Each XML file has a

chapter as a root element, and verse, segment and pron as sub elements as shown in Figure (4.11). The
aim of the preprocessing is to merge all XML files in one file and to eliminate the concept file. So, each

con id is replaced with its actual concepts in the concept file.

|<chapter id='78'>

<verse id='1l'>
<seg 1d='124074'> ; </seg>
<seg i 24075'> . </
<seg id='124076'> il
<pron id='1' ant='0 @' con='179'>

<seg 1d='124077'> i, </seg>

</pron>

</verse>

<verse id='2'>

> 5 </seg>
'> J </seg>
'> L </seg>
‘> U </seg>
<seq id='124082'> . </seg>
</verse>

<verse id='3'>
<seq id='124083'> s¥Xf </seg>
<pron id='2' ant='@ @' con='179'>
<seg 1d='124084'> . </seg>
</pron>

Figure (4.11): A part of pronxml-78.xml file

<con id='177'>

<arabic> )l &gy </arabic>

<english> what a person conceal within himself </english>
</con>

<con id='178'>

<arabic> il Ggluoy </arabic>

<english> hard rituals </english>

</con>

<con id='179'>

<arabic> ;5 Jue </arabic>

<english> the infidels of Quraish </english>
</con>

Figure (4.12): part of concept.xml file

Besides the many XML files, the <pron> element has the concepts’ information as (con) attribute. The
attribute’s value is an id used to import the actual concepts in Arabic and English from the concept file
(see Figure 4.12). As we want to decrease the number of files and make processing XML files more
practical and faster, I added the concept information (antecedent id, English and Arabic concept) to
<pron> element as attributes.

However, merging QurAna XML files into one XML file means integrating the QurAna dataset into
one file and so speeding up the final merging process. In addition, using this design, we can retrieve all
pronouns referring to any concept by using the Xpath.

The desired XML structure is in the following table:

29



Element Attribute Level

Quran Nothing Root
Chapter Id Quran’s sub element
Verse Id Chapter’s sub element
4 Seg 1d, ArConcept (Arabic concepts), Verse’s sub element
EnConcept (English concept) and
Antecedent id.

A sample of QurAna.xml is seen in Figure (4.13).
ey
<seg Arconcept=" ;.).J " Enconcept=" Muslims id='"4395">
o
</seg>
<seg id="4395">
ped]
</seg>
<seg 1d="4396">
e
</seg>
<seg Arconcept=" .zl ».J " Enconcept=" the sacred Mosque in Makkah " id="4397">

<}seg>
Figure (4.13): QurAna in a merged XML file
By using this XML structure, it is possible to retrieve all pronouns sharing the (the believers)

concepts, for example. Xpath can be as follows:
words= root.findall(".//seg[ @Enconcept=" the believers "]')

The results of that query are shown in Figure (4.14)

{'PRON_id': '91', 'Arconcept': u' \uB627\uB644\uDE45\uD624\uB645\uB646\UDE4B\UDE46 ', 'Enconcept': ' the believers ', 'id': '120267'}

{'PRON_id': '93', 'Arconcept': u' \uB627\u@644\udE45\u0624\uB645\uB646\UBE4B\UDE46 ', 'Enconcept': ' the believers ', ‘'id': '120281'}

{'PRON_id': '96', 'Arconcept': u' \uB627\uB644\uDE45\UD624\uB645\uB646\UDE4B\UDE46 ', 'Enconcept': ' the believers ', 'id': '120288'}

9

{'PRON_id': '34', 'Arconcept': u' \uB627\ud644\uB645\uB624\uD645\UD646\U0648\UBE46 ', 'Enconcept': ' the believers ', 'id': '122658'}

{'PRON_id': '36', 'Arconcept': u' \uB627\uB644\udE45\u0624\uB645\uB646\uRE4B\UOEA6 ', 'Enconcept': ' the believers ', ‘'id': '122663'}

P

{'PRON_id': '37', ‘'Arconcept’: u' \uB627\u@644\uD645\u0624\uB645\uB646\uBE4B\UDE46 ', 'Enconcept': ' the believers ', ‘'id': '122666'}

{'PRON_id': '38', 'Arconcept': u' \uB627\uB644\ul645\u@624\u@645\u0646\uB648\uB646 ', 'Enconcept': ' the believers ', 'id': '122677'}

o5

{'PRON_id': '42', 'Arconcept': u' \uB627\u@644\uDE45\u0624\uB645\uB646\uDE4B\UDE46 ', 'Enconcept': ' the believers ', ‘'id': '122700'}
u' \uB627\uB644\uBE45\uD624\UDEA5\UOBA6\UBB4B\LDEAE ‘', 'Enconcept’: ' the believers ', 'id': '122707'}

{'PRON_id': '44', 'Arconcept':

Figure (4.14): shows the result of using Xpath to retrieve (the believers) concept

4.3 Design the unified Quranic Annotation dataset:

4.3.1 The Quran Structure:
The holy book Quran has 114 chapters. Each chapter has a different range of verses with a maximum

of 286 verses and a minimum of 3 verses. Each verse has many words or segments.
In our XML file, the root node is <Quran> as it contains all the chapters. XML should have one root

element, and 114 chapter sub elements.

4.3.2 XML rules:
To build an XML file, some W3C rules should be considered:

An XML file must have one root and the elements follow the root in a strict hierarchy. XML elements

must follow the XML naming rules. Thus, a space and starting with numbers in an element’s name is

30



not accepted. However, attributes’ values can have any kind of characters inside quotations.
Wrapping the XML elements is quite a sensitive process and should be done automatically using

XML API. Any invalid element leads to an invalid XML file.

4.3.3 Distributing the annotations:
As we have three different annotations, I suggested the following annotation distribution:

*  Quran level:
Quran is the parent for all elements in the tree, and has no attribute.

e Chapter level:
This level has no annotations to be associated except the chapter id.

*  Verse level:
By giving each verse a unique id, we avoid id duplications and make sure that each verse instance has
its unique id. This solution will be more practical in converting XML files to OWL ontology as is
shown in the ontology chapter.
In this level, Qurany concepts annotations are associated as a sub element to verse node.
The dilemma here in Qurany concepts is that each verse might have zero or more than one concept.
Another issue is that each concept in Qurany has many sub concepts in a hierarchical structure. For
example, Figure (4.15) shows four main concepts for one verse. A third issue is that each concept has
been written in the English and Arabic languages without them being labelled with the language

name, which makes splitting them more difficult.

Chapter Name:An-Najm Verse No:13

Concepts/Themes Covered:

4l yra 03l ] <l ol dil ($lis) dans) < a3l IS
Pillars of Islam> The Blessed Muhammad(PBUH)> His Midnight Journey to Jerusalem and the Ascent to the Seven Heavens

Ay wli < plug ale dil $lis) sase) < a3y GIS,T
Pillars of Islam> The Blessed Muhammad(PBUH)> Supporting his Message

S KU €Ryaly G < o SI G
The Holy Quran> The Quran's Reality and its confirmation of the Previous Books

elaill yoe o) 5,L8Y) < Lalall S LiLEXYI ST @Sl (] BLEYT 5 Lualall FilEal] < sill aglall
Science and Art> The Scientific Facts and the Indication to Facts which have been supported by the Scientific
Discoveries>Indication to Cross the Space

Figure (4,15): concepts covered in verse 13,chapter 53(An-Najm).
To solve these issues, I investigated many approaches and tried to find the most appropriate design to

describe element hierarchy.

Approach#1:
The first approach is to define an element <QuranyConcepts> with language and concept name

attributes and store the concept as a name string value such as that shown in Figure (4.16).

31



<Quran>
<chapter id="53">
<verse id="13">
<QuranyConcepts language="EN" name="Pillars_of_Islam" ></QuranyConcepts>
<QuranyConcepts language="EN" name="Islamic"></QuranyConcepts>
<QuranyConcepts language="EN" name="Oneness_of_Allah"></QuranyConcepts>
<QuranyConcepts language="EN" name="Praise_be_to_Him"></QuranyConcepts>
<QuranyConcepts language="EN" name="Pillars_of_Islam"></QuranyConcepts>
<QuranyConcepts language="EN" name="Islamic"></QuranyConcepts>
N
N
N

<QuranyConcepts language="EN'" name="Oneness_of_Allah"></QuranyConcepts>
<QuranyConcepts language="EN" name="His_Glorys_Characteristics"></QuranyConcepts>
<QuranyConcepts language="EN" name="Allah"></QuranyConcepts>
<seq 1d="112173">
wa
</seg>
</verse>
</chapter>
</Quran>

Figure (4.16): XML Qurany attributes design (1)
But after parsing the tree, getting the hierarchal concepts was inapplicable, as shown in Figure (4.17).
The only thing we can retrieve is the node attribute itself because there is no hierarchy structure

between the concepts.

>>> import xml.etree.ElementTree as ET
>»>> qurany_tree = ET.parse(f).getroot()
>>> subConcept = qurany_tree.findall('.//QuranyConcepts[@name="Pillars_of_Islam"]"')
>>> subConcept
[<Element 'QuranyConcepts' at 0x100ab0610>, <Element 'QuranyConcepts' at ©0x100ab®710>]
»>>> for ¢ in subConcept:

print c.attrib

{'name': 'Pillars_of_Islam', 'language': 'EN'}
{'name': 'Pillars_of_Islam', 'language': 'EN'}

>>> I
Figure (4.17): Python program to retrieve Qurany concepts in XML in approach (1).

Approach#2:
This approach creates a sub element of the verse node with <ENQuranyConcept> for English Qurany

concepts, and <ARQuranyConcept> for Arabic Qurany concepts. These two sub elements are the
parents for all the verse’s concepts. The concepts are added to the previous elements as a sub element

by splitting the concepts line into many concepts and creating the sub elements; see Figure (4.18).

<Quran>
<chapter id="53">
<verse id="13">
<ENQuranyConcepts>
<Pillars_of_Islam>
<Islamic>
<Oneness_of_Allah>
<Praise_be_to_Him/>
</Oneness_of_Allah>
</Islamic>
</Pillars_of_Islam>
</ENQuranyConcepts>
<ENQuranyConcepts>
<Pillars_of_Islam>
<Islamic>
<Oneness_of_Allah>
<His_Glorys_Characteristics>
<Allah/>
</His_Glorys_Characteristics>
</Oneness_of_Allah>
</Islamic>
</Pillars_of_Islam>
</ENQuranyConcepts>
<seg 1d="112173">
wa
</seg>
</verse>
</chapter>
</Quran>

Figure (4.18): The hierarchy structure of Qurany Concepts dataset.
With this approach, the concepts hierarchy is obvious and readable. Moreover, it is possible to retrieve

any concept or sub concept using Xpath, such as the following:

32



>>> import xml.etree.ElementTree as ET

>>> qurany_tree = ET.parse(f).getroot()

>>> mainConcept = qurany_tree.findall('.//Pillars_of_Islam')

>>> mainConcept

[<Element 'Pillars_of_Islam' at 0x100aalb9@>, <Element 'Pillars_of_Islam' at @x1@@aalcd®>, <Element 'Pillars

_of_Islam' at @x100aale%0>, <Element 'Pillars_of_Islam' at 0x100aa5050>, <Element 'Pillars_of_Islam' at 0x10
Paa51d0>, <Element 'Pillars_of_Islam' at 0x100aa5210>]

>>> subConcept = qurany_tree.findall('.//Pillars_of_Islam/Islamic')

>>> subConcept

[<Element 'Islamic' at @x10@aalbd®>, <Element 'Islamic' at 0x10Qaaldl@>, <Element 'Islamic' at @x1@Qaaledd>,
<Element 'Islamic' at Ox100aa5090>, <Element 'Islamic' at 0x100a9dfd@>, <Element 'Islamic' at 0x100aa5250>]

Figure (4.19): Python program to parse and query xml file.
I chose the second approach, as it is more practical in information retrieval and ontology mapping.
* Segment level:
Any verse consists of many words or segments. A segment is a sub element of the verse node. It is the
word morpheme (stem, prefix or suffix). Each segment has a unique id to avoid instance duplications.
Beside the segment id, QAC and QurAna annotations are associated in the segment level. To unify
QurAna and QAC annotations in one file, each annotation is associated as a segment attribute; see

Figure (4.20).

<Quran>
<chapter id="53">
<verse id="13">
<seg 1d="7819" Aspect="IMPF" Gender="M" Lemma="Eamila" Morpheme="STEM" Number="P" POSTag="V" Person="2P" Root="Eml">
taEomalu
</seg>
</verse>
</chapter>
</Quran>

Figure (4.20): Unifying segment’s annotations

Each segment has been associated with the Quran Annotations Corpus. In addition, pronoun segments
have been associated with QurAna annotations as well.

An example of the overall design of the merged XML file is shown in Figure (4.21).

<Quran>
<chapter id="53">
<verse id="13">
<ENQuranyConcepts>
<Pillars_of_Islam>
<Islamic>
<Oneness_of_Allah>
<Praise_be_to_Him/>
</Oneness_of_Allah>
</Islamic>
</Pillars_of_Islam>
</ENQuranyConcepts>
<ENQuranyConcepts>
<Pillars_of_Islam>
<Islamic>
<Oneness_of_Allah>
<His_Glorys_Characteristics>
<Allah/>
</His_Glorys_Characteristics>
</Oneness_of_Allah>
</Islamic>
</Pillars_of_Islam>
</ENQuranyConcepts>
<seg 1d="7819" Aspect="IMPF" Gender="M" Lemma="Eamila" Morpheme="STEM" Number="P" P0STag="V" Person="2P" Root="Eml">
taEomalu
</seg>
</verse>
</chapter>
</Quran>

Figure (4.21): Part of the Merged Quranic XML file:

33



Chapter 5: Implementation:

5.1 Choosing the programming language:

There are a plenty of programming languages that would be sufficiently mature and effective in text
processing. However, we are seeking output efficiency. Obtaining an accurate and well-structured
output is the main concern when choosing the programming language. In fact, the execution time
factor was not considered in choosing the language; a target user will not use the software appropriate
to a unified Quranic dataset, but one that addresses the contents of the output file.

Dealing with the text of the Quran requires sensitive consideration, as it is a holy book. Missing some
Quranic text is unacceptable to the Muslim community. Thus, merging datasets dealing with
thousands of files can result in some of the Quranic text being missed during processing. Of course,
there are programming languages dedicated to processing holy books. However, a tracking process
must be considered when developing user techniques (e.g. Xpath) to validate output as accurate by

testing different segments and verses and comparing them with the actual text in the Holy Quran.

There are many choices of programming language that meet the requirements identified here, such as
Python, Java and c++. I have had experience of using Python through a language module and also
experience in processing corpora such as building n-grams, language dedication software and POS
tags n-grams. This was my first experience of using Python but it was found to be easy to learn and
expand knowledge in this area of programming.

Python has significant features which make it a friendly programming language. Python has a
dynamic coding feature, which reduces the amount of code lines (Rossum, 1997). For example, there

is no need to have type declarations for variables in Python whereas Java requires it.

On the other hand, Python has some disadvantages such as the limited speed of execution time and
memory usage. Python’s execution time is not the most perfect among programming languages. There
are many programming languages which outperform Python in execution time and memory usage,

such as C++ (Prechelt et al., 2000).

However, since the disadvantages of Python do not affect the output efficiency, it is preferred in

writing this project’s prototypes.

34



5.2 Using XML API in implementation
To create an XML tree, I used the python Application Programming Interface (API) Element Tree in

creating the XML file for each of the three datasets. In addition, in the merging phase, I used the same
API in order to parse the tree and merge specific information.

The Element Tree is a fixable and fast container and uses the Xpath technique. The XML Element
Tree API confirmed that the XML structure is valid. Each opened element is closed automatically
when creating a new instance of the same element. Another reason for choosing Element Tree is that
it is built in all Python versions. There are some faster APIs, such as Ixml, but since it needs to be
installed, and its installation depends on the operating system, I restricted my choices to Element Tree
API. I examined the Element Tree API and found it has a reasonable processing speed (Garabik,
2006).

Another advantage of using XML is in parsing the html file. It has been shown that Element Tree API
can parse simple html files, but complicated html files have inconsistent open and closed XML tags.
One disadvantage of using Element Tree API is the limitation of Xpath expressions. Only simple
expressions can be implemented in Element tree. While Ixml implements much more complicated

expressions (Element Tree XML API documentations).

5.3 Converting Qurany to xml (QuranytoXML.py)

As mentioned earlier, the Qurany concept search tool is published through the

http://www.quranytopics.appspot.com website as a list of html files. The files have a unified naming

theme starting with chapter number, then the dash ‘-’symbol followed by verse number. This naming
theme makes extracting the chapter and verse id straightforward as stated below. To upload the 6,323
html files, I used the “DownThemAll” utility in Firefox browser, which uploads all html files with
one click.

Each HTML file consists of three main parts. The first part shows the chapter and verse information
(chapter number, chapter name, verse number). The second part shows the eight English translations
of the verse. The third section shows the concepts/themes in Arabic and English languages
respectively.

The html markup has the same structure in all Qurany files. However, parsing the html file using the
XML parser in Python seemed impossible as I received the following error message:
xml.etree.ElementTree.ParseError: not well-formed (invalid token): line 6, column 20

By revising the html tags, I found many invalid tokens such as changing the letter case in the opening
and closing <font> tags, as shown in Figure (5.1). Since the XML parser is case sensitive, this is seen

as two different tags.

35



<tr>

<td width = "150" height="25"> ©0@1:001 <font color="#1645ae" size="4"> Khan </td>

<td><div align="center">:</div></td>

<td><Font size="4">In the Name of Allah , the Most Beneficent, the Most Merciful. </td></font>
</tr>

Figure (5.1): Font tag with different letter case.
¢ Determine the root:
However, the first step in building the Qurany Concept XML tree is to determine the root of the tree.
As mentioned in the Design chapter, the root will be <Quran>; the container of all Quranic chapters.
root = ET.Element('Quran')
* Reading Qurany files and creating chapter and verse elements:
The collection of html files is contained in the glob container. The glob library contains a directory’s

files by providing the directory’s path as follows:

Qurany _files = glob.glob("qurany/*")

Thus, we can read any file inside the glob container as follows:
For htmlfile in sorted(Qurany _files):

At this stage, the implantation was working but the sorted function was not working properly. The
files were reading in ascending order. However, the file name has combinations of numbers and the
character ‘-’. Thus the results were ordered with chapter id first ignoring the verse id.

To solve the reading issue, two for loops were constructed to obtain the file name. The aim of the first
loop was to get the chapter id with a maximum range of 115, and the second for loop was to get the
verse id with a maximum range of 290. As mentioned earlier, each file had two parts with a dash in
the middle. The first part is the chapter number and second part is the verse number.

Another issue in the Element Tree API was when the chapter XML element definition was triggered,
a new chapter element was created and in the final design, each verse had its own chapter element.
This would add more XML tags since the chapter element is repeated for every verse. Since the aim is
to have one chapter element for all related verses, this issue was solved by comparing each new file to
see if its chapter id is the same as the previous file’s chapter id. The initial value for the previous
chapter was set to zero to get the condition for the first file in the directory.

Once the filename parameters were obtained (chapter id and verse id), the file name was constructed
by concatenating this information with the directory’s path then the file name was validated by testing
if the file is found in the directory. If yes, then a verse sub element was created for the chapter
element, then each line in the file name was read using the file function readlines(). After this, the

number of lines in the file to be used were counted in a further loop.
prev_chapter=0
for chapter_id in range(1,115):
if pchapter!=chapter_id:
chapter = ET.SubElement(root,'chapter')
chapter.set('id',str(chapter_id))
for verse_id in range(1,290):

filename = path+str(chapter_id)+'-'+str(verse_id)+".html'

36



if filename in Qurany _files:
verse = ET.SubElement(chapter,'verse')
verse.set('id', str(verseid))
htmltxt = open(filename).readlines()

lenhtmltxt = len(htmltxt)

* Extracting the verse text:
<center><h2>The University of Leeds: (
<center><h3><a href ="http://www.comp.
<font color="#1645ae" size="6"> <stror
<font size="5">
U pgdl gl Al o
</br></font>
<table width="100%" border="0" cellsp:
<tr>
<td class="stylel"></td>
<td class="stylel"></td>
<td class="stylel"></td>
</tr>
<tr>
Figure (5.2): the verse Arabic text
To extract the verse Arabic text information, the file’s lines were read and specific html tags
compared. As shown in Figure 5.2 , the Arabic verse text starts after the <font size="5"> tag. Thus, if
the tag <font size="5"> is in the line, then the following line was read. This comparison is made by
using the ‘search regular expression’ function, which mainly returns true if the searched text is in the
line without considering its position.
The second step is to write this information in the verse text sub element to verse element and set the
element’s language attribute to Arabic.
Another issue in dealing with Arabic text in Python is the unicoding problems. Python reads the text
in binary by default, and while processing the Arabic text, Python encodes it using the default
encoding mode ‘UTF-8’. However, writing the encoded text into a file must be done in binary; thus, a

decoding function has to be set before writing the XML tree in the output file.
for line in range(lenhtmltxt):
if re.search('<font size="5">'htmltxt[line]):

Arabic_verse = htmltxt[line+1]

Arabic_verse = re.sub(removechars,",Arabic_verse)

verseText = ET.SubElement(verse,'text')

verseText.set('lang', 'Arabic' )

#convert Byte to Unicode using Decode function

verseText.text = Arabic_verse.decode('utf-8')

The Arabic verse has the verse id + the ‘}’character since the verse id is repeated and the character }
is to separate the verse id and text. A regular expression pattern '[\d+/}]' is constructed to remove this
unwanted digit and character.

Another problem was in making a comparison where the compared line consisted of a tab and new
line tag. These tags needed to be removed from each line to avoid incorrect matching. There were two
solutions to remove the tags. One was by using the regular expression, and the other was by using the

string function ‘replace’. By applying both each time, I found that the string function is much faster in

37



processing the file than the regular expression. It has been shown by many programmers that regular

expression slows down the processing. Thus, I used the string function replace as the solution.
htmltxt[line] = htmltxt[line].replace('\t’,")
htmltxt[line] = htmltxt[line].replace('\n',")

® Extracting the eight translations and author name:

There are eight verse English translations after the verse Arabic text, and each has its own author. To
get these translations with author name, each one was assigned to the verse Text element but setting
the language attribute to English and adding the author attribute.

To get the author name, it can be seen in Figure 5.3 that the author name is located after the tag <font
color="#1645ac" size="4"> then by splitting the line with the mentioned tag. The result of splitting the line
shows two elements: the first is repeated verse and chapter ids, and the second is the author name.
Then, the second element is taken and the html tags removed using the regular expression with the

pattern removeHTLtags = '<.*?>".

<tr>

<td width = "150" height="25"> 001:001 <font color="#1645ae" size="4"> Khan </td>

<td><div align="center">:</div></td>

<td><Font size="4">In the Name of Allah , the Most Beneficent, the Most Merciful. </td></font>
</tr>

Figure 5.3: the author and English translation html tags.

