

The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

(Signature of student):________________________

Unified	
 Quranic	
 Annotations	
 and	

Ontologies	

Luluh	
 Aldhubayi	

Msc	
 Artificial	
 Intelligence	

2012/2013	

	

	
 II	

Summary
Recently, researchers have shown an increased interest in finding linguistic features of religious text.
Consequently, different linguistics annotations and datasets have been constructed.

This project conducted an approach to unifying different Quranic datasets. The datasets merged in the
project are: Quran Annotations Corpus (Dukes, 2012), Pronoun reference (QurAna) (Sharaf, 2012)
and Qurany concept project (Abbas,2008).

The project started by unifying the dataset formats to XML and then merging them in one XML file.
The merged Quranic dataset has been ported to the Sketch Engine tool to enhance the usability of the
dataset and to allow it to be explored online by typical users.

The second phase of the project was to map the XML file to OWL ontology so as to enhance the
semantic relationships between XML elements. An ontology design proposal was conducted initially,
but then a facility in Protégé editor converting XML to OWL was used.

The final output created a Quranic dataset in which a user can find relationships between text in three
dimensions; word morphology analysis, pronoun reference analysis and verse semantic analysis.

	
 III	

Acknowledgments
First and foremost, I would like to express my gratitude to God Allah. Thanks for giving the will and
the strength to carry on.

I would like to express my sincerest thanks to my supervisor, Dr. Eric Atwell for his guidance and
support. I feel truly privileged to have had the chance to know him and work with him. He is an
exceptional and brilliant advisor and human being.

I would like to thank the project’s assessor Dr. Lydia Lau for her great feedback and guidance during
the project’s interim report and progress meeting.

I would like to sincerely thank my parents, husband and daughter; for their understanding and endless
love and supporting through the duration of my study.

	
 IV	

Table of Contents:	
 	
 	