Moreover, the author name has spaces at the sides. These spaces were removed using the strip string
function, which is dedicated to this purpose.

The extracted author name was assigned to a text verse element with the attribute Author.

if re.search('<font color="#1645ae" size="4">' htmltxt[line]):
htmltxt[line] = htmltxt[line].split('<font color="#1645ae" size="4">")[1]
htmltxt[line] = re.sub(removeHTLtags," htmltxt[line])
htmltxt[line]=htmltxt[line].strip()
Author = htmltxt[line]
verseText = ET.SubElement(verse,'text')

verseText.set('Author',Author)

To get the translations of the verse, as shown in Figure 5.3, the English translated verse started after
the tag <td><Font size="4">. Then, the html tags were removed and English was assigned in the language

attribute.
if re.search(r'<td><Font size="4">' htmltxt[line]):

htmltxt[line] = re.sub(removeHTLtags," htmltxt[line])

English verse = htmltxt[line] #write the
verse text in English in Verse Node

verseText.set('lang','English")

verseText.text = English verse

38



* Extracting verse Concept/themes:
In this part, to find a general theme of the html tags was complicated. I set the for loop to read the
concepts Arabic and English lines. However, I restricted the loop range to start from the index in the
<font size="4"> line;

if re.search('Concepts/Themes Covered:',htmltxt[line]):

index = line+1
It can be seen in Figure 5.4 that each Arabic concept line has a previous tag <front size="4"> or
</br></br>. Also, the English concept line has a previous tag </br> while the concepts list ends

before the tag </font>. Thus, the for loop stops if the end of list is reached.

<p>
<font color="#1645ae" size="6"><strong>Concepts/Themes Covered:</strong></font></br></br>
<font size="4">
s bl sy b ol s > o WU A > agsdl > LU ol
</br>
Pillars of Islam> Islamic> Oneness of Allah> Praise be to Him
</br></br>
WS e W ol > ko ol s > sl > LU ol
</br>
Pillars of Islam> Islamic> Oneness of Allah> His Glory's Characteristics> Allah
</br></br>
Grd > oeho W o > Who M ype > el > LU FXCA]
</br>
Pillars of Islam> Islamic> Oneness of Allah> His Glory's Characteristics> The Most Gracious
</br></br>
aedl > ke W ol > ko ol A > sl > U ol
</br>
Pillars of Islam> Islamic> Oneness of Allah> His Glory's Characteristics> The Merciful
</br></br>
</font>

Figure (5.4): the concepts section and html tags

The software compares each line in the range to get the Arabic and English concepts. Once the target
tags are found, then the following line is read as it must be the Arabic or English concepts.

As mentioned already, the tab and new line tags had been removed from the concepts. However, there
was still unwanted space beside the sentence, which could be removed by keeping the actual
sentence’s space in two steps. This could be achieved first by stripping the text using the string
function ‘strip’, which meant removing spaces in the string’s first and last index and second, by
splitting the concepts line in the angle bracket < and creating a list of the concepts. This step would
remove the unwanted spaces and replace < with a semi colon. The replacement by semi colon was
vital since XML API treats the < by defining the reference XML entity. Thus, this kept the concepts

line clean of symbols, so it could be used by ‘merging.py’ software.
if htmltxt[i]=='</br></br>' or htmltxt[i]=='<font size="4">".
ArabicConcepts = htmltxt[i+1]
ArabicConcepts = ArabicConcepts.replace("\n',")
ArabicConcepts = ArabicConcepts.replace(\t',")
if ArabicConcepts !='</font>":
# remove speces but keep the concept's inside spaces.
ArabicConcepts = ArabicConcepts.strip()
ArabicConcepts = ArabicConcepts.split("™>")
B=""
for ¢ in ArabicConcepts:
B +=c.strip() +';'
#strip the last symbol
B = B.strip(';")

39



After getting the concepts, it was possible to create the Qurany Concept sub element to verse by
setting the language attribute and setting the concept list as a value of the tree attribute. Again, the

Arabic text needed to be decoded to avoid Unicode problems.

QuranyConcepts = ET.SubElement(verse,'QuranyConcepts')
QuranyConcepts.set('lang', 'Arabic')
QuranyConcepts.set('tree',B.decode('utf-8'))

The same coding was used in extracting the English version except the compared tag was only </br>.
* Building the tree:

After building the XML tree, the last step was to build the tree using the functions Element Tree

(root) and write. The write function output the tree in an XML file name ‘Qurany.xml’. Also, the

encoding mode in writing the contents was utf-8.

tree = ET.ElementTree(root)

tree.write(output,encoding="utf-8")
UTF-8 is the standard encoding in Python, which handles every character in the Unicode character

set. It has been proved that utf-8 is ideal in dealing with the Arabic language.

5.4 Converting Quran Annotation Corpus (QAC) to XML (QACtoXML.py):

The Quran Annotation Corpus has a separated tab file; each line handles segment index, form, POS tag

and grammar features.

UErLived 1TOM OF CONUALILNG SUDSLANtlatl PUrLiON 01 UNLS LeXt.

"
#
# Please check updates at: http://tanzil.info/updates/
#

LOCATION FORM TAG FEATUREY

(1:1:1:1) bi P  PREFIX|bi+

(1:1:1:2) somi N STEM|POS:N|LEM: {som|ROOT: smw |M| GEN
(1:1:2:1) {ll~ahi PN STEM|POS:PN|LEM:{11~ah|ROOT:Alh|GEN
(1:1:3:1) {1 DET PREFIX|Al+

Figure (5.5): the Corpus headline

The corpus has the copyright in the first lines. To start reading the segments, we need to jump to the
first segment by using the search function in regular expression module to find the corpus headline as

shown in Figure (5.5):
for i in range(QACLinesLength):
if re.search("LOCATIONUtFORM\tTAGUAFEATURES",QACTi]):

index=i+1

Then, the line was split using the split function with tab ‘\t” parameter. The result was a list containing

the four headline elements as follows:
QACLine = QAC[line].split("\t")
Location = QACLine[0].replace('\n',")
form = QACLine[1]
postag = QACLine[2]
features = QACLine[3].replace("\n',")

40



features = features.strip()

Since feature and location elements were in the sides of the line, then they had to have new line tags
and spaces as well. To remove these spaces and tags, I used the replace function for the new line tag

and the strip function to delete the white spaces at the sides.

* Extracting the chapter, verse, segment and token ids:

I defined a function to extract the four elements of segment location. Then, the Location variable was
sent to the Location_extractor function. The function returned the four indices by splitting the location
with a colon : . The splitting result was a list with four elements, but, there was a problem with
segment id. A segment id is not a unique id in the same tree; this means it is possible for two different
segments to have the same id under the same verse. Relying on the QAC segment id would lead to the
loss of many segments. However, setting up an incremental segment index solved this issue.

According to Quranic Arabic Corpus documentation, the four elements were assigned to the

following structure:

def Location_extractor(Location):
Location = Location.split(":")
chapterid = Location[0]
verseid = Location[1]
segmentid= Location[2]
tokenid=Location[3]

return chapterid,verseid,tokenid

The returned values were stored in the main part with the following line while the segment index

incremented by one:

chapterid,verseid,tokenid= Location_extractor(Location)
segmentid+=1
In addition, a token refers to a compound segment. So, I translated the token as a segment feature
where token id=2 means this segment has two components. seg.set(‘token_id', str(tokenid))
* Creating chapter, verse, segment, token elements:
To keep all the verses belonging to one chapter element, and to keep all segments belonging to one
verse element, the chapter and verse id had to be compared with the previous one. If it was the same,
then there was no need to define a new element. This was to avoid the redundancy of chapter id for
each verse related to it; the same happened for segments. Below is an example of creating a chapter
element.
if prev_chapter_id != chapterid:
chapter = ET.SubElement(root,'chapter')
chapter.set('id', str(chapterid))

41



prev_chapter_id = chapterid

* Assigning form to segment’s text:
The segment element was constructed as a sub element of verse. The aculae value of the segment is
the form. Assigning the form to the segment is as follows: seg.text=form
* Assigning POS tag to segment’s attribute:
As a POS tag describes the segment, it was ideal to add it as a segment attribute not as a segment sub
element. This facilitated retrieving the segments with specific POS tags (e.g. noun) in Xpath query.
* Assigning features to a segment’s attributes:
I defined a Features extractor function, which takes the feature line as an input. The function splits
the line with pipe ‘|’ and creates a list of all features. Then, each feature in the list must pass through
the style detector. This detector checks the feature and classifies its style.
By observing the QAC annotations style, I found that there are three main styles for the feature
annotations as follows:
1- If the feature is Prefix, then the next feature is a prefix feature. Basically, the prefix
annotations are one of these two styles: PREFIX|A:INTG+ or PREFIX|ka+. Then, this feature
is passed to the predefined function PREFIX Tager.

2- If a feature has a colon :, then this feature has two features as PRON:3MP, or a label with a
feature such as ROOT:qwl. Then, this kind of feature is passed to the defined function

Twinsfeatures.

3- However, if this is a single feature, then go to the labelling process. The actual QAC
annotations lack labels. Thus, a feature like 3MP or PCPL is not clear for the user. The
conversion software tries to solve this issue by adding a label for each feature in QAC. To do
this, a feature must be compared for all probable features. As a single feature might be MS,
which would mean this segment has a gender feature with M or Masculine and a number
feature with S or Singular (Dukes, 2011). The following is a sample code of feature

comparison from Singlefeature function:
if f1="M'" or fI=="F":

seg.set('Gender',f1)
The comparisons were made using different techniques depending on the feature complexity.
For those features with two or three excepted values, a simple if comparison was constructed
while if a feature had many values, such as the verb form, then a regular expression was used,
such as the following:
elif re.match(r"\([IVX]+\)',f1):

fI=f1.strip(")")

42



f1=f1.strip("(")
seg.set('Verb Form',f1)
These values and labels were taken from the Quran Annotation Corpus tag set available
online

The final step was to write all this information to the tree’s root (Quran) element and print the tree in

a QAX.xml file.

5.5 Converting QurAna to xml format (QurAnatoXML.py):

As mentioned in the chapter on design, QuraAna has 115 xml files and this software merges them in
one XML file. So, the first step is to put all QurAna xml files in the glob [? global] container with the
path QurAna_files = glob.glob('Quran-pron/*').

The reading process follows. Reading xml files means parsing their contents without actually reading
the lines of the files (. Readlines()) as the previous software. Thus, this process does not need a close
file function since no open file function was made.

As mentioned in relation to QuranytoXML.py software, getting an ordered list of files can be
accomplished through constructing a “for loop”. The “for loop” range is 1 to 115 and the file name is

[739¢2]
1

constructed by using the iterator as in the following:

for i in range(1,115):
file = 'Quran-pron/pronxml-'+str(i)+'.xml’'
The above code cannot read the file name (concepts.xml) for the concept file. To do that, a separate

code was developed to obtain a concepts file; the following lines parse the file and fetch the root.
Conceptfile="Quran-pron/concepts.xml’
_concepts = ET.parse(conceptfile).getroot()
Again, the root for the final XML file is Quran:
root = ET.Element(‘Quran’)

Then, the “for loop” is iterated and gets each QurAna xml file and processes it as follows.

The root in QurAna xml is the chapter, while the final output is Quran. The change of root derives
from the merging idea where 115 chapters are merged into one Quran file. Thus, the XML file must
have one root element and the chapter element is repeated and cannot be used as the root. Thus, a root
element must be changed to a Quran element.

file root = ET.parse(file).getroot()

Then, obtain the chapter (root) id by using .get XML function. The output is assigned to a constructed
chapter element.Then, iterating the root nodes using and examining the node tag by the following:

if node.tag=='verse":

If the node is verse then verse sub element is created and verse id is obtained and assigned to verse
element.

elif node.tag=='seg":

43



If the node is segment then segment sub element is created and segment id and text are obtained and
assigned to segment element.

If the node is the concept element, then getting the con attribute and iterating the concept tree is
necessary in order to find the equivalent con id. Then, if the corresponding concept is found in the
concepts file, the Arabic and English concepts are obtained and assigned to the segment attributed to

Arconcept and Enconcept respectively.
for concept in _concepts.iter():
if concept.get('id') == node.get('con'):
for x in concept.getchildren():
if x.tag=="arabic"
seg.set('Arconcept',x.text)
if x.tag=='english":

seg.set('"Enconcept’,x.text)

The remaining attributes in the current node are pron id and Ant.
if node.get('id'):
seg.set('PRON id', node.get('id'"))
The final step is to close the tree using tree= ET.ElementTree(root) and printing the tree using Element

tree write function (QurAnaxmlfile).

5.6 Merging the three XML files in one XML file (merge.py):

The first step is to parse and obtain the root for the three datasets as the following:

qac_root= ET.parse(qac).getroot()
qurana_root = ET.parse(qurana).getroot()

qurany_root = ET.parse(qurany).getroot()

Then, for loops were constructed to get chapter id, verse id segment id.

Qurany verses having id and concepts were assigned to the merge tree MT verse node.

QAC and QurAna have the same approach, but QurAna and QAC have different segment indexing. In
QAC there is a segment with maximum id 128219 and in QurAna the maximum segment’s id is
127119. Thus, a new approach has to be constructed in order to merge two different indices.

According to Sharaf et al.(2012), QurAna uses QAC to obtain the pronoun segments only. The QurAna
project aims to annotate every pronoun in the Quran with referenced information. Thus, only pronoun
segments in QurAna are annotated, while other segments are not. Consequently, using the QurAna
index is not important because the QAC index has annotated segments. The approach used here is

declared in the following pseud code:

44



For QAC _segment in QAC:
If QAC_segment is Pronoun then
For QurAna_segment in QurAna:
If QurAna_segment is Pronoun then
Add QurAna_segment to QAC_segment

Delete QurAna_segment

The programme reads the first pronoun in QurAna, then extends QAC Pronoun annotations by adding
QurAna segment information, and finally deletes the QurAna_segment so it can be used again.

This approach does not compare indices because they are different. However, it assumes that the first
pronoun to appear in QurAna is related to the QAC pronoun segment. To ensure this relationship, the

pronoun segment in QurAna is deleted.

To validate the approach, last pronoun in the unified Quran dataset has been checked to find the
associated QurAna annotation. Originally, the last pronoun in the Quran is located in the last verse in
chapter 112. Back to QurAna dataset, the last pronoun in the Quran has the concept (Allah). By
validating the concept in the unified Quranic XML dataset, the pronoun has the same concept. Thus,

the approach is accurate and correct.

However, as the segments ids in the unified dataset and QurAna are different, the Antecedent id
attribute was not added to segment annotations in unified dataset. The reason is that antecedent id uses
Qurana segment id and this segment id is different in the unified dataset. Also, some Antecedent ids
refer to the same value in QurAna concept. Thus, deleting the antecedent attribute will not influence the
pronoun reference concepts.

To present English Qurany Concepts in hierarchal elements, I used the following code. Any concept
contains whilte space or characters out of (Aa-Zz-0-9) will be replaced with underscore character( ):

if verse_qurany.findall('.//QuranyConcepts/[ @lang="English"]'"):
Econcepts= verse qurany.findall('QuranyConcepts/[@lang="English"]'")
for concept in c.get('tree').split(’;'):
concept=concept.strip()
concept=re.sub('\W+',' ',concept)
ENcurrent = ET.SubElement(ENcurrent,concept)

During creating Qurany concept nodes, an error was arise which indecated invalid token. By
investigating Qurany concepts, there was the concept (12 sons of Jacob) which starts with number and

this is invalid XML node. Thus, I replace 12 with twelve to avoid XML naming problems.

45



The software has two main outputs. The first output is the Unified Quranic Annotation XML Dataset,
which will be mapped to OWL ontology as a last step in the project. The second output is the unified
Annotation Sketch engine Corpus. Getting two outputs is involved constructing two XML trees, one is

anormal XML file and the other with Sketch engine vertical lines.

However, dealing with XML through XML API causes some constriction in writing the BuckWalter
translation scripts. XML API translates some symbols to the predefined XML entity reference. Such
symbols “>’and ‘&’are written in XML file as &gt and &amp respectively. This is considered as an
obstacle to retrieving words containing such as these interpreted symbols. To solve this issue, a

function was defined to replace the entity references with blanks.

for line in mergefile:

"

line = line.replace('&quot;',
line = line.replace('&amp;',")
line = line.replace('&apos;',"
line = line.replace('&lt;',")
line = line.replace('&gt;',")

finalfile.write(line)

5.7 Mapping the Unified XML file to the Ontology structure:
One of the project’s aims is to create the Unified Quranic Ontology using the XML file. Creating

ontology from scratch takes a long time and a huge effort. However, there is an XML describing the
Quranic annotations relationships and labelling each vocabulary with its meaning, such as labelling
the Quranic annotations. Currently we do not have a complete ontology dedicated to describing every
Quranic word, for which there are many reasons. Khan et al (2013) stated that defining Quranic
taxonomy is causing a great debate among Islamic scholars who have different Islamic opinions. In
fact, there are many Quranic words which have having different commentaries, such as Alflq, which
has been described as another name for the word Moon or for the name of a hill. These are
completely different meanings, therefore, to convert the XML to ontology, an ontology data model

must be chosen.
As stated in chapter three, OWL model has significant features in describing data semantically, this

type of modelling has been chosen as a target output in converting the unified Quranic dataset to an

ontology model.

46



Mapping the XML to OWL Ontology:

Converting XML
schema to an OWL

model
XML SCHEMA ‘ —_— OWL model
Converting XML data

to an OWL instances
XML ‘I —_—> OWL instances

Figure(5.6): Mapping XML to OWL proposal by Bohring et al (2005).

There are many published approaches to mapping an XML file to OWL ontology. Such a
proposal published by Bohring et al (2005) illustrated a way of converting XML to OWL. It has
many steps as shown in figure (5.6). The approach assumes having an XML file, which holds the
actual data in hierarchy, and an XML schema which describes XML file data types and
hierarchies. The process of conversion is as follows:

1- The XML schema will be converted to OWL model or Domain model. The XML schema
and the OWL model are equivalent as they describe a domain by defining data types and
constraints.

2- Then, create the OWL instance by using the OWL model and XML data. The output is the
actual Quranic data defined by the OWL model definitions.

The obstacle to using this proposal is that the XML dataset lacks an XML schema. There are many
proposals for creating the XML schema by developing a prototype, creating the schema automatically
by reading the XML data and inferring the structure. But, this could lead to the creation of an
imperfect XML schema. However, the schema must be created manually. Another option for solving
this problem is to rebuild the OWL model and create it manually. This solution sounds more accurate
but is not practical; creating an ontology model from scratch needs a lot of effort and time.

Moreover, the XML structure could be used in modelling the OWL domain. From this understanding

of the unified dataset the desired OWL model output design can be drawn, as in the following figure.

hasSegment

Verse N ~ Segment
( —_—
= § class r ———— class >
- — hasVerse — el
id | id
ros
Lemma
- Root
Concept -
o Ji \ hassubconcept -
S Gender
Pillars of
. Islam -~ —
y \\ hasMainConcept Db el \_/
R — ‘\’\;,_ Islamic , / Object Property
k S Datatype property =3
L E

Figure (5.7): The OWL model design

47



There are three main components of the OWL model design. The first component is class, which can
be chapter class, verse class, segment class and Qurany concept classes. Each class instance must
have a unique identifier. Thus, chapter, verse, and segment must have a unique id.

The second component is the class’s data type property, which is a relationship between a class and a
literal value only. For instance, a segment class can have a data type property relationship with POS
tag. However, values such POS tag, lemma, gender are considered as literal, not as a class. This is to
avoid the functional property influence where each segment must have a relation with gender class
where some segment does not have a gender.

The third component is the object property, which defines the relationship between two classes only,
such as chapter class and verse class which has the hasVerse object property. The property also has
the inverse feature just as verse class and chapter class have the relation hasChapter. These properties
could be OWL special features, just as chapter and segment ids have a transitive relation property
hasSeg.

To implement this design, a prototype has to be developed. In this study three prototypes were
developed and took time to construct correctly. The restricted project plan cannot be extended to
develop a fourth prototype. Also, incorporating details about ontologies and how to convert XML to
OWL by reading many resources took a long time. Therefore, another approach was tried.

This alternative solution discovered that some ontology editors accept XML files. As discussed in
chapter three, Protégé has the facility to convert an XML file to OWL ontology.

This project used the Protégé version 3.5, with full installation, in order to obtain all Protégé features
and plug-ins. To start Protégé, create a new project and select OWL/RDF files. Then, to convert the
XML file, the XML tab must be enabled in Protégé. To do this, click on the project tab and select
configure. Then a list of Protégé plug-ins appears and shows the XML tab option. Clicking on that
option will activate the XML tab option and display it alongside the Protégé main tabs.

The XML tab has two options for importing files. The first option is to import xml tree, and the
second is to import XML instance. By examining the two options, both of them will be found to have
the same function, which is to import an xml file. Then, by selecting the unified Quranic dataset XML
file and then clicking on import, the dataset components will be shown in the class panel. Clicking on
the OWLClass tab will bring up the converted ontology’s components, listed in hierarchy.

Part of the converted OWL ontology is in Appendix K.

5.8 Porting the Unified XML file to the Sketch engine tool:

Preparing the unified Quranic dataset in Sketch Engine format has produced the following main
points:
- It is proved that Sketch Engine accepts the XML corpus. The XML tags can describe the

document structure (sentence, word, paragraph tags) and grammar features.

48



- In addition to using XML tags to describe the document structure, Sketch Engine uses vertical

lines in listing the word attributes. This vertical line enables the application of language
grammar to improve word behaviour such as in word sketches. Word sketches are involved in
finding a lemma with the most frequent neighbour words and in listing the findings in tabular
form.
The attributes of vertical lines can be defined in many ways. There is no single way of
defining them. Also, some predefined attributes are more strictly defined in Sketch Engine.
The important thing in creating the corpus and vertical line is to separate the attributes with
tabs. Such a vertical line is used in the project’s dataset in the following way:
Word Lemma TAG
Features and annotations having a hierarchical structure and multi-valued annotations can be
represented in Sketch Engine. This type of annotation has to be defined in a recursive header.
Sketch Engine uses symbols to describe the hierarchy and the multi-valued features. According
to the Corpora header definition in Sketch Engine, a header having multiple values can be
represented using these symbols

POSTag = Noun|Noun::PN

5.8.1 Implementing Sketch Engine formats:

To implement the Sketch Engine format functions have been defined in merge.py prototype. The

process of creating an XML corpus is the same as creating the unified Quranic Annotation dataset,

except for adding some changes in the segment text and the hierarchal xml elements.

1-

Implementing the vertical line structure.
To add the vertical line in the core corpus text (segment text), a function has been defined to add

the three components of our defined attributes.
seg MT = ET.SubElement(verse MT,'seg")
seg MT.text = str(text.decode('utf-8')) +'\t'+ str(Lemma.decode('utf-8')) + "\t' + str(pos)

Implementing the hierarchal and multi-valued XML elements.
The hierarchal and multi-valued XML elements are represented in Qurany concept elements. The
defined function SketchEngineFormat returns the XML value in Sketch Engine format. The symbol

‘|” represents the multi-valued element, while “::* represents the hierarchal feature in the element.

conceptline = conceptline.split(';")

return "' join("::".join(conceptline[:INDX]) for INDX in range(1,len(conceptline)+1)).strip()

Sketch Engine hierarchal format is very sensitive in requiring spaces between the text and the

symbols. Thus, a strip function has been used to guarantee that no spaces appear between lines of text.

49



5.8.2 Configuring the Corpus:
To upload the XML Quranic corpus, Sketch Engine must be configured to compile the corpus

structure. There are hierarchal and multi-valued elements, therefore a corpus definition is required.
An example of defining the Qurany concepts has the following components:
an element that has attributes defined by structure; a basic XML element which has no attributes and
can be defined simply by writing ATTRIBUTE"word", and a structure defined by a tree attribute,
which lists the Qurany concepts.
Another optional feature can be defined as the Label. It can handle a title of the element to be
displayed in text type queries in Sketch Engine. A MULTIVALUE feature must be specified to indicate
that an element can have more than one value with the same element name. Specifying ‘1’ to
MULTIVALUE enables the feature. MULTISEP must be defined with a symbol such as ‘|’. This
symbol indicates that an XML element can have more than one value. HIERARCHICAL can also be
defined by a symbol, and ‘::” was used in this study to indicate that a previous element is a parent of
the second element, such as Pillars of Islam::Islamic.
STRUCTURE  "ENQuranyConcepts" {
ATTRIBUTE "tree" {
LABEL "English Qurany Concepts Tree"
MULTIVALUE "1"
MULTISEP "|"
HIERARCHICAL "::"}}
Another element, such as chapter element with id attribute, can be defined simply as below. The same
definition is used for the verse and segment elements.
STRUCTURE  "chapter" {
ATTRIBUTE "id"{
LABEL "Chapter Number"} }
The complete configuration file can be found in the Appendix J to this dissertation.
Using Text types, a user can specify their search by selecting any of the grammar and/or semantic

feature.

50



Chapter 6: Evaluation

This chapter evaluates three main outputs; the unified annotations XML dataset; the Sketch Engine

tool, and the unified Quranic OWL ontology using Protégé editor.

6.1 Evaluating the unified Quranic Annotations XML Dataset:
To evaluate the XML file, Xpath expressions were used to get the answers to the following questions.

These questions measure the data integrity and the accuracy of the merged XML dataset
(Unified Quranic_Corpus_vl.xml).
1- Find all verses which have the concept Hunting
Xpath code:
XML root= ET.parse("mergeLast Version.xml").getroot()
verses = XML root.findall('.//verse')
concepts = verse.findall('.//Hunting")

The answer:

Luluhs-MacBook-Pro:documents luluhaldubayi$ python evalute.py
verse {'id': '670'} Hunting {}
verse {'id': '763'} Hunting {}
verse {'id': '764'} Hunting {}
verse {'id': '765'} Hunting {}

2- Find segments having Noun POS tag and verb form II.
Xpath code:
exp2 = XML _root.findall('.//seg/[@POSTag="N"][@Verb_Form="I1"]")

The answer(part of the result with the total number):

muSayoTirK
POStag= N Verb Form= II

tagowiymk
POStag= N Verb Form= II

taDoliylK
POStag= N Verb Form= II

muSal~iyna
P0OStag= N Verb Form= II

The are 279 Noun segments with verb form I
Luluhs-MacBook-Pro:documents luluhaldubayi$

3- Find all segments having Pronoun referring to Allah.
exp2 = XML _root.findall('.//seg/[ @Enconcept="Allah"]')
The answer:

Luluhs-MacBook-Pro:documents luluhaldubayi$
The are 3061 pronoun reference to Allah

' . « e P |

51



Evaluation Discussion:
Three questions are posed in order to measure the merged XML file accuracy and evaluate the three

datasets by finding the related annotations.

The first question measures the correctness and accuracy of Qurany concepts verse annotations. To
know whether the results are accurate or not, Qurany concept/Topic website
(http://quranytopics.appspot.com) was used to navigate the concept of ‘tree’ to Hunting concepts and
to browse how many verses are found under that definition. It was found that there are four verses
related to the hunting concept. Thus, the results found in the XML file are correct.

The second question measures the accuracy of QAC annotations in the merged dataset. The question
posed to find nouns tagged with N and verb form II produced a result of 279 occurrences of segments.
To validate the result, the QAC morphology search tool available in Quran corpus website
(http://corpus.quran.com/morphologicalsearch.jsp) gave the same result shown in figure (6.1), which
indicated that the unified XML file is correct.

Quran Search

The translations below are brief glosses intended as a guide to meaning. An Arabic word may have a
range of meanings depending on context. Click on a word for more linguistic information, or to
suggestion a correction.

Show options
Results 1 to 50 of 279 for pos:n (ii) (in 0.003 seconds):

(2:41:4) musaddigan e‘i‘-‘ LA L":‘“‘-‘HJ“ L‘-’ ‘)5‘:‘13
FAGHEC A SP AR PS R P
penca Ll Biian (5211 305 861053 L s 35

,,,,,

(2:85:20) muharramun

(2:91:18) musaddigan

(2:96:17) bimuzahzihihi

(2:97:12) musaddigan

550 Ll e 4 oY AT A5 438
Lala 4 3, 05

(2:148:4) muwalliha turr

Figure (6.1): The morphological search tool
As mentioned in chapter two, the tool has limited search options, for example, it cannot be used to
validate noun with gender occurrences.
The third question measures QurAna pronoun references. There are 3,061 pronouns in Quran
referring to Allah. In fact, there is no available tool that can be used to validate the result. However,
according to QurAna published paper (Sharaf et al., 2012), there are 3,061 pronoun references to
Allah. Thus, the unified XML file has proven accuracy.

6.2 Evaluating the unified Quranic Annotations XML Dataset in Sketch engine:

Translating the SKE corpus to Arabic:

Since the contributing users are Arabic native speakers, they cannot evaluate the Latin corpus, so two
more datasets were created by replacing the segment text with Arabic text. In Algassem’s (2013)
merging of databases project, she first merged and translated the Quran text and created four Quranic

corpora; an unvowelled Arabic corpus; a vowelled Arabic corpus; an unvowelled Latin corpus, and a

52



vowelled Latin corpus. Thus, her translations created an Arabic version of the unified dataset. To do
this, a prototype was developed which mainly reads Algassem’s four corpora, obtains the text and re-
assigns the segment’s text.

First, this dataset file parses (SKE Unfied Quranic Corpus Latin vl.xml) file and obtains all

segments using the Findall function with the Xpath expressions.

Self-Evaluation:
Opening the unified dataset in Sketch Engine reveals many search options. However, there are five

main ways to query the corpus. Two ways were tested, the first being the simple query in which a
word is simply entered. The second is the advanced query using CQL, such as querying every word in
the corpus with Gender F.

Query .*, F 8,709 (67,672.2 per million)

Page |1 of 436 | Go | \Next|| Last

2w mmArzgn hm ynfq wn w {l*yn y&mn wn Slwp \ mtqyn {I*yn y&mn wn b {l gyb w ygym wn {l
2 hm ywgn wn >wlk ELY hdY mn rb hm w >wilk  Axrp A <seg id="87"<ly k w mA >nzl mn gbl k w b {l
2 hm w ELY smE hm w ELY >bSr hm gSwp w | glwb 9 hm >m m tn*r hm (A y&mn wn xtm {lLh ELY
2wl hm E*Ab EZym w mn {l nAs mn yqwl Am gSwp N {lLh ELY glwb hm w ELY smE hm w ELY >bSr hm
2 hmw mA ySEr wn fY glwb hm mrD f zAd hm >nfs q {"yn Amn wA w mA yxdE wn <seg id="182"<IA
2 hm mrD f zAd hm {llh mrDA w | hm E*Ab >lym  qlwb 9 <seg id="182"<lA >nfs hm w mA ySEr wn fY

2 qAl WA <seg id="222"<n mA nHn mSIHwn >lA >rD N <seg id="210"<*A qyl L hm A tfsd wA fY {l

2 b {l hdY f mA rbHt tjrt hm w mA kAn wA  Dllp A Y Tgyn hm yEmh wn >wik {l*yn {Str wA {l

2 tjrt hm w mA kAn wA mhtdyn mvl hm k mvl  rbHt Y >wilk {l*yn {Str wA {l Dllp b {l hdY f mA

2 hm w mA KAn wA mhtdyn mvl hm k mvl {I*Y  tjrt 9 {l*yn {Str wA {l Dllp b {l hdY f mA rbHt

2 fImA >DAt mA Hwl h *hb {lth b nwr hmw  nArA A mA KAn wA mhtdyn mvl hm k mvl {I*Y {stwqd
2 mA Hwl h *hb {lLlh b nwr hm w trk hm fY  >DAt mhtdyn mvl hm k mvl {I*Y {stwqd nArA f ImA
2 A ybSr wn Sm bkm EmY f hm LA yrjE wn >w  ZImt N/z . >DAt mA Hwl h *hb {lth b nwr hm w trk hm fY
2 fy h ZImt w rEd w brq yjEl wn >SbE hm fY  smA N Sm bkm EmY f hm A yrjE wn >w k Syb mn {l
2 w rEd w brq yjEl wn >SbE hm fY A*An hm  ZImt N/ fhm LA yrjE wn >w k Syb mn {l smA fy h

2 hm mn {l SwEq H*r {l mwt w {ILh mHyT b A*An ;.. /. fy h ZImt w rEd w brq yjEl wn >SbE hm fY

2 Hr {l mwt w {llh mHyT b {l kfryn ykAd SwEq A rEd w brq yjEl wn >SbE hm fY A®An hm mn {l
2 frSA w {l smA bnA w >nzl mn {l smA mA f >rD N - mn gbl km (El km ttq wn {I*Y JEL L km {l

2 bnAw>nzl mn {l sSmAmAf>xrjbhmn{l smA N km ttq wn {I*Y JEL L km {l >rD frSA w {l

2 mA f>xrjb hmn {l vmrt rzgA Lkm fIA  smA A km {l >rD frSA w {l smA bnA w >nzl mn {l
Page |1 of 436 | Go | Next | Last

Figure(6.2): CQL query result

Testing the POS Filter:
Sketch engine has the option to create the POS filter using the POS attribute in a corpus vertical line.

Thus, by examining the POS filter, the results were shown to be incorrect and the filter needed to be
developed. However, the POS filter was adapted by labelling the POS tags using the defined function
SKEPosFilter in merge.py prototype. Each POS value is passed to the function and returned with a
POS label such as the following:
if pos == 'N' or pos=="PN' or pos=='IMPN":

return "Noun|Noun::"+pos
Then, configure the corpus to accept the POS labels and present them in a multi choice box as the

following figure:

53



POS TAG

("] Adverbs

(_] Conjunctions
() Disconnected Letters
[_) Nominals

(") Noun

[ Particles

(") Prepositions
("] Pronouns

() Verb

() lam prefixes
Select All |

Figure(6.3): Sketch engine POS filter
To test the POS tag, a query for finding noun words with verb form II was constructed. The result is
shown in figure (6.4) . Obviously, the same result of 279 nouns with II verb form was achieved. Thus,

the POS filter and grammar filter were proved to be correct and accurate.

Query .*, Noun::N, Il 279 (2,167.9 per million)

Page |1 of 14 [ Go | |Next|| Last

2 (-imaA walaA 'A@ >aw-ala IGFA /muSad-iq/N/musad-iq/musad-igfa {rohabuwni wa'aAminuwA@ bimaA* >anzalotu

2 Ealayokumo <seg id="2407 <ixoraAjuhumo muHar-amN /i uHar-am/N/muhar-am/muhar-amn ya>otuwkumo >usa’raY" tufa’duwhumo wahuwa

2 L-imaA qulo falima Sad-iqFA /. d-iq/musad-iafa yakofuruwna bimaA waraA*ahu, wahuwa {loHaq-u
2 hi. mina {loEa*aAbi >an yuEam-ara wafll-ahu muzaHoziHi /,,.aHoziH/N/mu: lawo yuEam-aru >alofa sanapK wamaA huwa bi

2 |~imaA bayona yadayohi wahudFY wabuSoraY " muSad-iqFA ;. c.d qalobika bi <seg id="2854"<i*onifll-ahi

2 haA fafsotabiquwA® {loxayora'ti >ayona maA muwal-~fy /. 9 mina {lomumotariyna walikul-K wijohapN huwa

2 {lr-iya’ Hi wafls-aHaAbi {lomusax-ari bayona , haA wabav-a fiyhaA min kul-i daA"b-apK wa

2 m-in r-ab-ikumo waraHomapN famani {EotadaY " - <seg id="5503"<ilayohi bi <seg id="5506"<iHosa nK"a'lika
2 wamun*iriyna wa>anzala maEahumu {lokita'ba muba$~iriyna /. .bas . wa'HidapF fabaEava {ll-ahu {ln-abiy-i.na

2 yatarab-aSona bi>anfusihin-a vala'vapa muTal~aga’tu ;. ./ aq al-aga'tu  <seg id="7364"<in-afll-aha samiyEN EaliymN waflo
2 bi <seg id="7448"<iHosa nKwalaA yaHil-u tasorlyHN[ /taco <seg id="7442"<imosaAkN[bimaEoruwfK >awo

2 mataEN[ bi{lomaEoruwfi Haq-FA EalaY {lo muTal-aqa ti /,,.7.( o sl-sqe't M-2EoruwfK wafll-ahu EaziyzN HakiymN walilo

2 m-ino >anfusihimo kamavali jan-apK] birabowapK tavobiytFA >amowa’lahumu {botigaA~a maroDaAti {ll-ahi wa

3 (-imaA bayona yadayohi la {l ‘pa qFA /, qay-uwmu naz-ala Ealayoka {lokita'ba bifloHag-i

3 hi. wamaA yaEolamu ta>owiylahu,” <seg id="10403"<il-aA ta>owiyli /.. hu {botigaA™a {lofitonapi wafbotigaA*a

3 hu,” <seg id="10403"<il-aA {ll-ahu waflr-a'sixuwna ta>owiyla /.o, - wafbotigaA™a ta>owiylihi. wamaA yaEolamu

3 fataqab-alo min-iY* <seg id="11215"<in-a MUHAr~arFA /o tar- ac/N/mu uhar-arfa <seg id="11200"<in-iY na‘arotu laka maA fiY baToniY
3 bikalimapK m-~ina {ll-ahi wasay~idFA waHaSuwrFA muSad~igF[A usad-iqffa miHoraAbi >an-a {ll-aha yuba$-iruka biyaHoyaY "

3 wayukal-imu {ln-aAsa fiY {lomahodi wakaholFA mugar-abiyna /.. ... = fiY {ld-unoyaA wafloaAxirapi wamina {lo

3 1-imaA bayona yadaY-a mina {lt-aworaY " pi musad-igFA /,, musad-iafa <seg id="11662"<in kuntum m-u&ominiyna wa

Page [1 of 14  Go | Next | Last

Figure(6.4): Testing POS filter options

Testing the Qurany concept ‘Hunting’:

ENGLISH QURANY CONCEPTS TREE

) Action(Work)
_ Faith

() General and Political Relationships
() Jihad
() Judicial Relationships
() Man and The Moral Relations
() Man and The Social Relations
() Organizing Financial Relationships
() Pillars of Istam
(] Religions.
() Science and Art
() The Call for Allah
() The Holy Quran
() The Stories and the History
() Trade, Agriculture, Industry and Hunting
() Agriculture
& Hunting
() Industry
B () Trade
() Altwoing It
() Contracts
() Mortgages.
() The Debt.
Select All

DEEREEREEREEREE

Figure (6.5): Qurany concepts search options
The query was also made by CQL [word=".*’]. By clicking on the Hunting concept on Qurany with

the concept ‘tree’, the following result was produced:

54



Query .*, Trade, Agriculture, Industry and Hunting::Hunting 184 (1,429.7 per million)

First | Previous Page [4

94 man yaxaAfuhu, biflogayobi famani {EotadaY" {-ahU /g aprsiiioa
94 yaxaAfuhu, biflogayobi famani {EotadaY " MAN /man/REL/man/man
94 hu, bi{logayobi famani {EotadaY "' baEoda yaxaAfu ;,asary

94 biflogayobi famani {EotadaY" baEoda *a’lika hU, /by, /PRON.

94 {logayobi famani {EotadaY" baEoda *a’lika bl fhiprbish

94 gayobi famani {EotadaY" baEoda *a’lika fa {10 /g10/0ET)

94 famani {EotadaY" baEoda *a’lika falahu, 82YOBH /a0 /N/gayob/gs

94 mani {EotadaY" baEoda *a’lika falahu, Ea*aAbN fa s,

94 {EotadaY" baEoda *a’lika falahu, Ea*aAbN mani ,,

94 baEoda *a’lika falahu, Ea*aAbN >aliymN {EotadaY" ;icotad

94 *a’lika falahu, Ea*aAbN >aliymN ya'* >ay-uhaA baEoda ¢ b

94 falahu, Ea*aAbN >aliymN ya'* >ay-uhaA {l-a%iyna " KA 1oy Hi/DEM" k" ik
94 lahu, Ea"aAbN >aliymN ya'* »ay-uhaA {l-a"iyna fa un

94 hu, Ea"aAbN >aliymN ya'* >ay-uhaA {l-a*iyna la

94 Ea"aADN >aliymN ya'* >ay-uhaA {l-a%iyna hu, /b

94 >aliymN ya'* >ay-uhaA {l-a%iyna ‘2Amanu Ea*aAbN /¢

94 ya'* >ay-uhaA {l-a‘iyna ‘aAmanuwA® laA >aliymN

95 >ay-uhaA {l-a%iyna ‘aAmanuwA@ laA tagotulu ya'* .

95 >ay-uhaA {l-a‘iyna ‘aAmanuwA@ laA taqotulu /posTa

of 10 [ Go | [Next]| Last

95 {l-a"iyna 'aAmanuwA@ laA taqotuluwA@ {l

First | Previous Page [4

>ay-uhaA ;... ,haa/N

0f 10 [ Go | Next | Last

hu," >ayodiykumo warimaAHukumo liyaEolama
>ayodiykumo warimaAHukumo liyaEolama {ll~-ahu
kumo warimaAHukumo liyaEolama {ll~ahu man
rimaAHukumo liyaEolama {ll~ahu man yaxaAfu

r ) {ll~ahu man

kumo liyaEolama {ll-ahu man yaxaAfuhu, bi
liyaEolama {ll-ahu man yaxaAfuhu, biflo
'yaEolama {ll~ahu man yaxaAfuhu, biflogayobi
yaEolama {ll~ahu man yaxaAfuhu, biflogayobi fa
{ll-ahu man yaxaAfuhu, bi{logayobi famani
yaxaAfuhu, bi{logayobi famani {EotadaY "
yaxaAfuhu, biflogayobi famani {EotadaY" baEoda
{logayobi famani {EotadaY" baEoda *a'lika
gayobi famani {EotadaY" baEoda *a’lika fa
gayobi famani {EotadaY" baEoda *a’lika fala
famani {EotadaY " baEoda *a’lika falahu,
{EotadaY" baEoda *a’lika falahu, Ea*aAbN
{EotadaY" baEoda *a’lika falahu, Ea*aAbN >aliymN
baEoda *a’lika falahu, Ea"aAbN >aliymN ya'*
baEoda *a’lika falahu, Ea*aAbN >aliymN ya'*

The result shows how many segments are related to hunting. However, the actual verses id can be
viewed through (view option) and by changing the view to verse number. There are four verses; verse

670, 763, 764 and 765. Comparing these with the XML evaluation result using Xpath demonstrated

that the result is accurate and correct.

Testing the Pronoun reference to Allah:

By clicking on the concept Allah and retrieving all words, the result showed 3,061 occurrences of

pronouns referring to the Allah concept. Thus, the SKE tool was shown to retrieve accurate results.

Figure (6.6): The query outputs

ENGLISH QURANA CONCEPTS

() ENconcept

o
() (Kaafir) the infidels

() (Muttaqun) the pious, the righteous, God fearing
() Aazar father of Abraham

(7] Abdullah ibn Ubai ibn Salool, the head of hypocrites

() Abdullah ibn Umm Maktoum

() Abil

() Abraham

() Abraham and Isaac

(2) Abraham and Ishmael

() Abraham and his faithful followers

(1) Abraham, Ishmael, Isaac, Jacob and the Descendants (the 12 tribes of Israel)

() Abu Jaht
() Abu Lahab

() Adam

() Adam and his wife

() Adam, his wife and Iblis
() Al-Agsa Mosque

() At-aas ibn Wael

& Allah

(] Allah and Angels

() Allah and His messenger
(] Allah's advice

() Allah's covenant

() Ansar

Figure(6.7): QurAna concepts search options

Using Sketch Engine features:
- Word frequency:

- Occurrences of the word Eml (work in English) was tested in the corpus. To check the POS

tags frequencies of Eml, the Frequency Option was tested, and then the frequency criterion

was tested with POS tag. The result is shown in the figure (6.8) below.

55



Frequency list

Frequency limit: |0 | Set limit |

POS Tag Freq Rel [%]

p/n verbzv 276 181.8 [

onvers 276 181 [
p/n Noun::N 83 431 ——

p/n Noun 83 37.4

Figure(6.8): The frequency of Eml POS tags

- Concept frequency for a word:

- To view the concept frequency for the word Eml the frequency option was used but in

conjunction with the Qurany concept criteria.

English Qurany Concepts Tree Freq Rel [%
p/n Faith 621 203.2
p/n Pillars of Islam 395 82.3
p/n Pillars of Islam::Islamic 318 80.0
p/n Action(Work) 214 220.4
p/n Faith::The Believers 204 387.6
p/n Pillars of Islam::Islamic::Oneness of Allah 175 64.2
p/n Faith::Belief In Allah 150 2211
p/n Faith::The Hereafter 124 147.0
p/n Pillars of Islam::Islamic::The Disbelievers 116 83.0
p/n Faith::The Unseen World 112 90.0
p/n Action(Work)::The Good Deeds 101 188.6
p/n Man and The Moral Relations 79 771
p/n Faith::Belief In Allah::The Faith and the Action 75 861.3
p/n Faith::The Unseen World::The Paradise 7 152.2
p/n Action(Work)::The Good Deeds::The Call for Good Deeds il 650.4
p/n Faith::The Believers::What has Allah Prepared for them 67 176.6
p/n Faith::The Believers::His Promise to them 67 172.4
p/n Man and The Social Relations 60 70.6
p/n Jihad 56 116.1
p/n Action(Work)::Responsibility 51 800.9
p/n Faith::The Hereafter::The Award against Action 49 531.0
p/n Pillars of Islam::Islamic::Oneness of Allah::His Glory's Characteristics 46 63.8
p/n Judicial Relationships 43 165.4
p/n Action(Work)::Bad Deeds 42 108.1
p/n Pillars of Islam::The Blessed Muhammad(PBUH) 41 43.4
p/n Action(Worl ery one is for What he/she has Done 41 671.2
p/n Man and The Moral Relations::Good Morals 40 89.0
p/n Religions 39 115.4
p/n Man and The Moral Relations::The Dispraised Morals 39 61.5
p/n Faith::The Believers::Their Life in the World and the hereafter 38 696.2

Figure (6.9): Concepts frequency for word Eml
The output showed that the word Eml is mentioned in the Quran but associated with the concept of
‘faith’. The word Eml is associated with Faith 621 times, although there are only 359 occurrences of
Eml. However, since a verse could have more than one Qurany concept, the faith concept is repeated
with the same word occurrence. Thus, a relation between Eml (which means work in English) and
Faith as a word related to human faith can be made.

- Word Sketch:

- Word Sketch is used to show a word's grammatical and collocation behaviour in the corpus.

EIML oun)  unined qurante annotations q.atin unvowetied) freq = 339 @789.6 per mation

nfs
Kr
A
tm
mA
b

verb left 166 0.8 |[verb right 245 1.2 |[noun left 287 1.1 162 o.6
52Y 5 7.51 || HbT 10 9.81 || StHe 59 11.06 10 9.57
sa 3 7.44 || HoT 4 8.85||sH 33 1018 4 9.27
v 12 6.7||Amn 62 8.49 || xbyr 14 9.7 10 8.83
tys 3 6.54||zyn 5 8.34 ([ bsyr 15 9.59 3 8.49
o 3 613 (| wrr 4 8.27 [ mkane 4 86 4 8.26
A 6 6.1 ||-pae 3 8.5 [ muyr 4 844 3 7.58
QA 17 5.4 [sa 4 7.91 ([ sw 7 803 4 7.45
KAn 12 484 cab 5 7.55 [ [ sy_wac 5 798| 4 679
Kir 3 479 || Kkan 75 7.48 [ inp 6 7.07 3 6.06
Etm 4 454 | o> 4 7.04 | Eym 4 688 7 593
Amn 3 414||nEm 3 6.99 [ anya 3 686 3 553
~DL 3 6.66||>yna 6 676 3 499
Eml 8 61 ||ayr 4 624 3 479
ra 3 s5.06 || Emt 8 6.08 3 463
% 3 467 ||va 3 605 7 454
aAt 8 4.0||xr 3 575 10 4.47

s

3

20

3

4

3

nextright 359 1.1
HBT 2 9.27

Figure(6.10): Word Sketches

56



Users-Evaluation:
The project aims to help three main user types: Quranic researchers, Arabic language and linguistics

experts and Arabic language students.

Dr. Ahlam Aldhubayi is a Quranic researcher from Imam Muhammad bin Saud Islamic University in

Saudi Arabia. Her research aimed to investigate the explicit and implicit occurrences of the word
‘mind’ (Eql). Her aim was to perform a comprehensive analysis for the word to indicate a religious
pattern of how the Quran uses the word (Eql) and which concepts are shared. She investigated every
occurrence of the word (Eql) in Sketch Engine and explored their verse concepts. However, it took
her only a short time to find comprehensive analyses for each occurrence in the Quran. She stated in
her evaluation that “there is a demand for a Quranic tool to help in studying Quranic word behaviour
and to analyse such behaviour comprehensively”. Moreover, there is a need for an accurate source
showing the Quranic words associated with their grammatical and semantic features. In addition,
classifying the words with their grammatical features will help to indicate general patterns and

collocations as well.

Dr. Nawal Alhelwa is an Arabic linguistic researcher in Princess Noura University, Kingdom of

Saudi Arabia. She evaluated the unvowelled Arabic corpus by querying the word ‘scourge’ (<3¢ ).Her
search aimed to find the semantic concepts related to the word. She stated in her evaluation “the
system and the dataset are useful for linguistic researches except for some limitation in the syntax
annotations”. The syntax annotations do not show the Indicative, Subjunctive and Jussive in detail.

Usually, Arabic language researchers aim to find the reason behind verbal moods such as these.

Dr. Amany Altawili is a Quranic researcher from Imam Muhammad bin Saud Islamic University.

Currently, she is doing new research to study the behavior of some Quranic words. She evaluated the
concordance of the Quranic word ‘prefer’(Ju=<t). She stated in her evaluation that “the system is

good and it can serve the demands of Quranic researchers”.

Mr. Abdullah Alfaifiis a Lecturer in TAFL Teaching Arabic as Foreign

Language, and PhD student. He evaluated the unvowelled Arabic corpus and made queries to find the
pronoun (k) (&) and its grammar features, such as the feminine and masculine. The system offers a
variety of analysis options. He found the corpus beneficial for Arabic language researchers and stated
“the corpus seems to have well-structured design which provide useful features (PoS, Syntactic, and
Semantic) that enable users to search in the Quranic text for different purposes, Quranic and linguistic

studies.”

57



However, the brief presentation (manual) provided to the evaluators needs to be expanded to cover

more details in the system. (The evaluation is in Appendix L)

Mpr. Mishal Alhusan is an Arabic language teacher in the Ministry of Education in Saudi Arabia. He

evaluated the usage of the word ‘J<lG3es” in relation to Jihad concepts. He was able to cluster the Jihad

concepts words based on the Gender type and the POS tags.

6.3 Evaluating the unified Quranic OWL ontology:
The class triples and Class hierarchy:

oject: @ A_Unified_Quranic_Ontology

%

GoR
For Class: http/ /www.owl-ontologies.com) Ontology 1378397528 owl#verse 0] nferred v

ad Deecs
il 2 ax 0 B Triple elief_In_Allsh

B Trip
chapter
Property Value Type ‘ Lang ‘ chasty

(& rdftype owt.Class owl:Class ke o s
= rdfs:subClassOf QuranyConceptsSlot some QuranyConcepts owd:Restriction Death

(& rdfs:subClassof _idmax1 owtRestriction Divorce

(& rdfs:subClassOf £) segSlot some seg owdRestriction
(& rdfs:subClassof owt Thing owClass

=

Figure (6.11): The Unified Quranic Ontology in Protégé .

Unfortunately, the size of the ontology is very large (135MB), therefore the heap size of the virtual
machine in Protégé requires a greatly increased memory size, to as much as 5,000MB because the
reasoning of the ontology means creating more inferred instances, which occupy more memory.
Therefore, it is necessary to increase the heap size to the whole required memory.

However, Protégé still cannot run the reasoning of a large ontology. This takes several hours without
any noticeable progress in the reason log. To evaluate the mapped ontology, the domain was limited
to the second chapter only in the Quran. Chapter 2 is considered to be the longest chapter in Quranic
with a maximum of 280 verses. Thus, this chapter could reflect and cover a lot of concepts and
grammar annotations.

So, it was necessary to run the semantic reasoner (Pellet 1.5.2) on the Quran’s chapter 2. Pellet and
DIG are the standard reasoners in Protégé 3.5. But, DIG suffers from some reasoning limitations, such
as the inability to load the whole ontology (Protégé)

The resoner checked the consistency and the inferred instances, the log shows in figure (6.12) has

successfully checked the ontology.

58



8600 Pellet 1.5.2 (direct) 18006 Pellet 1.5.2 (direct)

Computing inferred types: Querying reasoner and updating Protege-OWL... Computing inconsistent concepts: Querying reasoner for inconsistent concepts and updating Protege-0.

[ 1
[ ]

Figure(6.12): Computing the inferred instance(left) and checking ontology consistency (right).

Some Observations:

The hierarchy of subclasses in the class browser has the same level. For example, verse and Qurany
concepts have the same level in the browser but the verse triple shows that the Qurany concepts class
is a subclass of verse. Thus, the class browser does not reflect the actual class hierarchy.

When porting the XML file to Protégé through XML Tab, Protégé gave each instance a generated ID
and used it to refer to the instance. The generated ID has a different indexing style where chapter id 1
is translated to 67. In the unified XML dataset, chapter ids have there strictly order. For future
enhancement, a chapter id can be replaced by the chapter’s name. Thus, having an id for a chapter
will not change its name.

The properties types have not been specified, thus manual adjustment has to be made to object

properties. By making an object property a transitive property, a new knowledge can be inferred.

Testing the OWL ontology using SPARQL on chapter 2:
Protocol and RDF Query Language (SPARQL) is a questioning language which can search in RDF

triples and get the answers. To test the ontology, the following questions were used to look for the

answers in the ontology. However, the answers were already known.

Questionl: A women who has been mentioned in chapter 2?

Answer: Mary (Maryam).

SPARQL:

SELECT ?seg

WHERE { ?verse :QuranyConceptsSlot ?Women. ?seg : POSTag "PN". ?seg : Gender "F"}

e ex [ § Triples
‘ Property [ Value ‘ Type ‘ Lang [
GEN 4 string
F 4 string
STEM 4 string
2503 4 string
maroyam 4 string
PN 4 string
1 4 string
e:classificationStatus 1 4 int

Question2: Who is the man who lost his deeds in chapter2?
Answer: Fir'aun' (Pharaoh)

SPARQL:

59



SELECT ?seg
WHERE {?verse :QuranyConceptsSlot ?Lost Deeds. ?seg : POSTag "PN". ?seg : Gender 'M'}

R e L i
¢ &x  [J

I Property ] Value l Type
m _Case GEN 4 string

M _Cender M 4 string

B _Grammar STEM 4 string

m _id 1243 4 string

M _Lemma firoEawon 4 string

B _POSTag PN 4 string

B _token_id 1 4® string

protege:classificationStatus 1 @ int

The ontology answers the questions correctly. Although the semantic was assigned to the verses only,
the segments inherit the verses concepts. This ontology could be used in a question-and-answer

system, where a question is translated to SPRAQL to obtain the answer.

Chapter 7: Conclusion
This project describes the underlying approach of creating Unified Quranic Corpus and Ontology.

Three selected datasets were merged in one file in unified format successfully. The Unified XML
corpus has been loaded to Sketch engine and been used successfully and efficiently. The evaluators
have positive feedback about the dataset and the tool. Thus, Sketch engine is a perfect in dealing with
huge datasets and has a robust search tool and options.

In addition, The unified XML dataset has been converted to OWL ontology. The Unified Quranic
ontology has been loaded to Protégé ontology editor. But, protégé is not capable of handling large
ontology such the entire Quranic ontology with more than 100 MB. Obviously, protégé is perfect tool
in processing small ontology.

Overall, Sketch engine and protégé tools have different functions and aims and thus can not be
compared. But, Sketch engine outperforms protégé in processing huge datasets, and has effective
website that enable sharing the resource. In the other hand, protégé is a stand-alone tool where it has

the facility of sharing but with still has limitations.

Ideas for further work:

This project can be extended to have more annotations to be shared through sketch engine tool.
Another enhancement is to merge the QAC search interface with Sketch engine to make the merged
Quran dataset interfaced more user-friendly. In addition, a follow-on project for another religious text,

such as the Bible or the Book of Mormon or a collection of Haddith.

60



References:

Abbas, N. 2009. Qurany ‘Search for a Concept’ Tool .[online]Available at:
http://www.comp.leeds.ac.uk/nora.

Abbas, N., Aldhubayi, L., Al-Khalifa, H., Algassem, Z., Atwell, E., Dukes, K., Sawalha, M., Sharaf,
A., (2013). Unifying linguistic annotations and ontologies for the Arabic Quran. The WACL’2
Second Workshop on Arabic Corpus Linguistics, Lancaster University, UK.

Al-Khalifa, H., Al-Yahya, M. Bahanshal, A. and Al-Odah I. (2009). SemQ: A Proposed Framework
for Representing Semantic Opposition in the Holy Quran using Semantic Web Technologies. The

2009 International conference on the Current Trends in Information Technology (CTIT’09), Dubai,
UAE. 15-16 December 2009.

Al-Yahya, M., Al-Khalifa, H., Bahanshal, A., Al-Odah, 1., & Al-Helwah, N. (2010, July). An
ontological Model for Representing Semantic Lexicons: An Application on Time Nouns in the Holy
Quran. Arabian Journal for Science and Engineering, 35(2), 21.

Alani, H., Hara, K.O., Shadbolt, N., (2005), “Common features of killer apps: A comparison with
Protégé”, In: 8th International Prot Conference, 18-21 July 2005, Madrid, Spain.

Alatrish, E. (2012), Comparison of Ontology Editors, eRAF Journal on Computing, University of
Belgrade, Serbia, Vol. 4,

Algassem, Z., (2013). Unifying Quranic Analyses into a Single Database. Final year project report,
University of Leeds.

Antoniou, G. (2004). A semantic web primer. (pp. 18-31). MIT Press.

Antoniou, G., & Van Harmelen, F. (2009). Web ontology language: Owl. In Handbook on ontologies
(pp. 91-110). Springer Berlin Heidelberg.

Bohring, H., & Auer, S. (2005). Mapping XML to OWL Ontologies. Leipziger Informatik-Tage, 72,
147-156.

Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J.,& Horrocks, 1. (2000).
The semantic web: The roles of XML and RDF. Internet Computing, IEEE, 4(5), 63-73.

Dror, J., Shaharabani, D., Talmon, R., & Wintner, S. (2004). Morphological Analysis of the Qur'an.
Literary and linguistic computing, 19(4), 431-452.

Dukes, K., & Atwell, E. (2012). LAMP: A Multimodal Web Platform for Collaborative Linguistic
Analysis. In Proceedings of LREC.

Dukes, K., & Habash, N. (2010, May). Morphological annotation of quranic Arabic. In Proceedings
of the Language Resources and Evaluation Conference (LREC).



Dukes, K., Atwell, E., & Habash, N. (2011). Supervised collaboration for syntactic annotation of
Quranic Arabic. Language Resources and Evaluation, 1-30.

Element Tree XML API — Python documentations. [Online]. Available:
http://docs.python.org/2/library/xml.etree.elementtree.html

Garabik, R. (2006). Processing XML Text with Python and ElementTree—a Practical Experience.
INSIGHT INTO THE SLOVAK AND CZECH CORPUS LINGUISTICS, 160.

Gruber, T. (2008). What is an Ontology. Encyclopedia of Database Systems, 1.

Habash, Y. B. N., Ordan, A. K. N., & Suchomel, R. R. V. (2013) arTenTen: a new, vast corpus for
Arabic.

Khan, H. U., Saqglain, S. M., Shoaib, M., & Sher, M. (2013), Ontology Based Semantic Search in
Holy Quran, International Journal of future computer and communication, Vol 2, No. 6.

Kilgarriff, A., Rychly, P., Smrz, P., & Tugwell, D. (2004). ITRI-04-08 The Sketch Engine.
Information Technology, 105, 116.

Lassila, O., & Swick, R. R. (1999). Resource description framework (RDF) model and syntax
specification.

Lenzerini, M. (2002, June). Data integration: A theoretical perspective. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 233-246).
ACM.

Motik, B., Parsia, B., & Patel-Schneider, P. F. (2009). OWL 2 Web Ontology Language XML
serialization. W3C Recommendation, W3C-World Wide Web Consortium.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first
ontology.

Prechelt, L. (2000). An empirical comparison of C, C++, Java, Perl, Python, Rexx and Tcl. IEEE
Computer, 33(10), 23-29.

Protégé Ontology Library - Protégé Wiki. [Online]. Available:
http://protegewiki.stanford.edu/wiki/Protege Ontology Library

Rodrigues, T., Rosa, P., & Cardoso, J. (2006). Mapping XML to Exiting OWL ontologies. In
International Conference WW W/Internet (pp. 72-77).

Sha‘rawt, M. M. (1993). Tafsir al-Sha‘rawi (Vol. 3). Akhbar al-Yawm. PP(5-15).

Sharaf, A. B. M., & Atwell, E. (2012). QurAna: Corpus of the Quran annotated with Pronominal
Anaphora. LREC 2012.

Sharaf, A. B. M., & Atwell, E. (2012). QurSim: A corpus for evaluation of relatedness in short texts.
LREC 2012.

Van Deursen, D., Poppe, C., Martens, G., Mannens, E., & Walle, R. (2008, November). XML to RDF
conversion: a generic approach. In Automated solutions for Cross Media Content and Multi-channel
Distribution, 2008. AXMEDIS'08. International Conference on (pp. 138-144). IEEE.



Yahia, N., Mokhtar, S. A., & Ahmed, A. (2012). Automatic Generation of OWL Ontology from XML
Data Source. arXiv preprint arXiv:1206.0570.

Yauri, A. R., Kadir, R. A., Azman, A., & Murad, M. A. A. (2012, March). Quranic-based concepts:
Verse relations extraction using Manchester OWL syntax. In Information Retrieval & Knowledge
Management (CAMP), 2012 International Conference on (pp. 317-321). IEEE.



Appendix A: Personal Reflection

Undertaking this project was an adventure and a complex journey, full of ups and downs. Through
the period of 8 months working on this project, many challenges have been faced. One of the main
challenges was the project framework required to achieve the project objectives. As the project
revolved around addressing research problems by semantic web/text search and combined two
research areas: neutral language processing and knowledge representation and reasoning, thus,
intensive reading of background research on the semantic web and data models was involved. In
addition, obtaining in great detail knowledge of the building and the evaluation of XML files has

been a great experience and given me a better understanding of this field.

The biggest challenge 1 went through working on this project was to have a clear aim and
understanding of the problem that needed to be tackled. At the beginning, there was an unclear
appreciation of the difference between corpora and ontology. The project title was ‘A unified
Quranic ontologies’ when, in fact, there are few available Quranic ontologies which did not meet
the project goal. As a result, the direction followed was to deal with the proposed three datasets that
cannot be considered as ontology but rather as an annotated corpus or dataset because they are not
in a standard ontology data model such as first order logic or RDF. However, during the interim
report The project assessor Dr. Lau has provided valuable feedback on the project and its value. Her
feedback pushed the project in a clearer direction, which resulted in changing the project title and
plan. Thus, the project title was changed to “unified Quranic annotations and ontologies’ in order to
accomplish the first goal of merging the datasets in one dataset or annotated XML corpus. The new
goal was to convert the merged dataset to an ontology standard data model. As a result of changing
the title, the project plan was altered as well in order to consider corpora and ontology as two main

parts of the project.

In addition, during term two, I suffered a broken foot. The illness prevented me walking normally
for three weeks. This added more pressure since I’'m a single mother and have four years old
daughter to take care of her. Despite the difficulties that I had, the supervisor Dr. Eric Atwell and
the school of computing in the university were supportive, sympathetic and reassuring. So, if you
have any personal problems or constraints which affect your project work, seek advice from

Supervisor or Director of Student Education rather than struggling on alone.



My advice to fellow students and researchers to believe in them selves and never to give up and to

always come back to their supervisor if there are any doubts.

In addition, it was a pleasure to be a co-author in presenting the paper ‘the Unifying linguistic
annotations and ontologies for the Arabic Quran) in WACL’2 Second Workshop on Arabic Corpus
Linguistics, Lancaster University in July 2013°. This experience provided me on techniques of

presenting an academic paper and I look forward for more to writing more papers.

Finally, in the past year I have continuously developed, the knowledge and experience I have
gained through the project is worthwhile. It has deepen my understanding in language processing
and semantic search. I truly enjoyed spending my time on it. It is hoped that this project will shed

some light in this field of research and provide future researcher with a useful starting point.



Appendix B: Material Used.

This project has used three datasets without changing their content. As the copyright in Quranic Arabic
Corpus and QurAna datasets permit the right to use the data without add changes.

<l==

* PLEASE DO NOT REMOVE OR CHANGE THIS COPYRIGHT BLOCK

Annotation of Quranic Pronouns (version 0.1)
Copyright (C) 2011 Abdul-Baquee M. Sharaf
License: GNU Public License

This annotation contains marking pronons with <pron> tags and
indentifying their antecedents as well as the concepts

This work used QAC (http://corpus.quran.com) for segmentation IDs
and POS tagging.

TERMS OF USE:

of this file, but CHANGING IT IS NOT ALLOWED.

- This annotation can be used in any website or application
provided its source (TextMiningTheQuran.com) is clearly
indicated.

*
*
*
*
*
*
*
*
*
*
*
15 * = Permission is granted to copy and distribute verbatim copies
*
*
*
*
*
*
* = This copyright notice shall be included in all verbatim copies
* of the text, and shall be reproduced appropriately in all works
* derived from or containing substantial portion of this file.
*
* Check updates at (http://TextMinigtheQuran.com)
27 -—>

QurAna Copyright

1 # PLEASE DO NOT REMOVE OR CHANGE THIS COPYRIGHT BLOCK

2 &

3 #

4 # Quranic Arabic Corpus (morphology, version ©.4)

H # Copyright (C) 2011 Kais Dukes

6 # License: GNU General Public License

7 #

8 # The Quranic Arabic Corpus includes syntactic and morphological

9 # annotation of the Quran, and builds on the verified Arabic text
10 # distributed by the Tanzil project.

11 #

12 # TERMS OF USE:

13 #

14 # - Permission is granted to copy and distribute verbatim copies
15 # of this file, but CHANGING IT IS NOT ALLOWED.

16 #

17 # - This annotation can be used in any website or application,

18 # provided its source (the Quranic Arabic Corpus) is clearly

19 # indicated, and a link is made to http://corpus.quran.com to enable
20 # users to keep track of changes.

21 #

22 # = This copyright notice shall be included in all verbatim copies
23 # of the text, and shall be reproduced appropriately in all works
24 # derived from or containing substantial portion of this file.
25 #

26 # Please check updates at: http://corpus.quran.com/download

27

28 # PLEASE DO NOT REMOVE OR CHANGE THIS COPYRIGHT BLOCK

29 #:

Quranic Arabic Corpus copyright

\



Appendix C: Ethical issues

The project doesn’t contain any private or personal data and it is out of ethical issues.

Vi



Appendix D: project plan

The initial project plan:

Task

Project aim and requirement

Background reading

corpora collection

Interim report

unifying the corpora format
Merging the corpora into one corpus

Finding a corpus tool

Evaluate the corpus with corpus tool

Progress meeting

Users Evaluation

Write up the final report
proofreading and review the report

Start date

25/02/2013
11/03/2013
15/04/2013
05/06/2013
16/06/2003
19/06/2013
25/06/2013
07/07/2013
22/07/2013
27/07/2013
05/08/2013
26/08/2013

Duration (days) g End date

5 02/03/2013
45 25/04/2013
20/04/2013

6 11/06/2013
21 07/07/2003
26/06/2013

27/06/2013

14/07/2013

27/07/2013

20 16/08/2013
7 12/08/2013
29/08/2013

Gantt Chart:

Feb-13 Mar-13 Apr-13  Apr-13 May-13 Jun-13  Jun-13  Jul-13  Aug-13 Aug-13

M

P
(¥

Project aim and requirement
Background reading

corpora collection

Interim report

unifying the corpora format
Merging the corpora into one corpus
Finding a corpus tool

Evaluate the corpus with corpus tool
Progress meeting

Users Evaluation

Write up the final report
proofreading and review the report

VI




The adjusted project plan:

Task

Project aim and requirement
Background reading

Corpora collection

Interim report

Unifying the corpora format

Merging the corpora into one corpus
Evaluating the XML files

Finding and understanding a corpus tool
Evaluating the corpus with corpus tool
Background reading

Finding ontology editor

Preparing for progress meeting
Evaluation phase

Writing up the final report

Proofreading and reviewing the report

Start date
25/02/2013
23/02/2013
15/04/2013
05/06/2013
13/06/2013
04/07/2013
12/07/2013
25/06/2013
13/07/2013
01/07/2013
15/07/2013
28/07/2013
10/08/2013
16/08/2013
28/08/2013

Duration (days) End date

5 02/03/2013
45 09/04/2013
5 20/04/2013
11/06/2013

21 04/07/2013
11/07/2013

2 14/07/2013
02/07/2013

5 18/07/2013
20 21/07/2013
22/07/2013

3 31/07/2013
15 25/08/2013
12 28/08/2013
10 07/09/2013

Gantt Chart:

Feb-13 Mar-13 Apr-13  Apr-13 May-13 Jun-13  Jun-13  Jul-13  Aug-13 Aug-13

M

e
¥

Project aim and requirement
Background reading

corpora collection

Interim report

unifying the corpora format
Merging the corpora into one corpus
Finding a corpus tool

Evaluate the corpus with corpus tool
Progress meeting

Users Evaluation

Write up the final report
proofreading and review the report




Appendix E: Code of Convert Qurany HTML files to XML file
(QuranytoXML.py )

# -*- coding: utf-8 -*-

import re

import glob

import xml.etree.ElementTree as ET
from xml.etree import ElementTree

#define global variables:
output = open('Qurany.xml’,'w')
#Specify the tree root
root = ET.Element('Quran’)
def main():
verse_INDX=0
Qurany_files = glob.glob("qurany/*")
for chapter_id in range(1,115):
#Create Chapter node
chapter = ET.SubElement(root,'chapter’)
chapter.set('id',str(chapter_id))
#Files declarations
for verse_id in range(1,288):
filename = 'qurany/' + str(chapter_id)+'-'+str(verse_id)+".html'
if filename in Qurany_files:
#write the verse ID in Verse Node
verse_INDX+=1
verse = ET.SubElement(chapter,'verse')
verse.set('id', str(verse_INDX))

htmltxt = open(filename).readlines()
lenhtmlitxt = len(htmltxt)

#setup Regular Expression patterns to clean the data

Tag_NewlLine_markup ="[\t\n]' #removes taps and newline
markup

removechars = '[\d+/}/{\n\t]' #removes the verse character e.g.: 1}

removeHTLtags = '<.*?>' #fremoves HTML tags

#read the Qurany html file
for line in range(lenhtmltxt):
if re.search('<font size="5">',htmltxt[line]):
Arabic_verse = htmltxt[line+1].strip()



Arabic_verse =
re.sub(removechars,",Arabic_verse)

#write the verse text in Arabic in Verse Node
verseText = ET.SubElement(verse,'text')
verseText.set('lang', 'Arabic')

#tconvert Byte to Unicode using Decode function
verseText.text = Arabic_verse.decode('utf-8')

htmltxt[line] = htmltxt[line].replace('\n',")
htmltxt[line] = htmltxt[line].replace('\t',")

if re.search('<font color="#1645ae"

size="4">' htmltxt[line]):

htmltxt[line] = htmltxt[line].split('<font
color="#1645ae" size="4">")[1]

htmltxt[line] =
re.sub(removeHTLtags,", htmltxt[line])

htmlitxt[line]=htmltxt[line].strip()

Author = htmltxt[line]

verseText = ET.SubElement(verse,'text')

verseText.set('Author',Author)

if re.search(r'<td><Font size="4">' htmltxt[line]):

htmltxt[line] =

re.sub(removeHTLtags,", htmltxt[line])
English_verse = htmltxt[line].strip()
English_verse = English_verse.replace("",")
English_verse = English_verse.replace('"',")
verseText.set('lang','English')
verseText.text = English_verse

if re.search('Concepts/Themes Covered:', htmltxt[line]):
index = line+1

foriin range(index,lenhtmlitxt):
htmltxt[i] = htmltxt[i].replace('\n',")
htmltxt[i] = htmltxt[i].replace('\t',")
#Arabic Concepts List
if htmltxt[i]=="</br></br>' or
htmltxt[i]=="<font size="4">":
ArabicConcepts = htmltxt[i+1]
ArabicConcepts =
ArabicConcepts.replace('\n',")

Xl



ArabicConcepts.replace('\t',")

keep the concept's inside spaces.

ArabicConcepts.strip()

ArabicConcepts.split(*>')

ArabicConcepts:

+=c.strip() +';'

ET.SubElement(verse,'QuranyConcepts')

QuranyConcepts.set('lang', 'Arabic')

QuranyConcepts.set('tree',B.decode('utf-8'))

htmltxt[i+1]

EnglishConcepts.replace('\n',")

EnglishConcepts.replace('\t',")

EnglishConcepts.split('>')

EnglishConcepts:

+=c.strip(' ') +";'

B.strip(';")

ET.SubElement(verse,'QuranyConcepts')

QuranyConcepts.set('lang','English" )

QuranyConcepts.set('tree',EQuranyConcepts)

Xl

ArabicConcepts =

if ArabicConcepts !='</font>":
# remove speces but

ArabicConcepts =

ArabicConcepts =

B=IIII
forcin

#strip the last symbol
B = B.strip(';")
QuranyConcepts =

elif htmltxt[i] == '</br>"
#English Concepts
EnglishConcepts =
EnglishConcepts =
EnglishConcepts =

EnglishConcepts =

B=IIII
forcin

EQuranyConcepts =

QuranyConcepts =



#write the tree
tree = ET.ElementTree(root)
tree.write(output,encoding="'utf-8')

if _name__=='_main__"
main()

X1



Appendix F: Code of Converting Quranic Arabic Corpus TXT
file to XML file (QACtoXML.py)

# -*- coding: utf-8 -*-

import re

import xml.etree.ElementTree as ET
from xml.etree import ElementTree

root = ET.Element('Quran’)
xmIQAC = open('QAC.xml','w")

def main():

segmentid=0
prev_chpater_id=0
prev_verse_id=0
prev_seg_id=0
verse_INDX=0

QAC = open('quranic-corpus-morphology-0.4.txt').readlines()
QACLinesLength = len(QAC)

foriin range(QACLinesLength):
if re.search("LOCATION\tFORM\tTAG\tFEATURES",QAC[i]):
index=i+1

#chapter/verse/segment info
for line in range(index,QACLinesLength):

QACLine = QAC[line].split("\t")
Location = QACLine[0].replace('\n',")
Location = Location.strip(')')
Location = Location.strip('(')

form = QACLine[1]

postag = QACLine[2]

features = QACLine[3].replace('\n',")

features = features.strip()

chapterid,verseid,tokenid= Location_extractor(Location)

A\



segmentid+=1

if prev_chpater_id = chapterid:
chapter = ET.SubElement(root,'chapter’)

chapter.set('id', str(chapterid))

prev_chpater_id = chapterid

if prev_verse_id = verseid:

verse_INDX +=1

verse = ET.SubElement(chapter,'verse')

verse.set('id', str(verse_INDX))

prev_verse_id = verseid

if prev_seg_id != segmentid:

seg = ET.SubElement(verse,'seg')

seg.set('id', str(segmentid))

prev_seg_id = segmentid
seg.set('token_id', str(tokenid))

seg.text=form
seg.set('POSTag',postag)

Features_extractor(features,seg)

tree = ET.ElementTree(root)
tree.write(xmIQAC)
xmIQAC.close()

def Location_extractor(Location):

def

Location = Location.split(":")
chapterid = Location[0]

verseid = Location[1]
tokenid=Location[3]

return chapterid,verseid,tokenid

Features_extractor(features,seg):

features = features.split("|")
for feature in features:
feature = feature.strip()

#if feature is like PREFIX|A:INTG+ or PREFIX|ka+

if feature == 'PREFIX":

XV



PREFIX_Tager(features[0],features[1],seg)
break

#if feature has a colon :, such as PRON:3MP or ROOT:qwl:
elif ":" in feature:
Twinsfeatures(feature.split(":")[0],feature.split(":")[1],seg)

else:
#if the feature has a single word such as 2MP, M ...
Singlefeature(feature,seg)

def PREFIX_Tager(f1,f2,seg):
#if the Prefix has this form PREFIX|A:INTG+
if ":"in f2:
seg.set('PREFIX',f2.split(":")[0])

#put the Prefix in the Grammar node
seg.set('Grammar’,f1)

else:

#if the Prefix has this form PREFIX|ka+
seg.set('Grammar’, f1)
seg.set('Prefix_features',f2)

def Twinsfeatures(f1,f2,seg):
# 'POS' feature is deleted since it's repeated:
if f1=="ROOT":
seg.set('Root’,f2)

elif f1=="PRON":
#NO need for this peace of info, output.write("\tgrammar2=""+ f1 + ")
Singlefeature(f2,seg) #PRON has an additional features and need to be labeled
using Singlefeature

elif f1=="'SP".
seg.set('special’,f2)

elif f1=="MOOD":
seg.set('MOOD',f2)

XVI



elif f1=="LEM":
seg.set('Lemma’, f2.encode('utf-8'))

def Singlefeature(f1,seg):

if re.match(r'STEM |SUFFIX',f1):
seg.set('Grammar’, f1)

elif
re.match(r'3MS|2MS|1MS|3MD|2MD|1MD|3MP|2MP|1MP|3FS|2FS|1FS|3FD|2FD|1FD|3FP|2FP
| 1FP'f1):
seg.set('Person’, f1[0] + 'P")
seg.set('Gender',f1[1])
seg.set('Number', f1[2])

elif re.match(r'MS|MD|MP|FS|FD|FP',f1):

seg.set('Gender’, f1[0])
seg.set('Number', f1[1])

elif re.match(r'1P|1D|1S|2P|2D[2S|3P|3D|3S',f1):
seg.set('Person’,f1[0] + 'P')
seg.set('Number', f1[1])

elif re.match(r'/[123][MF]',f1):

seg.set('Person’, f1[0]+ 'P')
seg.set('Gender’, f1[1])

elif f1=="M' or f1=="F': #re.match(r'[MF]',f1):

seg.set('Gender’,f1)

elif f1=="P" or f1=="D" or f1=="S": #re.match(r'[PDS]',f1):
seg.set('Number',f1)

elif f1=="PERF' or f1=="IMPF' or f1=="IMPV":
seg.set('Aspect’,f1)

elif f1=="ACT' or f1=="PASS":
seg.set('Voice', f1)

XVII



elif re.match(r'\([IVX]+\)',f1):
f1=f1.strip(")")
f1=f1.strip("(")
seg.set('Verb_Form',f1)

elif f1=="PCPL" or f1=="VN": #re.match(r'PCPL|VN',f1):
seg.set('Derivation’,f1)

elif f1=="DEF' or f1=="INDEF":
seg.set('State’,f1)

elif f1=="NOM' or f1=="ACC' or f1=="GEN":
seg.set('Case’,f1)

elif f1 =='SUBJ' or f1 =="JUS' or f1 =="ENG' or f1 =='IND":
seg.set('Mood’,f1)

if _name__=='__main__"
main()

Xvill



Appendix G: Code of Convert QurAna XML files to XML file
(QurAnatoXML.py)

# -*- coding: utf-8 -*-

import xml.etree.ElementTree as ET
from xml.etree import ElementTree
import glob

conceptfile='Quran-pron/concepts.xml’
_concepts = ET.parse(conceptfile).getroot()
concept = open(conceptfile,'r')

xmlfile = open('QurAna.xml’,'w')
verse_INDX=0

prev_chapter_id=1

QurAna_files = glob.glob('Quran-pron/*')
root = ET.Element('Quran’)

foriinrange(1,115):

file = 'Quran-pron/pronxml-'+str(i)+'.xml'

if file in QurAna_files:
#chapter id:
_chapter = ET.parse(file).getroot()
chapterid = _chapter.get('id")
chapter = ET.SubElement(root,'chapter’)
chapter.set('id',chapterid)

for node in _chapter.iter():
if node.tag=="verse":
verse_INDX +=1
verseid = node.get('id")
verse = ET.SubElement(chapter,'verse')
verse.set('id',str(verse_INDX))

elif node.tag=="'seg":
segid=node.get('id")
seg = ET.SubElement(verse,'seg')
seg.set('id',segid)
seg.text = node.text

if node.tag=="pron":
for e in node.getchildren():
if node.get('con’):
for concept in _concepts.iter():
if concept.get('id') == '2054":
concept.set('id','1054')

XIX



if concept.get('id') == node.get('con’):
for xin
concept.getchildren():
if x.tag=="'arabic":

ArTXT =
x.text
seg.set('Arconcept’, ArTXT.strip())
if x.tag=='english":
EnTXT =
x.text

seg.set('Enconcept’, EnTXT.strip())
if node.get('id'):
seg.set('PRON_id',node.get('id"))
if node.get('ant’):
seg.set('ant',node.get('ant'))

tree= ET.ElementTree(root)
tree.write(xmlfile, encoding="utf-8")
xmlfile.close()

XX



Appendix H: Code of Merging the three XML datasets in one
XML file (merge.py)

# -*- coding: utf-8 -*-

#import The ElementTree XML API
import xml.etree.ElementTree as ET
from xml.etree import ElementTree
from xml.dom import minidom
import re

#Sketch engine POS filter format
def SKEPosFilter(pos):

if pos =='N' or pos=='PN' or pos=='IMPN":
return "Noun|Noun::"+pos

elif pos=="PRON' or pos=='DEM' or pos=='REL":
return "Pronouns|Pronouns::"+pos

elif pos=='ADJ' or pos=="NUM":
return "Nominals|Nominals::"+pos

elif pos=='T' or pos=="LOC":
return "Adverbs|Adverbs::"+pos

elif pos=="'V":
return "Verb|Verb::"+pos

elif pos=="'P":
return "Prepositions | Prepositions::"+pos

elif pos=="EMPH' or pos=='IMPV"' or pos=='PRP":
return "lam prefixes|lam prefixes::"+pos

elif pos=="CONJ' or pos=='SUB":
return "Conjunctions|Conjunctions::"+pos

elif pos=='ACC' or pos=='CIRC' or pos=='COM' or pos=='RSLT' or pos=='AMD'or
pos=='ANS' or pos=='AVR'or pos=='CAUS' or pos=='CERT' or pos=='"COND' or pos=="EQ' or pos=="EXH'
or pos=="EXL' or pos=="'EXP' or pos=='FUT' or pos=='INC' or pos=='INTG' or pos=='NEG' or
pos=='PREV' or pos=='PRO' or pos=='REM"' or pos=='RES' or pos=='RET"' or pos=='SUP' or pos=='SUR'
or pos=='VOC":
return "Particles|Particles::"+pos

XXI



elif pos=="INL":

return "Disconnected Letters|Disconnected Letters::"+pos
else:

return pos+'|'+pos+'::'+pos

#Sketch engine hierarchal elements format
def SketchEngineFormat(conceptline):
conceptline=conceptline.strip()
conceptline = conceptline.split(';')
return'|".join("::".join(conceptline[:INDX]) for INDX in range(1,len(conceptline)+1)).strip()

#Function to remove XML Entity References
def removeXMLReference(filename):
newfile = filename.split(".")[0] + '_v1.xml'
output = open(newfile,'w')
filename = open(filename).readlines()
for line in filename:
line = line.replace('&quot;',")
line = line.replace('&amp;',")
line = line.replace('&apos;',")
line = line.replace('&lt;",")
line = line.replace('&gt;",")
output.write(line)
output.close()

def SKEformat(file):

root = ET.parse(file).getroot()
for node in root.iter():
if node.get('POSTag'):
node.attrib['POSTag']=SKEPosFilter(node.get('POSTag'))
if node.get('Enconcept’):
node.attrib['Enconcept']='"Prnoun Reference(English)|Prnoun
Reference(English)::'+node.get('Enconcept').strip()
if node.get('Arconcept’):
node.attrib['Arconcept']='"Prnoun Reference(Arabic)|Prnoun
Reference(Arabic)::'+node.get('Arconcept').strip()
tree = ET.ElementTree(root)
SKE_filename='SKE_Unfied_Quranic_Corpus_Latin.xml'
SKE_output = open(SKE_filename,'w')
converttostring = ElementTree.tostring(root,encoding="'utf-8')
parsingTree = minidom.parseString(converttostring)
convertedtree= parsingTree.toprettyxml(indent="",encoding="utf-8')
SKE_output.write(convertedtree)
SKE_output.close()
removeXMLReference(SKE_filename)

#Defining the output files

XXI



filename='Unified_Quranic_Corpus.xml'
output = open(filename,'w')

SKE_filename='SKE_Unfied_Quranic_Corpus_VLatin.xml'
SKE_output = open(SKE_filename,'w')

#Parsing the three XML files

gac_tree= ET.parse("QAC.xml").getroot()
qurana_tree = ET.parse("QurAna.xml").getroot()
qurany_tree = ET.parse("Qurany.xml").getroot()

#initialise chapter,verse and segment counters to zero
Prev_chid=0

Prev_vid=0

segid=0

#Define the XML root Element in the two outputs
root = ET.Element('Quran’)
SKEroot = ET.Element('Quran’')

#compare the chapters ids
for ch_qurana in qurana_tree:
for ch_qgacin qac_tree:
for ch_qurany in qurany_tree:
if ch_qurana.get('id') == ch_qac.get('id') == ch_qurany.get('id"):
if Prev_chid!=ch_qurana.get('id'):

chapter_MT = ET.SubElement(root,'chapter’)
chapter_MT.set('id',ch_qurana.get('id') )
chapter_SKE = ET.SubElement(SKEroot,'chapter’)
chapter_SKE.set('id',ch_qurana.get('id") )
Prev_chid=chapter_MT.get('id")

for verse_qurana in ch_qurana.getchildren():
for verse_gac in ch_gac.getchildren():
for verse_qurany in ch_qurany.getchildren():

if
verse_qurany.get('id')==verse_qurana.get('id') == verse_qac.get('id'):
verse_MT =
ET.SubElement(chapter_MT,'verse')
verse_MT.set('id',verse_qurana.get('id') )
verse_SKE =

ET.SubElement(chapter_SKE,'verse')
verse_SKE.set('id',verse_qurana.get('id') )
#Merge Qurany concepts
#retive Qurany verse English concepts using the XPath

if
verse_qurany.findall('.//QuranyConcepts/[@lang="English"]'):

XX



Econcepts= verse_qurany.findall('QuranyConcepts/[@lang="English"]')
for
cin Econcepts:
ENcurrent = ET.SubElement(verse_MT, 'QuranyConcepts')

ENcurrent_SKE = ET.SubElement(verse_SKE, 'ENQuranyConcepts')

ENcurrent_SKE.set('tree’, SketchEngineFormat(c.get('tree')))

for concept in c.get('tree').split(";'):
concept=concept.strip()
concept=re.sub("\W+','_',concept)
if concept=="'12Sonsoflacob':

concept="twelveSonsoflacob'

ENcurrent = ET.SubElement(ENcurrent,concept)

#Add the Arabic Qurany Concepts
to Sketch engine corpus only.
if
verse_qurany.findall('.//QuranyConcepts/[@lang="Arabic"]'):
Econcepts= verse_qurany.findall('QuranyConcepts/[@lang="Arabic"]')
for
cin Econcepts:
ENcurrent_SKE = ET.SubElement(verse_SKE, 'ARQuranyConcepts')
ENcurrent_SKE.set('tree’, SketchEngineFormat(c.get('tree')))
#Merge QAC with QurAna
for seg_qacin
verse_gac.getchildren():
#FIND POSTAG IF IT IS PRON TAG
pos = seg_qac.get('POSTag')

if pos=='PRON":

XXIV



for v in verse_qurana.getchildren():
if v.get('PRON_id"):
if v.get('Enconcept'):
seg_qac.set("Arconcept",v.get('Arconcept’))
seg_qac.set("Enconcept",v.get('Enconcept’))
del v.attrib['PRON_id']

break

seg_MT = ET.SubElement(verse_MT,'seg')

seg_MT.attrib = seg_qac.attrib

seg_SKE = ET.SubElement(verse_SKE,'seg')

seg_SKE.attrib = seg_qgac.attrib

#Add Sketch engine Glue tag
if seg_SKE.get('token_id') > '1":

glue = ET.SubElement(verse_SKE,'g")

text = str(seg_qgac.text)

text = text.replace('\n',")

if seg_SKE.get('Lemma’):

XXV



Lemma = seg_SKE.get('Lemma’)

else:

Lemma=text

#Write the vertical line attributes
seg_SKE.text = str(text.decode('utf-8')) +'\t'+ str(Lemma.decode('utf-8')) + '\t' + str(pos)

seg_MT.text = text.decode('utf-8')

#close the tree and write it in the output file

tree = ET.ElementTree(root)

#no need for pretty print

converttostring = ElementTree.tostring(root,encoding="'utf-8')
parsingTree = minidom.parseString(converttostring)

convertedtree= parsingTree.toprettyxml(indent="",encoding="utf-8')
output.write(convertedtree)

output.close()

#sketch engine file

SKE_tree = ET.ElementTree(SKEroot)
SKE_tree.write(SKE_output)
SKE_output.close()
SKEformat(SKE_filename)

#remove XML entity reference characters
removeXMLReference(filename)

XXVI



Appendix I: Code of adding Arabic and Latin text to the
merged dataset (AddQuranicText.py)

import xml.etree.ElementTree as ET
from xml.etree import ElementTree
from xml.dom import minidom
import re

def GetText(input, output):
XML_root= ET.parse("SKE_Unified_Quranic_Corpus_Latin_v1.xml").getroot()
segments = XML_root.findall('.//seg')
segINDX = len(segments)
INDX =0
for line ininput:
if not re.match('<seg id',line) and not re.match('<chapter id',line) and not
re.match('<verse id',line) and not re.match('</',line) and not re.match('<g/>'line):
if line I="\n' or line !="\t":
#print line
text = line.split("\t')[0].strip('\n")
lemma = line.split("\t')[2].strip("\n")
pos = line.split("\t')[1].strip('\n')
if INDX >= segINDX:
break
else:
segments[INDX].text = text.decode('utf-8') + "\t'+
lemma.decode('utf-8') + "\t'+ pos
INDX = INDX+1

tree = ET.ElementTree(XML_root)

#no need for pretty print

converttostring = ElementTree.tostring(XML_root,encoding="utf-8')
parsingTree = minidom.parseString(converttostring)

convertedtree= parsingTree.toprettyxml(indent="",encoding="utf-8')
output.write(convertedtree)

#tree.write(output)

output.close()

XXVII



AUVSKE = open('UnifiedSKE_AU.xml','w")
AVSKE = open('UnifiedSKE_AV.xml','w")
LUSKE = open('UnifiedSKE_LU.xml'",'w")

AUV = open('IC/integrateAU.txt').readlines()
AV = open('IC/integrateAV.txt').readlines()
LUV = open('IC/integrateLU.txt').readlines()

GetText(AUV,AUVSKE)
GetText(AV,AVSKE)
GetText(LUV,LUSKE)

AUVSKE.close()
AVSKE.close()
LUSKE.close()

XXV



Appendix J: Sketch engine configuration file

NAME "Unified Quranic Annotations (Arabic Vowelled)"

PATH "/corpora/ca/user data/zainabAlquassem/manatee/ UnifiedSKE AU/"

ENCODING "UTF-8"

WPOSLIST " noun,N|PN, pronoun, PRON|DEM|REL, adverb,LOC|T, Derived nominals,ADJ|
IMPN, verb,V, Preposition,P, 1?7m Prefixes, EMPH| IMPV| PRP, Conjunction, CONJ|SUB,

Particle, ACC| AMD| ANS| AVR| CAUS| CERT| CIRC| COM| COND | EQ | EXH | EXL| EXP| FUT]|
INC| INT| INTG| NE"

LPOSLIST " noun,N|PN, pronoun, PRON|DEM|REL, adverb,LOC|T, Derived nominals,ADJ|
IMPN, verb,V, Preposition,P, 1?m Prefixes, EMPH| IMPV| PRP, Conjunction, CONJ|SUB,

Particle, ACC| AMD| ANS| AVR| CAUS| CERT| CIRC| COM| COND | EQ | EXH | EXL| EXP| FUT]|
INC| INT| INTG| NE"

TAGSETDOC "http://corpus.quran.com/documentation/tagset.jsp"

FILESTRUCTURE "

RIGHTTOLEFT "

ALIGNED "

SUBCDEF "

SUBCBASE  "/corpora/ca/user data/zainabAlquassem/manatee/ UnifiedSKE AU/subcorp"
DOCSTRUCTURE "

ATTRIBUTE "word"
ATTRIBUTE '"lemma"
ATTRIBUTE "tag"

ATTRIBUTE "lemma lIc" {
DYNAMIC "utf8lowercase"
DYNLIB  "internal"
ARG1 "C"

FUNTYPE "s"
FROMATTR "lemma"
TYPE "index"
TRANSQUERY "yes"

h

ATTRIBUTE "l¢" {

DYNAMIC "utf8lowercase"
DYNLIB  "internal"
ARG1 "C"

FUNTYPE "s"
FROMATTR "word"
TYPE "index"
TRANSQUERY "yes"

}

STRUCTURE "chapter" {
ATTRIBUTE "id"{
LABEL "Chapter ID"

H

}
STRUCTURE '"verse"

ATTRIBUTE "id"{
LABEL "Verse ID"

}

XXIX



j
STRUCTURE "seg"{

ATTRIBUTE "id"{

LABEL "Segment ID"

h

ATTRIBUTE "POSTAG"{
MULTIVALUE "1"
MULTISEP "|"
HIERARCHICAL ":"
LABEL "POS Tag"

;
ATTRIBUTE "State" {

LABEL "Segment State (INDEF=indefinite)"

§
ATTRIBUTE "Morpheme" {

LABEL "Morpheme"

}

ATTRIBUTE "Verb_Form"{
LABEL "Verb Form"

}

ATTRIBUTE "Derivation"{
LABEL "Derivation"

§
ATTRIBUTE "special"{

LABEL "Special Grammar (01 5 o) 5 o 1)

;
ATTRIBUTE "Case"{

LABEL "Case"

}

ATTRIBUTE "MOOD"{
LABEL "MOOD"

§
ATTRIBUTE "Number" {

LABEL "Number(S=Singular, D=Dual, P=Plural)"

§
ATTRIBUTE "Person"{

LABEL "Person"

§
ATTRIBUTE "Gender"{

LABEL "Gender (M=Masculine, F= feminine)"

;
ATTRIBUTE "Root"{

LABEL "Root"

¥

ATTRIBUTE "PREFIX"{
LABEL "Prefix Letter"

}

ATTRIBUTE "Prefix_features"{
LABEL "Prefix Features"
§
ATTRIBUTE "ARconcept"{
LABEL "Arabic QurAna Concepts"
MULTIVALUE "1"

MULTISEP "|"

XXX



HIERARCHICAL "::"

§
ATTRIBUTE "ENconcept"{

LABEL "English QurAna Concepts"
MULTIVALUE "1"
MULTISEP "|"
HIERARCHICAL "::"

}
}

STRUCTURE "ENQuranyConcepts " {
ATTRIBUTE "tree" {
LABEL "Qurany Concepts Tree"
MULTIVALUE "1"
MULTISEP "|"
HIERARCHICAL "::"

}
}

STRUCTURE "ARQuranyConcepts " {
ATTRIBUTE "tree" {
LABEL "Qurany Concepts Tree"
MULTIVALUE "1"
MULTISEP "|"
HIERARCHICAL "::"

}
}

STRUCTURE "QuranyConcepts"{

ATTRIBUTE "tree"{

LABEL "Qurany Concepts"
MULTIVALUE "1"
MULTISEP "|"

}

STRUCTURE "g" {
DISPLAYTAG 0
DISPLAYBEGIN " EMPTY "

WSDEF "/corpora/ca/user _data/zainabAlquassem/sg/grammar_12.txt"
WSPOSLIST )"

XXXI



Appendix K: Part of Unified Quranic Ontology
(UnifiedQuranicOntology.owl)

<QuranyConceptsSlot>
<QuranyConcepts rdf:ID="QuranyConcepts_9778">
<Man_and_The_Moral_RelationsSlot>
<Man_and_The_Moral_Relations rdf:ID="Man_and_The_Moral_Relations_657">
<Good_MoralsSlot>
<Good_Morals rdf:ID="Good_Morals_419"/>
</Good_MoralsSlot>
</Man_and_The_Moral_Relations>
</Man_and_The_Moral_RelationsSlot>
</QuranyConcepts>
</QuranyConceptsSlot>
<segSlot>
<seg rdf:ID="seg_66548">
< _Derivation rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>PCPL</_Derivation>
<_Root rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>gnt</_Root>
< _Voice rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>ACT</_Voice>
<_POSTag rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>N</_P0STag>
<_Number rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>P</_Number>
<_Gender rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>F</_Gender>
<_Case rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>ACC</_Case>
<_Lemma rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>qa’'nita’ t</_Lemma>
<_id rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>00196</_id>
<Text rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>gqa'nita’ ti</Text>
<_token_id rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>3</_token_id>
<_Grammar rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>STEM</_Grammar>
</seg>

XXX



Appendix L: Abdullah Alfaifi evaluation

Evaluation of Luluh Aldhubayi’s Project
Abdullah Alfaifi

Introduction

This is a brief evaluation of the Unified Quranic Annotations and Ontologies project of Luluh
Aldhubayi. | didn’t have full information about the project except a PowerPoint presentation file
(.pptx) which explains (1) how to login to the project account on the SketchEngine website, (2) some
features that can be used for searching the corpus (PoS, Syntactic, and Semantic features), but it can
be seen that the project idea is to provide users with a unified method of annotation which can be

used for morphological, syntactic, and semantic search and analysis in the Quranic text.

As a specialist in Arabic, my evaluation will focus on searching the Arabic text, unvowelled in
particular (Error! Reference source not found.), which may clearly show how we can apply the

corpus features to our search and analysis.

= About Home Settings Change password  Log out
Sketch M Engi ne b
user: Ms. Zainab Alqassem  used words: 84 % / 1,000,000 days left: 295 in|Unified Quranic Annotations (/[~]
Epre Corpora
Create corpus
WebBootCaT Corpus name Language  Tokens Words
Parallel corpora Arabic web corpus Arabic 174,239,600 407,005 &,
CEITDEIEn arTenTent? Arabic 6,637,387,738  5,794,161,583 @
:m’::m British Academic Written English Corpus (BAVE) English 8,336,262 6,968,089 L
S Brown English 1,175,675 1,007,299 ®
User groups. e-flux (old WSG; English 6,238,592 5,036,119 L]
EUROPARLS, English-German (old WSG) English 42,963,350 38,292,849 &
Susanne English 150,426 128,998 @
Help CHILDES Spanish Corpus Spanish 1,358,475 852,500 &
Support Show more corpora | Parallel corpora
My corpora
Corpus name Language Configuration template Tokens
Arabic Learner Corpus Arabic | ALC 14 © 8 4 & X
Arabic_unvowelled Arabic integrated 128,243 ® S
Arabic_vowelled Arabic  integrated 128,243 @ ’ %
Latin_unvowelled Arabic  integrated 128,243 @ o %
Latin_vowelled Arabic integrated 128,243 &, R}
Unified Quranic (Arabic Arabic  unified_Quranic_5 128,695 @ s %
Unified Quranic (Arabic Vowelled)  Arabic  unified_Quranic_5 128,693 @ o %
Unified Quranic (Latin Arabic  unified_Quranic_5 128,694 @ s %
Unified Quranic Annotations (Latin Voveelled) ~  Arabic unified_Quranic_5 128,694 ® ? %

Figure 1: The main screen of the project on Sketch Engine

Evaluation

Unified Quranic

(Latin

led)

Unified Quranic Annotations (Latin Vowelled)

Unified :iuranic Annotations (Arabic unvowelledi Arabic
——

Unified Quranic Annotations (Arabic Yowelled)

Arabic
Arabic
Arabic

unified_Quranic_5
—

unified_Quranic,
unified_Quranic_5

unified_Quranic_5

128,695 =

= -6 — ’
5 128,693 = pd
i 128,694 = s
: ¢ 128,694 = »

XEXX

Figure 2: The “Arabic_unvowelled” corpus was selected for the search

XXX




The evaluation started by searching for the pronoun "&". | typed "&" in the Simple query text-field,
and selected Pronoun from the list POS TAG to generate concordances that include this specific
pronoun (Figure 3). 1,166 instances were shown (Figure 4).

Simple query: ¢ | [ Make Concordance |
Query types Text types Context

Text Types

Subcorpus: create new

CHAPTER NUMBER

|

VERSE NUMBER

|

SEGMENT NUMBER

|

POS TAG

2]

[ Adverbs
|| Conjunctions
[_) DET

=

H & m

B &

2]
] O (
-l
[~
a
[}
[}
w

E®
»
o
g
-
g
=1
w

™ Pronouns

Figure 3: Searching for the pronoun "&"

XXXIV



Query <, Pronouns 1,166 (9,060.2 per million)

Page I |of59 | Go | Next| Last

2 .')520‘5)“‘J'\r')JJ:'-iC)‘J).i‘L‘J.q‘ﬂ/pRON/.q_lq'!J):‘h‘*.—'JJJ‘JEJﬂJ;’JJ‘HI“

2 Jnur""zm'}lf_'};‘ﬁ?‘;)“‘J"r‘J_'/‘ﬁ/pRON/_'/.JJ!sJ‘J.'):‘I"‘J‘ﬂq?JJ'EIL“.—'C.‘)C)‘E
2 JE A Gl I B el o o S0 J d iy Sppon/ee 2o S5 Y sale e B S0y Ol e e
2 Gyl Y L el o o) SO J el gy Bppo e ea o g Gad g elad Jl iy 5l
2 ol ple 5 gl Y L el 6 o Sy Bppon e ool g o dea e g elad I iy
2 J'C‘:“d';ﬂuéfb;‘y!u\lb""a‘*‘/pRON/.:/:\S*P"JJJJ&L‘F‘QSJ‘Yj"L‘J

2 o el pil g S e Jl e sl Bpp o0 s AU S Ao LY E e Y & s |y

20V Lt e 0 e 1S A Iy o e g5 oS8l S il g B 0 RS )

2 shicle Jl S il G A s By Gppon/me d BF S s g S s ans Jlols
2 e 5l e e il i jaa )y Sppon//e Lat o ool U B b o8 guage gidiad I
2 Wi e ga)l DBl s U d gz Ay ppon e e B Al b aslydlals e el (e
2 Sk ol s O S A W U Gy Spponzee 20 B 2 1y B Gl ) ge 0sST

2 Wolds W ol U d e o Spponsme o B g 0y e ey dail

2 U i i dlad A bbd oy dopoue o Bd el b JE ks dl st of

2 sedyeguopedUan o L dnnny el Ge s Jgie G dim e OS Gae
2 c}i-'jJ'Y!l-‘\.—')‘!hJ\:’uH‘:"'é“_{/‘ﬂ/pRON/g.:q"!uJ)ﬂ‘JJG!);SJJ)“”J!

2 Glaal oo Ju3 Y 51 5 ek Ba Ve iy Spponee ¢ el T Gy i a s d Sl JIU g

2 o e i Jia Ljlal DY g2 )y Sppon/e OF oa s Oy ama Jl Glasal e Ju3 Y
2 spai ¥ gty el Ge I J b dle ey pponae st s 2 b el & adl 5 d g e

2 o o pnal Y g ly e Al G pnon e e ple ) e o ela g3 2y elal &

Page I | of59 [ Go | Next | Last

Figure 4: Results of searching for "&"

| then clicked on the View options on the left hand side of the screen, and in order to hide the
metadata | unselected all attributes check boxes except word, then selected the tag <g> from
Structures list to remove spaces between segmented morphemes and shows Arabic words in a
correct form (e.g. "0y 344" to be "0 s%y"), then clicked on the "Change View Option" button (Figure 5),
this showed the concordances of all instances of the pronoun "¢" with no metadata (Figure 6).

View options 2

Attribufids Structures References
™ word <chapter> Token number
(] lemma <verse> Chapter Number
F‘ tag <seg> Verse Number
— <ENSketchFormats- Segment Number
[_) lemma_l <ARSketchFormatl POS Tag
(] lc <ARQuranyConcepts> Segment State (INDEF=indefinite)
e ] <ENQuranyConcepts> Grammar
Display attributes <g> Verb Form
Q For each thken ?:;z:;lgrr‘ammar (Lalsal 5 ol 3 5IS)
al s la o
(=) KWIC tokefls only Case
MOOD
Number(S=Singular, D=Dual, P=Plural)

|| References up

Page size (number of lines):

KWIC Context size (number of characters):

[_) Sort good dictionary examples.

Number of lines to be sorted:

[_) lcon for one-click sentence copying

) Allow multiple lines selection
[} Checkbox for selecting lines

XML template for one-click copying: |+ |

| Change View Options | | Save Options |

Figure 5: Changing the view options to hide the metadata

XXXV



Query <, Pronouns 1,166 (9,060.2 per million)

Page 0f 59 [ Go | |Next/| Last

2 Y oy ah SRty S8 Ga ey o U 5 ey ey Gy gy a3

2 ) e s Gl Y 0y an 5l & U8 e O3 ey L 5 Ly e o
2 I8 di Y b dela () ASAD  Go JE Mg e oot JS by O e e (A
2 ey ogalad Vb el () QO ol iy & dang g Gy eladd iy L s e
2 el pdle ploy Ggalad ¥ e pled G QB Gatity Slaaas e Gl eled iy L
2 alall il ol Uil Le VI U le Y o R |8 it W3S ) oY 3 elady

2 stany pgil pdly J aSall ailall il & ) Uiale e Y)W Ao Y lila |08

2 Yy LS Gy e Lgte NSy Anal oy 5y il (S ooy Uy G RSN e S
2 iy ielal i s en Al g i G O pmapag 438 Hy pn I
2 o lue 5k U ake Spadil jaall o lians ool U A il aege (Al 3y 0y
2l e ) S L W A o Wl p o daly plals e sl O e ga
2 Y 5k Ll Jai ) O A L oy W ol 1S clatall e ST o A

2 ok L) Jsk ] JO L e oy Wl 1A 0 pa e | adld G2

2 Oy e 4 R o) o e Ul e O, Wl S g Rl 5 gl aR0

2 oty ol Btae all 3 B e Al i gl e DS e
2 T oosidill V) L iS5 ey iy iyle & ) W3l iy g RS0 e 4l A8 i

2 il Ge Jua Yy iy |y Gals o Gl U g gl Slled) Ly 8 0

2 O 8 pele o (i Ll Wy 230l & e (n i Oy el el e a3 Y 1y
2 el Vg by e Al e e plal e o el (63 2ay pbelgal a2 g

2 el G pnal Vg oy e Al e o el e lela (63 2ay phel al Cantl

Page I | of59 | Go | Next | Last

Figure 6: Results of the pronoun "&" after hiding the metadata

In order to have concordances of the dual form of the same pronoun "&", the feature D was selected
from the list NUMBER(S=SINGULAR, D=DUAL, P=PLURAL) (Figure 7). However, a message of “Empty
result” was shown (Figure 8).

NUMBER(S=SINGULAR, D=DUAL, P=PLURAL)

| select Al |

Figure 7: How to search using CQL in Sketch Engine

@ Empty result X

Simple query: | | [ Make Concordance |
Query types Text types Context

Text Types

Subcorpus: create new

CHAPTER NUMBER

l |

Figure 8: Empty result when selecting the dual feature with the pronoun "&"

XXXVI



The solution was to enter the dual form "Ws" (Figure 9) with unselecting the feature D, this gave the
correct result (Figure 10).

Simple query: =S | [ Make Concordance |
Query types Text types Context
Text Types
Subcorpus: create new
CHAPTER NUMBER
]
VERSE NUMBER
|
SEGMENT NUMBER
]
POS TAG
() Adverbs
(") Conjunctions
B () pET
() DET
c2] || Disconnected Letters
CJINT
() Nominals
(") Noun
(] Particles
(") Prepositions
™ Pronouns
(e e

Figure 9: Searching for the dual form of the pronoun "4"

Query s, Pronouns 57 (442.9 per million)

Page I | of3 [ Go| Next | Last
Gl 583 0 V] 5 el a3 e Ly LS (gt e JU g Lagle e (n Ll 5 g e Lt
CsSE gl sl U35 0 W1 5502l oA g S ) et e Sy Lagle s o Lagi 6
JIVGE LB g h Laglah Cmaalil Gal S J () Lagandiy (palal (e U5 4 (Sl
LSl ka2l o LSl iy 5 a2l LS g s i ol g ety Al 35 0 el
Cuta e LSl ka2l 0 Lt iy 6 jal S 5 G LSl ol e Lty Al 35
Lalls Uy YIS e e el a2l o S o Jip 550200 LS e LSl W ey
o oy Uil Uialls U5 VS (e g S o G2l 0 L iy 5 502l LS o LS
Ctagay LSl i Ly a1 (o el S0 LS J g8 Uelle 4fe Ua g lae Ll U
e gale S 38 e Qg e LS J G Ly )1 (B el S0 LU S35
Iyasfly A8 oS5 g | gmal y Ui jemay S il e 35 O il (a1 Lim gl 0 8S
Csalns ¥ Gl e Gl Yy Lagfind LS S g3 Capal 38 8 1 ol 1y
O U8 45l Ll V) 485 53 plade S i Y U Gl (el 53 U Al g
(siale Laa LaSl3 LSy o U8l 1S s V) 0357 e LSl Y Sy
12 Y a8 8 OS50 ) () (el Las LaSlE WS 3 o U8 4l gt LaSils V) 4385 5
12 080 Clad Sl Ll |pan 44 it e 2] Ll il ity (g ¥ A0 6
20 Jue Bl Y gy Ul Y 58 o8 (5 5ly pand S g ) AT Y S ik o ol e i
20 £ 4 e 2 S el g2 Uy I anpag LS oy b U Uiy O3S (e e ol G U
20 Vs lepad VTGl o) A2 A G LS Gy D eyl o g S O il U
28 qilgplyele ) jias e o Y U LS cald Lo JO 0l g el g gt e 2a gy
28 Ll Ly Ll gy 08 Uil WS Juaiy Ll dlvas 220 B8 053 of il

Page I |of3[Go | Next|Last

- NN NNNNN

[ O Gy
NNO O OO

Figure 10: The result appears when using the form "las"

| noticed that using the feature D from the list NUMBER(S=SINGULAR, D=DUAL, P=PLURAL), would
be useless if | still need to change the form itself. In other words, | can search for the form "Ls"
directly with no need to select the dual feature check box, as | already did.

It is known in traditional Arabic linguistics that some pronouns have one lemma for their forms. For
instance, the pronoun [Ha’ ’Iga’ib] "<&l <" has five different forms:

XXXVII



" (3rd person, Masculine, Singular)

"la" (3rd person, Feminine, Singular)

"La" (3rd person, Masculine or Feminine, Dual)
"a2" (3rd person, Masculine, Plural)

e W

"»" (3rd person, Feminine, Plural)

They share the same lemma "o" which is the same form as the 3_M_S. The additional characters then
(e.g. ", "W", "a" "") indicate the features of gender and number, so some linguists consider the

pronoun "wa", for example, as two morphemes ("s" and "W"). This is also applied to the pronoun "&"
(with a sole different in the 3_F_S form which has a short vowel (-) instead of the long vowel "I").

On the other hand, if | search for two pronouns that have the same form, in such case features work
perfectly. For instance, searching for "&" (3_M_S) and "&" (3_F_S) can be done in the unvowelled
corpus using the gender feature (Figure 11) which shows good results (Figure 12 and Figure 13).

GENDER (M=MASCULINE, F= FEMININE)
~F

OMm

| Select All |

Figure 11: Using the gender feature to distinguish between different pronouns

Query &, F, Pronouns 24 (186.5 per million)

Page 1 of 2 [ Go | |Next|| Last
Gm QoA Al e G b S B & g ey JEU, Watie 2y el 4 S
Sl jay palall el o itlaly o kg & ilaal 4l O jay 4S80 SRS 3 S
J 8 e Cpalall el o likialy & ek y ohikual all o ar ey ASEAY 08
ady ol ) 8 o ag Cpalall 6l o ksl y o gy lilanal 4 0 o o S0
el a3 CnS 0 e a8ty oy & b T ey alall 6l e Sl
3 g aie G e el dad 4 BG  2y all ) a peg 3K B D) panainy
11 S gy ol puinly lall (mst g (ol elasy & ela oaldl in sl iy (f jiall (o (1S3 7 50
12 Anal 355 JOy Gullal e € ol o il g il y B G el Chay e oS3
12 el Aol 855 JUy bl e 2 ) L (g ikl y A G i el ey e
16 b 4yl ciline 52 Yiphy G 550 S0 & G i (KU S50 S G K 03 gl my
19 e o o I LS5 Ladle ol ' o oy gy Ul L) 8 U 6 ) e s
19 Cosar gy o3 (3 0sSs A CRIUS 5 LB & J ) ol g U L) 0 U5 S )
19 Lo dasy il de alnaily (b o g &y JU S U i o oy 52 ey
19 o BR Ak p s ol (555 4 o olind & oy Jan 3 (53 V1 Lgad e Ll L
19 b oo LRs A piag ol (o 5a 5l e o Canl ol Jan O a3 VT Lgaad e Ll
19 5 K8lia lh; ol LRSARW piay & (U (550 L e T ol Jaa 3 53 Y
19 grilalilue iy 28y S i Uh & o LRS00 p day Gl (g 50 Uy jee lind
19 Al S Ly ol S Ly el & S e 5t il 8 L2 i i
19 RURPP-CRE Y PRI RCI SR PRUIN JCA TS DRIy PR JE ¥ BT SRR TP PRCH
27 a3 gl o S (el Ll gl & Y Yy 2 Gl 1l 548 10 ol

Page |1 of 2| Go | Next | Last

wW W w ww

Figure 12: Result of searching for the feminine form of the pronoun "&"

XXXV



Query <, M, Pronouns 1,142 (8,873.7 per million)

Page |1 of 58 [ Go | |Next | Last

2 Y 5l gy a5 Aty S G U5 ey o Y U Ly oy Gy gl a5

2 ) e s o Yl sy 55ale g & U8 G Ly L O ey gt

2 18 s a1 Jela (o AL O oy JU 3y e et S g Sl sa e 08
p JRUSPIVOS SR PO [T £ JET PV VNP PRLOR JE- LA SN
2 el ple ploy Cipalel Y Lo el ) J8 & ety laany it gy eladd iy Lt
2 ) ol o e L Y] e Y e 08 (sl 6 ) eV 5 el

2 (standy pil ool JU pfall putall ol o Uil La Y)W e Y e 1408

2 i Yy Ll G e e DSy Al o g5 il S a3 Uy G RSN G S
2y el ol 5 pen Al (g8 in G O gt 438 3 )l
2 pe Nle 5 yle W ke Dpadid el o lany o el U 4a gl ege D My 0y
2 Ly Ll e Y S e W A oy W p s aaly plabe e al (e
2 Y 5k ) gk ) O o Le W e o Wl 1S ulalal e ST 0 4l

2 Sk ] s 4] U g e 1 e o Wl 1R e L el 3

2 Cly e i Rl o) A e U e o Wl gl A el s gl aBS

2 oMy e Bas Al G 8 e 4l 488 gl e S e B
2] i V) Y i ey Sy Sile & Y Ul iy G RSE e A G R

2

2

2

2

ioeL

Jl ol e s Yy sy ey Gals & Gl )l ) Gy o il Silledl U 5 b

g by pnall Glaal ge s Y 1
ela o3 ey ahelgal Candl il g2l 4
JI peile Gl pami Vg by oo Al Ga o J e plal e el (530 2ay pel Al anl

E

O JE e o Fa il Vg 25l
e ¥y by o Al Ga i e gl G

=

Page I | of58 [ Go | Next | Last

Figure 13: Result of searching for the masculine form of the pronoun "&"

My suggestion for improving the use of the features included is to add more attention to the
method used for extracting lemmas, which is linguistically important in some cases of corpus
analysis.

Conclusion

It can be concluded from this brief evaluation that the Unified Quranic Annotations and Ontologies
corpus seems to have well-structured design which provide useful features (PoS, Syntactic, and
Semantic) that enable users to search in the Quranic text for different purposes, Quranic and

linguistic studies.

| believe that a corpus with such number of features can be beneficial for many researchers in
different domains, so | recommend Luluh to develop a brief guideline that explains in details how to
benefit from each feature with examples illustrating to the potential users the advantages of this
corpus. Another recommendation is to publish a short research paper —collaborating with some
academic members—in order to introduce this corpus to a broader audience of researchers.

XXXIX



Appendix M: Sketch engine system manual provided to
evaluators:

Unified Quranic Annotations and

Ontologies
Luluh Aldhubayi, University of Leeds

To access the system..

Type the following URL in your explorer:

www. sketchengine.co.uk

XL



‘@%\ Sketch Y Engine

search in huge text corpora

«Q

EEsE2gsss il

o
o

The Sketch Engine

The Sketch Engine is for anyone wanting to research how words behave, It is a Corpus

Use the following inforamtion to login:

User Name : zainabAlquassem

Password: HMuP4xTAqQE

XL




My corpora

Corpora
| corpus name Language  Tokens Words
| Aradic wed corpus Arabic 174,239,600 407,005 *
l aTenTen2 Arabic 6,637,387,738 5,794,161,583 =
Beitish Academic Written English Corpus (BAWE) English 8,336,262 6,968,089 =
| Begwn English 1,175,675 1,007,299 «
| e:flux (old WSG) English 6,238,592 5,036,119 ®
I EUROPARLS, English-German (old WSG) English 42,963,350 38,292,849 ®
Susanne English 150,426 128,998 ®
| 248065 Spaniih Corpus Spanish 1,358,475 82,50 #
Show more corpory Paralled corpory
My corpora
° Configuration
Ic.n Corpus name Language template Tokens
| AL Arabic Learner Corpus Arabic ALC 1,49 L /) X
I Arabic_unvowelled Arabic_unvowelled Arabic ntegrated 128,243 = '
| Aradic_vowelled Aradic_vowelled Arabic ntegrated 128,243 ® > X
I Latin_unvowelled Latin_unvowelled Arabic integrated 128,243 = "
tin_vowelled Latin_vowelled Arabic integrated 128,243 = %
Unified Quranic Annctations
UQA Arabic Unvowelled owel i B ,
| | (Arabic um lied) Arabic unified_Quranic 5 128,693 L R
3 Unified Quranic Annctations %
Vi L (Arabi Vowelled) Arabic unified_Quranic 5 128,693 = ‘2
Unified Quranic Annotations
UQA_Latin Unvowelled avowel If 4 , /
| {Latin u led) Arabic unified_Quranic 5 128,694 * F X
| S Unified Quranic Annotations
UOA Latin Vowelled W & ! 2
; Vowel (Latin Vowelled) Arabic unified_Quranic 5 128,654 R

b
eprn Corpora
Create corpus
WebBootCaT |o-n_ Language  Tokens Words
‘arallel corpora | Aradic wed corpus Arabic 174,239,600 407,005 ®
SRg. S | acTeatent2 Arabic YRR I PRTOR S
etch grammars Beitish mic Written En Lrpus (BAWE] English 8,336,262 6,968,089 =
Wbcorpus definttions | begen Englsh 117347 100,299 | S8
Jser groups | eflux (old W3G) English 6,238,592 5,006,119 ®
| EUROPARLS, Enatish German (ckd WSG) English QW30 Bwamsn o ®
Support Susanne English 150,426 128,998 =
telp | 248,065 Soansh Corpus Spantsh 1,358,475 s o
wpport Show more corpora Parallel corpora
My corpora
Configuration
I Corpus © Corpus name Language template Tokens
| ALC Aradic Learner Corpus Arabic ALC 1,4% L3 2
I Arabic_unvowelled Arabic_unvowelled Arabic ntegrated 128,243 L '
| & vowell Aradic_vowelled Arabic ntegrated 128,243 * 2
| Latin unvowelted Latin_unvowelled Arabc  integrated 243 - ® %
| Latin_vowelled Latin_vowelled Arabic integrated 128,243 * ’ X
Unified Quranic Annctations R
UQA Arabic Unvowelled owel i E !
| (Arabic u lied) Arabic unified Quranic 5 128,693 ® 2
2 Unified Quranic Annctations 0
| Vowelled (Arabic Vowelled) Arabic unified_Quranic 5 128,693 ® %
Unified Quranic Annctations
UQA_Latin Unvowelled srvowel I - ! ® ’
’ Qathh u led) Arabic  unified_Quranic 5 128,694 x
| . Unified Quranic Annotations
UQA Latin Vowelled X 4 , &
; Vowel (Latin Vowelled) Arabic unified_Quranic 5 128,654 2

XL



Open in SKE

tch M Engine
. Zainab Alqassem  used words: 84 X / 1,000,000 days left: 312 Search
:” Unified Quranic Annotations (Arabic unvowelled)
corpus
sbBootCaT Add new file / <~ Acd data from web using WebBootCaT / ¢ Compile corpus / ¥ Open in SKE I
| corpora
- #  Original file Plain text Vertical  Tokens Owner
iration templates 1 | integrateAl.xml 128,691 Ms. Zainab Alqassem F x
grammars
pus definitions

types

tch

Engine

As. Zainab Alqassem  corpus: Unified Quranic Annotations (Arabic unvowelled) Sea

rdance
List
Sketeh
irus

o

Simple query: r Make Concordance
Query tvp{s Text types ‘+mex‘

Cominh

XL



Scroll down to get more options

user: Ms. Zainab Algassem corpus: Unified Quranic Annotations (Arabic unvowelled)

Concordance
Word List
Simple query: Make Concordance
ot Query t Text types Context
Thesaurus uery types Text types Contex
Find X
Text Types
3 Subcorpus: create new
CHAPTER ID
VERSE ID
SEGMENT 1D
POS TAG
Adverbs
@ [ conjunctions
Disconnected Letters

From the previous screen you can make the following

search levels:

Fisrt:
Part of speech analysis in Quran

POS TAG

Adverbs
Conjunctions
Disconnected Letters
Nominals

=
B

_ Particles

_ Prepositions
Pronouns
Verb

_ lam prefixes

Select All

B 6 HBDGHDBE G

XLIV



Tag Arabic Name Description
N p&u$ Noun
Nouns
PN ple au) Proper noun
ADJ dda Adjective
Derived nominals =
IMPN J“ Jasd P"‘" Imperative verbal noun
PRON e Personal pronoun
Pronouns DEM 3kl P“" Demonstrative pronoun
REL Jga g ) Relative pronoun
L e ol Time adverb
Adverbs
LoC S 4 Location adverb

http://corpus.quran.com/documentation/tagset.jsp

Prepositions

1am Prefixes

Conjunctions

Tag
P

EMPH
IMPV
PRP
CONJ
suB
ACC
AMD
ANS
AVR
CAUS
CERT
CIRC
com
COND
EQ

EXH

Arabic Name
> o
438 93l WY

AN Y
Salazll oY
alac i

FoMaa b
al o a

) ot A
Sl i
£ A
g
BaRal

Ja e
Lmal) 919
da l A
Ay g
I e

XLV

Description

Preposition
Emphatic /8m prefix
Imperative /&m prefix

Purpose /8m prefix
Coordinating conjunction
Subordinating conjunction

Accusative particle

Amendment particle

Answer particle
Aversion particle
Particle of cause
Particle of certainty
Circumstantial particle
Comitative particle
Conditional particle
Equalization particle

Exhortation particle



http://corpus.quran.com/documentation/tagset.isp

Particles

Disconnected Letters

Tag
EXL

EXP
FUT
INC
INT
INTG
NEG
PREV
PRO
REM
RES
RET
RSLT
sSuUP
SUR
vocC

INL

Arabic Name
Rl i

s L0 512

SR A
10 Ao

el A o
plediv)
i Ao
s A
ordS S
AAUT) A
an 313}
il Ao
da ) il 9 A aBly da
a5 i
Selad i o
AKX PN

dalolia iy

Description

Explanation particle
Exceptive particle
Future particle

Inceptive particle

Particle of interpretation

Interogative particle
Negative particle
Preventive particle
Prohibition particle
Resumption particle
Restriction particle
Retraction particle

Result particle

Supplemental particle

Surprise particle
Vocative particle

Quranic initials

Fig 3. Part-of-speech tagset for particles and the Quranic initials.

Second.

Syntactic analysis for each word in Quran

Which includes the following options:

XLVI



Prefix, Stem or Suffix

GRAMMAR

| PREFIX
| STEM
| SUFFIX

. Select All |

Verb form:

VERB FORM

| Select All |

To know more about these abbreviations, please click on the URL below

http://corpus.quran.com/documentation/verbforms.jsp

XLvII



Words derivations:

DERIVATION

[ ] PCPL
. VN
. Select All |

First ,second and third person:

PERSON

. Select All |

XLVIII



Masculine and feminine words:

GENDER (M=MASCULINE, F= FEMININE)

M
I Select All |

Prefix letter

PREFIX LETTER

\”Select All |

XLIX



Prefix letters features

PREFIX FEATURES

_ya+
. Select All |

KaAn, KaAd and <in words

SPECIAL GRAMMAR (il sl 5 o 3 o8)
| <in~
| kaAd
| kaAn
' Select All |




NOMinative, ACCusative and GENitive

CASE

' Select All |

Subjunctive and jussive:

MOOD

(] JUS
- | SUBJ

| Select All |

LI



Singular, Plural and dual words:

NUMBER(5=5INGULAR, D=DUAL, P=PLURAL)

. Select All |

Third.
Semantic analysis for Pronouns
and verses in Quran

LIl



Semantic analysis for each Pronouns

(to whome it refers)?

ENGLISH QURANA CONCEPTS

B | enconcept
(Kaafir) the Infidels
(Kaafir) the infidels and the hypocrites
(Muttaqun) the plous, the righteous, God fearing
Aazar father of Abraham
Abdullzah ibn Ubai ibn Salool, the head of hypocrites
Abdullzh ibn Umm Maktoum
Abil
Abraham
Abraham and Isaac
Abraham and Ishmael
Abraham and his faithful followers
Abraham, Ishmael, lsaac, Jacob and the Descendants (the 12 tribes of israel)
Abu Jahl
Abu Lahab
Adam
Adam and his wife
Adam, his wife and Iblis
Al-Agsa Mosque
Al-aas bn Wael
Allah
Allah and Angels
Allah and His messenger
Allah's advice
Allah's covenant
Ansar
Army of Ahzab
Aron brother of Moses

Semantic analysis for each verse in Quran

QURANY CONCEPTS TREE

__| Action(Work)

_| Faith

_ General and Political Relationships
) Jihad

_ Judicial Relationships

_ Man and The Moral Relations

_ Man and The Social Relations

_| Organizing Financial Relationships
| Pillars of Islam

_ Religions

| Science and Art

| The Call for Allah

| The Holy Quran

_| The Stories and the History

_| Trade, Agriculture, Industry and Hunting
Select All

BEEDHHEEDHDEEDBEH®

LIl



Example of semantic analysis for verse in Qurany

system

Chapter Name:An-Najm Verse No:13

2ir

13} soad 053 a1, uily

Concepts/Themes Covered:

Gl onay adl ] < ey e B ploa) saa) < Y SIS
Pillars of Islam> The Blessed Muhammad(PBUH)> His Midnight Journey to Jerusalem and the Ascent to the Seven Heavens

Gl 335 < plaey e B plia) saas) < sy IS0
Pillars of Islam> The Blessed Muhammad(PBUH)> Supporting his Message

S XU Gl y Gida < pu S 1A
The Holy Quran> The Quran's Reality and its confirmation of the Previous Books

eLaill jpe o1 5,L2Y1 < Lalall SLLEXY G 26y o] SLEYT g Taladl Slall < Gyyiilly plall
Science and Art> The Scientific Facts and the Indication to Facts which have been supported by the Scientific
Discoveries>Indication to Cross the Space

1- To extact ALL Quranic words with F gender type

tch ML Engine

As. Zainab Alqassem corpus: Unified Quranic Annotations (Arabic unvowelled) Sea
rdance

List Simple queryy Make Concordance

rus Query types +m Contexg

+Diff

English ' ¢

LIV



In CQL, type the expression [word=".*"]

-

Zainad Algassem  corpus: Unified Quranic Annotations (Aradic unvowelled)

Search

Make Concordance

Query types Texttypes Context
Query type simple . _lemma | phrase ( word | character (=)CQL

LI

PQL:  [wordw"*"] Default attribute:| word + | Tagset summary
Text Types
Subcorpus: create new
CHAPTER D
VERSE 1D
SEGMENT 10

From Text type options, choose F in Gender options

Select Al

PERSON

P

w»

w»
Select Al

GENDER (MsMASCULINE, F» FEMININE)
v

M
Select Al

PREFIXLETTER

PREFIX FEATURES

LV



Then click on Make Concordance

-

Zainad Algassem  corpus: Unified Quranic Annotations (Aradic unvowelled)

Search

ince
t
neh
s Query types Texttypes Context
Query type _simple __lemma __phrase | _word | character («)CQL
ifr

CQL:  [word=".")
Text Types
Subcorpus: create new
CHAPTER 10
VERSE 1D
SEGMENT 10

Make Concordance

Default attribute: word

At the top, you can see the number of feminine

words in Quran.

Query .*, F 8,709 (67,672.2 per million)

Page 1 of 436 | Go Next | Last

2 wmmArzqn hm ynfq wn w {l"yn yémn wn  Siwp

2 hm ywqn wn >wilk EIY hdY mn rb hm wowik  Axrp

2 hm w ELY smE hm w EIY >bSr hm gSwp w | giwd

2 wlhmEAb EZym w mn {l nAs mn yqwl Am gSwp -

2 hm w mA ySEr wn fY glwb hm mrD f zAd hm >nfs
2 hm mrD f ZAd hm {Ilh mrDA w | hm E°Ab >lym  giwd
2 QAl wA <seg id="222"<n mA nHn mSIHwn >lA >rD

2 b {l hdY f mA rbHt tjrt hmwmA kAn wA  Dilp .
2 tjrt hm w mA kAn wA mhtdyn mvi hm kmvi  rbHt

2 hm w mA KAn wA mhtdyn mvi hm k mvi 1Y tjrt

2 fImA>DATmMAHWLh *hD {IthD nwr hmw  nArA
2 mA Hwl h *hb {Ith b nwr hm w trk hm fY  >DAt
2 A ybSr wn Sm bkm EmY f hm LA yrjE wn >w  Zimt

2 fy h Zimt w rEd w brq yjJEl wn >SbEhm fY smA
2 w rEd w brq yjEl wn >SbE hm fY A"An hm  Zimt

2 hmmn {l SWEQH T il mwt w Ilh mHyTb  A*An
2 H*r {l mwt w {ILh mHyT b {l kfryn ykAd SwEq

2 frSAw {l smAbnAw>nzi mn {l sSmAmAf  >rD
2 bnAw>nzimn il smAmAf>xribhmn{l smA
2 mAf>xribhmn{lvmrt rzgAlkm flA  smA
Page 1 of 436 | Co  Next | Last

LVI

mtqyn {I"yn y&mn wn b {l gyb w ygym wn {l
<seg id="87 <ly k w mA >nzl mn qbl k w b {l
hm >m (m tn*r hm (A y&mn wn xtm {lLh E1Y
{Uh ELY glwb hm w ELY smE hm w ELY >bSr hm
{yn Amn wA w mA yxdE wn <seg id="182"<lA
<seg id="182"<|A >nfs hm w mA ySEr wn fY
<seg id="2107<"A gyl | hm (A tfsd wA Y {l

fY Tgyn hm yEmh wn >wilk {l*yn {Str wA {l
>wilk {I'yn {Str wA {1 DUlp b {l hdY f mA

{"yn {Str wA {L DUlp b {1 hdY f mA rbHt

mMA KAn wA mhtdyn mvl hm k mvi {1°Y {stwqd
mhtdyn mvi hm k mvi {1*Y {stwqd nArA f ImA
>DAt mA Hwl h *hb {lth b nwr hm w trk hm fY
Sm bkm EmY f hm [A yrjE wn >w k Syb mn {l
f hm LA yrfE wn >w k Syd mn {L smA fy h

fy h Zimt w rEd w brq yjEl wn >SbE hm fY
rEd w brqg yjEl wn >SbE hm fY A®An hm mn {l
mn gbl km LEl km ttq wn {I*Y JEL [ km {

km teq wn {1°Y JEL Lkm {l >rD frSA w {1

km {l >rD frSA w {l smA bnA w >nzl mn {l



Also, you can search by any word by typing it in Simple query box.

But, you have to make sure that you type the word without any prefix
or suffix.

simple query: Eml

1 | Make Concordance |

Query types Text types Context

Text Types

CHAPTER ID

VERSE ID

SEGMENT ID

POS TAG

Adverbs

Conjunctions
Disconnected Letters
Nominals

iBREE

Results:

Subcorpus: create new

Query Eml 359 (2,789.6 per million)

of 18 Go  Next | Last

wA {l SIHt >n [ hm jnt tjrY mn tHthA{l Eml

SIHA 1L hm >jr hm End rd hm w LA xwf Ely Eml

wn > f tTmE wn >n y&émn wA | km w qd kAn tEml

wA {I SIHE >wijk >SHD {1 jnp hm fy hA xidwn Emi

win >wili {l*yn {Str wA {1 Hywp {l dnyA tEml

wn gl mn kAn EdwA | joryl f <seg id="2846"<n yEml
wn bSyr w GAl wA In ydxd L jnp <seg id="3321"<IA tEml
wn w QAL WA kwn wA hwdA >w nSrY thtd wA yEml

nA w | km >Eml km w nHn | h mxiSwn >m tqwl >Eml
km w nHn | h mxiSwn >m tqwl wn <seg id="4192"<n >Eml
wn tik >mp Qd xIt | hA mA ksbt w | km mA tEmi

wn s ygwl {l sthA mn {1 nAs mA wiY hm En yEml

wn w il o>ty t{I%n >wt wA {L ktb b kl yEm

wn w mn Hyv xrj t f wi wih k STr {l msjd tEml

hm Hsrt Ely hm w mA hm b xrjyn mn {1 nAr >Eml

hm Y {l dnyA w {1 Axrp w >wilk >SHD {l >Eml

wn DSyr w {I"yn ytwf wn mn km w y°r wn tEmi

wn xbyr w LA jnAH Ely km fy mA ErD tm b tEml

wn bSyr HIZ wA B1Y {1 Siwt w {1 Siwp {l tEml

wn DSyr > ywd >Hd km >n thwn | h jnp mn tEmi

Page 1

NN NNNNNNNNRNNNRNNNNNNN

Page 1 of 18 Go | Next | Last

LviI

HjArp >Edt L | kfryn w bSr {l'yn Amn wA w
{L Sb_syn mn Amn D {lLh w {l ywm {l Axr w

mA yhbT mn xSyp {Ith w mA {lth b gfl € mA

>SHD {l nAr hm fy hA xidwn w {I'yn Amn wA w

<seg Id="2443"<lY >5d {1 E°Ab w mA {llh b gfl E mA
mzHzH h mn {L E°Ab >n yEmr w {lLh bSyr b mA

w h End {lLh <seg id="3307"<n {lLh b mA

L km mA ksb tm w (A ts_# wn E mA kAn wA

wn nAfY {IthwhwrbnAwrb kmw L nA

w hw rb nA w rb km w | nA >Eml nA w | km

Shdp End h mn {Ith w mA {lLh b gfl E mA

| km mA ksb tm w IA ts_# wn E mA kAn wA

>n h {l Hg mn rb hm w mA {lLh b gfl EmA

<seg id="4561"<n h L | Hq mn rb k w mA {lth b gfl EmA
mn hm k mA tbr wA mn A k “lk yry hm {ith

km En dyn h f ymt w hw kAfr f >wijk HbTt
mErw! w {tq wA {Ith w {Eilm wA >n {ILh b mA

fEL n fY >nfs hn b I mErwf w {ILh b mA

{1 Ol byn km <seg id="8026"<n {lLh b mA

<seg 1d="9260"<n (m ySb hA wAbL f Tl w {Ith b mA



To view the results with chapter and verse id:

Sketch

Engine

user: Ms. Zainab Algassem

corpus: Unified Quranic Annotations (Latin unvowelled)

Query .*, F 8,709 (67,672.2 per million)

Page |1 of 436 | Go | Next | Last

2 wmmArzq n hm ynfqg wn w {l*yn y&amn wn Slwp "

2 hm ywan wn »wilk ELY hdY mn rb hm w »wijk AXID /Axr/N/ax
2 hm w ELY smE hm w ELY >bSr hm gSwp w | qlwb

w L hm E*Ab EZym w mn {L nAs mn ygwl Am gSwp oy

2

2 nhm w mA ySEr wn Y glwb hm mrD f zZAd hm >nfs N

2 hm oD £ ZzAd hm {Ith mrDA w | hm E*Ab »lym qlwb N

2 QAl wA <seg 1d="222"«<n mA nHn mSIHwn *lA rD N

2 b (L hdY f mA rbHt tirt hm w mA kAn wA Dilp N/dl
2 tjre hm w mA KAn wA mhtdyn mvl hm k mvl  rbMt

2 hm w mA KAn wA mhtdyn mvl hm kK mvl {1*Y tyrt

2 fImA >DAT mA Hwl h *hb {(Ith b nwr hm w NArA

2 mA Hwl h *hb {ILh b nwr hm w trk hm Y »DAL AV

2 LA ybSr wn Sm bkm EmY f hm LA yrjE wn >w  Zimt /'
2 fy h Zimt w rEd w brq yJEL wn >SDE hm 1Y smA A/N

2 w rEd w brq yJEl wn >SbE hm 1Y A*An hm  Zimt "

2 hm omn (I SwEq Hr L mwt w (ILh mHYT b A®An o v
2 Hr (L mwt w [ILh mHyT b (1 kfryn ykAd SwEq ., N

2 frSA w {1 sSmA bnA w >nzl mn {L SmA mA f >rD

2 bnAw >nzl mn (L SMAMAf>xrjbhmn{l smA AN

2 mAf>xri b h mn (L vinrt rzgA Lkm f1A  smA .y
Page |1 of 436 | Co Next | Last

mtqyn {I*yn y&mn wn b {l gyd w ygym wn {I
“seg I« 87 «<ly kwmA»>nzl mngbl kwb {1
hm >m Im tn*r hm LA y&mn wn xtm {LIh B1Y
{ih B1Y glwb hm w B1Y smE hm w BIY >bSr hm
{"yn Amn wA w mA yxdE wn <seg id="182"<lA
«seg Id="182"<lA »nfs hm w mA ySEr wn 1Y
<seg Id="210"<"A gyl | hm LA tfsd wA 1Y {1

Y Tgyn hm yEmh wn >wilk {I*yn [Str wA 1
>wilk {Lyn (Str wA {1 DUlp b {1 haY f mA

{1*yn {Str wA {l DUip b {l haY f mA rbHt

MA kAN wA mhtdyn mvi hm k mvi {1*Y {stwqad
mhtdyn mvi hm k mvi {1*Y [stwqd nArA f ImA
>DAt mA Hwl h *hb {LLh b nwr hm w trk hm fY
Sm bkm EmY f hm LA yrjE wn >w k Syb mn {1
fhm LA yrjE wn »w k Syb mn {l smA fy h

fy h Zimt w rEd w brq yJEl wn »SbE hm Y
rEd w brq yJEl wn >SbE hm Y A*An hm mn {1
mn gbl km LEL km ttq wn {1°Y JEL L km Q1

Km ttq wn {1°Y JEL L km {1 >rD frSA w {1

km {1 »rD frSA w {1 smA bnA w »nzl mn {1

From (Reference) you can choose more than one

choice

View options 2
Attributes Structures References
o word <chapter> 7 [Token number
 lemma <verse>
<seg>

¢ tag <SketchEngineFormat>

 lemma_lc <QuranyConcepts>

™l <g> Segment State (INDEF =indefinite)

N —— Morpheme

Display attributes Verb Form

For each token Derivation

Special Grammar (Il 4 5l 5 59

(=) KWIC tokens only Caid gt Y
MOOD
Number(S=Singular, D=Dual, P=Plural)

References up

Page size (number of lines): 20
KWIC Context size (number of characters): 40

Sort good dictionary examples.
Number of lines to be sorted: 100

Icon for one-click sentence copying
Allow muitiple lines selection
XML template for one-click copying: s

Change View Options Save Options

LVII



For example, word (Eml) is in chapter 2 and

verse 25‘.

Query Eml
Page 1

E.Zs
TO2—

2,74
2,82
2,85
2,96

2,110  wn bSyr w GAL wA Ln ydxl {l Jnp <seg id="3321"<lA tEml ,
wn w gAl wA kwn wA hwdA >w nSrY thtd wA yEml

2,134

359 (2,789.6 per million)

of 18 | Co Next | Last

wA {L SIHE >n L hm jnt tjrY mn tHt hA {L
SIHA fL hm >jr hm End rb hm w LA xwf Ely
wn > f tTmE wn >n y&mn wA | km w qd kAn
wA {l SIHt >wl}k >SHD {l jnp hm fy hA xldwn
wn >wilk {l*yn {Str wA {l Hywp {l dnyA

wn gl mn kAn EdwA | jbryl f <seg id="2846"<n

Eml 4
Eml ¢,

tEml

Eml ¢,

tEmli

yEml ¢,

2,139 NAw L km >Eml km w nHn | h mxiSwn >m tgqwl >Eml

2,139 km w nHn | h mxIiSwn >m tqwl wn <seg id="4192"<n >Eml , .

HjArp >Edt L | kfryn w bSr {I*yn Amn wA w

{L Sb_#yn mn Amn b {LIh w {l ywm {l Axr w

mA yhbT mn xSyp {lIh w mA {lLh b gfl E mA

*SHD {l nAr hm fy hA xidwn w {I®yn Amn wA w
<seg id="24437<lY >Sd {l E"AD w mA {lLh b gfl E mA

. mzHzH h mn {1 E*Ab >n yEmr w {llh bSyr b mA

w h End {llh <seg id="3307 <n {llh b mA
L km mA ksb tm w LA ts_# wn E mA kAn wA
wn NA Y {LIh w hw rb nAw rb km w | nA

w hw rb nAw rb km w L nA >Eml nA w | km

By clicking on the blue colour, you will be able to see all inforamtion
related to that word

Chapter ID 2

Verse D 5

Segment D 558

POS Tag Verd Verb:V
Morpheme STEM
Number(S=Singular, P

D+Dual, P+Plural)

Person »

Gender
(MeMasculine, Fs M

By clicking on (Frequency) you can see how many times

nd Verb

this word appears as Noun a

user: Ms. Zainab Alqassem corpus: Unified Quranic Annotations (Latin unvowelled)

Concordance
Word List
Word Sketch
Thesaurus
Find X

Query .*, F 8,709 (67,672.2 per million)

Page 1 of 436 | Go | |Next | Last

2 wmmArzq n hm ynfq wn w {l*yn y&mn wn
2 hm ywgn wn >wilk EIY hdY mn rb hm w >wilk
2 hm w ELY smE hm w ELY >bSr hm gSwp w |
2 wl hmEAb EZym w mn {l nAs mn yqwl Am
2 hm w mA ySEr wn fY qlwb hm mrD f zAd hm
2 hm mrD f zAd hm {iLth mrDA w | hm E°Ab >lym
2 QAL WA <seg id="222"<n mA nHn mSIHwn >lA
2 b {l hdY f mA rbHt tjrt hm w mA kAn wA
2 tjrt hm w mA kAn wA mhtdyn mvi hm k mvl
2 hm w mA kAn wA mhtdyn mvl hm k mvl {1°Y
2 f ImA >DAt mA Hwl h *hb {llh b nwr hm w
2 mA Hwl h *hb {Ith b nwr hm w trk hm fY
2 LA ybSr wn Sm bkm EmY f hm LA yrjE wn >w
2 fy h Zimt w rEd w brq yjEl wn >SbE hm fY
2 w rEd w brq yjEl wn >SbE hm fY A®An hm
2 hm mn {l SwEq H*r {l mwt w {Ith mHyT b
2 H*r {L mwt w {Ith mHyT b {1 kfryn ykAd
2 frSA w {l smA bnA w >nzl mn {I smA mA f
2 bnA w >nzl mn {l sSmAmA f>xrjbhmn {l

Slwp

AXIP

qlwd

BSWP g
>nfS ;. conse
qQiwd

>rD

Dllp ;¢

rbHt

>DAt

Zimt

SMA
Zimt
A*An
Swkq
>rD
SMA

LIX

I o/ttt
nNATA .,

woishwp  MRQYN {l°yN yEMA wn b {l gyb w yqym wn {1
<seg id" 87 <dlykwmA>nzZimngblkwbd {l
hm >m Im tn®r hm LA yémn wn xtm {ilh E1Y
{lth ELY qlwb hm w E1Y smE hm w ELY >bSr hm
{I®yn Amn wA w mA yxdE wn <seg id="182"<lA
<seg id="182"<lA >nfs hm w mA ySEr wn fY
<seg id=210<"Aqyl Lhm A tfsd wA Y {1

fY Tgyn hm yEmh wn >wijk {I"yn {Str wA {1
>wijk {1*yn {Str wA {l Dlip b {l hdY f mA

f*yn {Str wA {1 Dilp b {1 hdY f mA rbHt

mA kAn wA mhtdyn mvi hm k mvi {1Y {stwqd
mhtdyn mvi hm k mvi {1°Y {stwqd nArA f ImA
>DAt mA Hwl h *hd {lLh b nwr hm w trk hm fY
Sm bkm EmY f hm (A yrjE wn >w k Syb mn {l
fhmIAyriEwn >wk Syb mn {l smA fy h

fy h Zimt w rEd w brq yjEl wn >SbE hm fY
rEd w brq yjEl wn >SbE hm fY A"An hm mn {1
mn gbl km (El km ttq wn {1°Y JEL L km {1
km ttgwn {1°Y JBL Lkm {1 >rD frSAw {l



Choose your frequency type

Multilevel frequency distribution 2

Frequency limi: 0

(®) first level second level third level fourth level
Attribute:  word : Ardute:  word i Atribute: | word : | Attribute:  word
Ignore case ignore case ignore case Ignore case

6L L 8 6L 6L

SL SL SL SL

4 “ a 4

3 n n £l

2L 2P P 2L

i i 1 1L

Node Noce Noce Node

R n it "
Posttion: 2n Position: o Position: g Position: 2n

Make Freguency List

Text Type frequency distribution

Frequency limk: 0 ]
Include categories with no hits:

Chapter ID
Verse ID
Segment ID

Segment State (INDEF «indefinite)
Morpheme
Verd Form
Derivation

Make Frequency List

Results:

Frequency list

Frequency limit: |0 | | set limit |

POS Tag Freq Rel [¥%]

b verbv 266 1860
pnves 266 1869 [

p/n Noun::N 7 39.0
p/n Noun 7 33.7

LX



To show the semantic meaning for word(Eml),

click again on View options

user: Ms. Zainab Algassem  corpus: Unified Quranic Annotations (Latin unvowelled)

Concordance
Word List
Word Sketch
Thesaurus

Find X

s |

ST

Query .*, F 8,709 (67,672.2 per million)
Page 1 of 436 | Go | Next | Last
2 wmmArzq n hm ynfq wn w {l*yn y&emn wn  Slwp

2 hm ywgn wn >wilk EIY hdY mn rb hm w>wilk  Axrp .,

2 hm w ELY smE hm w ELY >bSr hm gSwp w |l glwb

2wl hmEAb EZym w mn {l nAs mn yqwl Am gSwp N ;

2 hm w mA ySEr wn fY qlwb hm mrD f zAd hm »nfs

2 hm meD f zAd hm {Ith mrDA w L hm E*Ab »lym  qlwb 000

2 QAL WA <seg id="222"<n mA nHn mSIHwn >lA >rD
b {L hdY f mA rbHt tjrt hm w mA kAn wA  Dlip
tjrt hm w mA kAn wA mhtdyn mvi hm k mvl  rbHt

hm w mA kAn wA mhtdyn mvl hm k mvl {I*Y 34 PN

f ImA >DAt mA Hwl h *hb {lth b nwr hmw  nArA

mA Hwl h *hb {ILth b nwr hm w trk hm fY  >DAt

2

2

2

2

2

2 LA ybSr wn Sm bkm EmY f hm LA yrjE wn >w  ZImt 5,

2 fy h Zimt w rEd w brq yjEl wn >SBE hm fY  smA . ..y
2 w rEd w brq yjEl wn >SbE hm fY A®An hm  Zimt

2
2
2
2

hm mn QL SWEQ Hr {l mwt w {th MHYT b A®AR /e //ue,

Hr {L mwt w {Ith mHyT b {l kfryn ykAd SwEq

frSA w {l smA bnA w >nzl mn {l smA mA f >D /5 O/N/>rd/>rd

bnAw>nzlmn i smAmAf>xrjbhmn{l smA . .,

mtqyn {I*yn y&mn wn b {l gyb w yqym wn {l
<seg =87 <ly kwmA>nzl mngbl kw b {l
hm >m Im tn*r hm LA y&mn wn xtm {iILh ELY
{Ith ELY glwb hm w ELY smE hm w ELY >bSr hm
{1*yn Amn wA w mA yxdE wn <seg Id="182"<lA
<seg Id="182 <lA >nfs hm w mA ySEr wn fY
<seg Id="210"<"A qyl | hm (A tfsd wA 1Y {1
Y Tgyn hm yEmh wn >wijk {l*yn {Str wA {l
>wijk {I*yn {Str wA {L Dlip b {1 hdY f mA
{1*yn {Str wA {l Dllp b {1 hdY f mA rbHt
mA kKAn wA mhtdyn mvl hm k mvi {I*Y {stwqd
mhtdyn mvli hm k mvl {I*Y {stwqd nArA f ImA
>DAt mA Hwl h *hb {ILh b nwr hm w trk hm Y
Sm bkm EmY f hm LA yrjE wn >w k Syb mn {l
fhm LA yriE wn >w K Sydb mn {l smA fy h
fy h Zimt w rEd w brq yjEl wn >SbE hm fY

. FEd w brq yjEL wn >SbE hm Y A*An hm mn {1
mn gbl km IEL km ttq wn {I°Y JEL | km {l
km ttq wn {1°Y JEL L km {l >rD frSA w {l

®) frst level second level third level fourth level
AURLE. mord : | Marbute:  word i ATrbute:  woed Actriute; | word
\grore case ignore case gnare case Ignare case
pe— & &L 6L 6L
- S S 8 SL
@ 4 “ 4L
n n n n
a a a 2L
L8 i n 1L
Nose Node Node Nose
= pL3 1R IR
Pastion: 2a Position: 2a Position: 2% Position: 2p
Make Frequency List
Text Type frequency distribution

Freguency limit: 0
Include categories with no hits:
(Person
Cander (M=Mascime, F = femmne)
Rooe
LR
Mot fearoes
A stid Quena Comcepty

I'? W QurAna Concepty

Mane Freguency List

LXI



Results are shown in Tree structure

Query Eml 359 (2,789.6 per milion)

Page 1 of18 Co  Next | Last

Pitlars of Islam | Pyilars of islam::islamic | Pillars of islamcilamic: :Oneness of Allah | Pillars of slam:islamic: Oneness of Allah: Promise and Threat |Fah | et Beltef in Allah |}
Fanth | Fasthc:Belsef In Allah | Faith::Bedief In Allabc:The Faith and the Action |Fasth |Faitho The Believers | Farthc:The Believers:There 15 no Fear on them | The Caill for Allad | T
Pillars of Islam | Poilars of islam:islamic | Pillars of islamciiamic::Oneness of AL | Pillars of Slam::islamtc Oneness of Allan- Devoutaess and Fear of Allan | Fasth FalthoAllan,
Faith| In Allah | 5 Allah::The Faith and the Action | Fasth | Faitho:Belied In Allah | Falh Betie! In Allsh:The Reality of Famth | Farth | Farthc:The Unseen
Jugictal ps | Jodhclal cLegal Rules | Jugicial Relationships: Legal Rules: :Negation | Retigions | Retigions Ovidren of hrael | RetigionsOvidren of wrael:”
Pitlars of Islamm | Pyilars of ilam:islamic | Piilars of islamchiamic:Oneness of AL | Puilars of Slam:islamic Oneness of Alladc s Glory's ON | Mlany of -
Pitlars of islam | Pullars of ilam:iislamic | Pitiars of islamcilamic: Oneness of Allah | Pillars of mlam: islamic Oneness of Allah s Glory's Characteritscs | Milars of hiam: alamic
Farth | Faith::The Mereafter |Falth:The Mereafter:The Aww'd agaioat Action | ] & Respor vl K Lwery ove v
Fanth | Famthc: The Mereafter |Faith: The Mereafier: The Award agaioat Action | The Call for Allah | The Catl for Allancmy Liswns | The Call for Allano s Limsty Lentent with the P
Farth | Fasth::The Mereafter | Falth:The Hereafter: The Award agaleat Action | The Call for Allah | The Call for Alancoits Liswts | The Call for Allahc s LimsticLentent with the P
ACION(WOrk) | Action(Work 1::Bad Deeds | ACtion(Work 1::Bad Deeds::in the Saying | Action(Work | -Bad Deedi i the Saying Concealing the [vidence | Reiygions | Religlons: :Chitd
Action{Work)| Action(Work x::Bad Deeds | Action(Work |::Bad Deeds::in the Saying | ACtion(Work j::Bad Deedsin the Saying-Concealing the I

Pitlars of islam | Prilars of lam::The Prayers | Pitlars of lslamc The Prayers: Performing the Prayers | Pllars of slamcThe Prayers Performing the Pragersi-The incitement to Pra
Pitlars of Islam | Philars of islam::The Prayers | Piilars of islamc:The Prayers:-The Quitia |Pillars of hlam | Puilars of hlamc:The Prayers | Pl of slamc:The Prayecs: Mosques | Pl
Pitlars of islam | Pyllars of ksl Islamic | Pillars of islamcislamic:: The | Pullars of &l “The +-The Masters of the Followers |
Pitlars of Istam | Prilars of islam::islamic | Piilars of islamchiamic: The Apostates’ Pusistiment | Pillars of sl | Pulers of slamcnlamic | Pillars of slamc niamic The Disbelievers |
Pitlars of islam | Prilars of islam::isiamic | Piliars of islamc:hlamic::Oneness of Allah | Pillars of Blamiislemic - Oneness of Allahcms Glory's Characteristscs | Piilars of hiam:slamic

Pillars of | Py of | Piltars of islamc: of Aliah | Pillars of slam::islamic-Oneness of Allah—s Glory's On | Pillars of

Pillars of islam | Pollars of islamc:islamic | Pillars of islamcilamic::Oneness of Allah | Pillars of Slam::islamic - Oneness of Alladcis Glory's Characterntics | Milary of slam::slamic
Pillars of Islam | Phllars of | Piliars of Islamc of Alish | Pillars of Blam::islamic-Oneness of Allah=ts Glory's Satisfaction | Pillers of iam | Pillars of |
Page 1 of 18 Co | Next | last

To classify the results based on the verse

concepts

Word Eml has
been mentiond
inQuran71
times in Good
deed concepts

Lraitin Guraey

B0 PR of e Nlank Onevew of Mlsh
@0 Tees Secwt n Nlan
50 Teth The Merestier

for What Be/she has Done

/2 man and The vora Relations-The Dipramed worals
7 Fata-The Beveveri-Thew Lifle in the Warid and the Bereafter

BES8222283 0BT

LXII



Word Sketch

Word Sketch is to show the word's grammatical and
collocational behaviour

Eml (noun) Unified Quranic Annotations (Latin unvowelled) freq = 359 (2789.6 per million)

verd left 166 0.8 || verb right 243 1.2 || noun left 287 1.1 noun_right 162 0.6 || nextleft 339 1.1
=Y 5 7.51 || HoT 10 9.81 || StHe 59 11.06 || gn 10 9.57 || stH 27 9.78
sd 3 744 »HLT 4 B85 || s A3 108 || mxant 4 9.27 || wn 140 9.74
¥ 12 6.7||Amn 62 8.49 || xbyr 14 9.7 || =Hsn 10 8.83 || wa 82 8.49
v 3 654 ||zyn 5 8.34 || bSyr 15 9.59 || bry 2 849 || nm 29 6.85
3 6.3 || wry 4 8.27 || mkant “ 8.6 4 8.26 || km 13 6.43
A & 6.1|]|>Das 3 8.5 4 84|l 3 758 (| mn 9 s.07
qAt 12 S ||sa 4 7.91 || sw 7 8.03 = 4 745(|n 6 477
AN 12 4.84 || tAb 5 7.55 || sy #Ac 5 7.98 ) 4 6.79 3 467
3 479 || kan 75 7.48 || np 6 7.07 3 6.06 || rm 3 404
4 454 || 0o 4 7.04 || B1ym 4 6.88||w z s93||lqn 8 3.9
3 494l nem 1 699 3 686 3 533 3 39
Dl 3 6.66 yhA 6 6.76 3 49 ||w 8 3.68
Emt 8 e61||= 4 6.24 3 a79
rA 3 5.06 || emt 8 6.08 || qwr 3 463
y 3 467 || ye 3 6o05||rp 7 A.54
aml 8 4.0 xyr 3 s || 10 4.47
g T | nrs 5 5.67| S
“Wr a saes
A 20 S.45
3 a67
nA 4 3.49
b 3 3.3
nextright 339 1.1
HLT 2 927
von “ @

Your evaluation

Kindly, Iwould like to know How you used the system..

1_-Which words have you searched for?

2_Which type of analysis have you used in your
search Postag, syntactic or semantic,?

3_During your search, have you found any mistakes in
the results?

4_ Any suggestions to develop the system?

LX11I



Please, send your answers and notes to the
below email:

ML11llbma@leeds.ac.uk

LXIV