CHAPTER	
 1:	
 INTRODUCTION	
 ...	
 1	

UNDERSTANDING	
 THE	
 PROBLEM:	
 ...	
 1	

THE	
 PROJECT	
 AIM:	
 ..	
 2	

OBJECTIVES:	
 ..	
 2	

MINIMUM	
 REQUIREMENTS:	
 ...	
 3	

DEGREE	
 RELEVANCE:	
 ...	
 3	

RESEARCH	
 METHODOLOGY:	
 ..	
 3	

Business	
 understanding	
 ...	
 3	

Data	
 understanding:	
 ..	
 4	

Data	
 preparation	
 ..	
 4	

Modelling	
 ...	
 4	

Evaluation	
 ..	
 4	

Deployments:	
 ...	
 5	

DELIVERABLES:	
 ...	
 5	

PROJECT	
 PLAN:	
 ...	
 6	

CHAPTER	
 2:	
 BACKGROUND	
 RESEARCH	
 ..	
 7	

2.1	
 WHAT	
 IS	
 THE	
 HOLY	
 QURAN?	
 ..	
 7	

2.2	
 THE	
 CURRENT	
 QURAN-­‐RELATED	
 PROJECTS	
 ...	
 7	

2.2.1	
 Semantic	
 Opposition	
 Ontology	
 in	
 the	
 Holy	
 Quran	
 (SemQ)	
 ..	
 7	

2.2.2	
 	
 Qurany	
 Concept	
 search	
 tool:	
 ..	
 8	

2.2.3	
 Quranic	
 Arabic	
 Corpus	
 (QAC)	
 ..	
 9	

2.2.4	
 QurAna	
 ..	
 10	

2.2.5	
 	
 QurSim	
 ..	
 11	

2.2.6	
 Morphological	
 Analysis	
 of	
 the	
 Quran	
 ..	
 12	

2.3	
 CHOOSING	
 THE	
 PROJECT	
 DATASETS:	
 ...	
 13	

CHAPTER	
 3:	
 ONTOLOGY	
 AND	
 CORPUS	
 REPRESENTATIONS	
 AND	
 TOOLS	
 ..	
 16	

3.1 ONTOLOGY DATA MODEL:	
 ..	
 16	

3.1.1	
 RDF	
 model:	
 ..	
 16	

3.1.2	
 Web	
 Ontology	
 Language	
 (OWL)	
 model:	
 ..	
 16	

3.2	
 ONTOLOGY	
 EDITORS	
 AND	
 TOOLS:	
 ...	
 18	

3.2.1	
 Apollo:	
 ...	
 18	

3.2.2	
 Protégé:	
 ...	
 19	

3.3	
 CORPUS	
 TOOLS:	
 ..	
 20	

3.4	
 CORPUS	
 REPRESENTATION:	
 ...	
 21	

3.4.1	
 Sketch	
 engine	
 representation	
 (format):	
 ..	
 21	

CHAPTER	
 4:	
 DESIGN	
 THE	
 SOLUTION	
 ..	
 22	

4.1	
 THE	
 DESIGN	
 AIMS:...	
 22	

4.2	
 PREPROCESSING	
 THE	
 DATA:	
 ..	
 23	

Processing	
 the	
 three	
 datasets:	
 ...	
 25	

First	
 dataset:	
 Qurany	
 Concept:	
 ..	
 26	

	
 V	

Second	
 dataset:	
 Quranic	
 Arabic	
 Corpus	
 (QAC):	
 ..	
 27	

Third	
 dataset:	
 QurAna	
 annotations:	
 ..	
 29	

4.3	
 DESIGN	
 THE	
 UNIFIED	
 QURANIC	
 ANNOTATION	
 DATASET:	
 ...	
 30	

4.3.1	
 The	
 Quran	
 Structure:	
 ...	
 30	

4.3.2	
 XML	
 rules:	
 ..	
 30	

4.3.3	
 Distributing	
 the	
 annotations:	
 ..	
 31	

CHAPTER	
 5:	
 IMPLEMENTATION:	
 ...	
 34	

5.1	
 CHOOSING	
 THE	
 PROGRAMMING	
 LANGUAGE:	
 ..	
 34	

5.2	
 USING	
 XML	
 API	
 IN	
 IMPLEMENTATION	
 ..	
 35	

5.3	
 CONVERTING	
 QURANY	
 TO	
 XML	
 (QURANYTOXML.PY)	
 ...	
 35	

5.4	
 CONVERTING	
 QURAN	
 ANNOTATION	
 CORPUS	
 (QAC)	
 TO	
 XML	
 (QACTOXML.PY):	
 	
 40	

5.5	
 CONVERTING	
 QURANA	
 TO	
 XML	
 FORMAT	
 (QURANATOXML.PY):	
 ...	
 43	

5.6	
 MERGING	
 THE	
 THREE	
 XML	
 FILES	
 IN	
 ONE	
 XML	
 FILE	
 (MERGE.PY):	
 ...	
 44	

5.7	
 MAPPING	
 THE	
 UNIFIED	
 XML	
 FILE	
 TO	
 THE	
 ONTOLOGY	
 STRUCTURE:	
 ..	
 46	

Mapping	
 the	
 XML	
 to	
 OWL	
 Ontology:	
 ...	
 47	

5.8	
 	
 PORTING	
 THE	
 UNIFIED	
 XML	
 FILE	
 TO	
 THE	
 SKETCH	
 ENGINE	
 TOOL:	
 ...	
 48	

5.8.1	
 Implementing	
 Sketch	
 Engine	
 formats:	
 ..	
 49	

5.8.2	
 Configuring	
 the	
 Corpus:	
 ...	
 50	

CHAPTER 6: EVALUATION	
 ..	
 51	

6.1 EVALUATING THE UNIFIED QURANIC ANNOTATIONS XML DATASET:	
 	
 51	

Evaluation Discussion:	
 ..	
 52	

6.2 EVALUATING THE UNIFIED QURANIC ANNOTATIONS XML DATASET IN SKETCH ENGINE:	
 	
 52	

Translating the SKE corpus to Arabic:	
 ..	
 52	

Self-Evaluation:	
 ...	
 53	

Users-Evaluation:	
 ..	
 57	

6.3 EVALUATING THE UNIFIED QURANIC OWL ONTOLOGY:	
 ...	
 58	

Testing the OWL ontology using SPARQL on chapter 2:	
 ..	
 59	

CHAPTER 7: CONCLUSION	
 ..	
 60	

IDEAS	
 FOR	
 FURTHER	
 WORK:	
 ..	
 60	

REFERENCES:	
 ...	
 I	

APPENDIX	
 A:	
 PERSONAL	
 REFLECTION	
 ..	
 IV	

APPENDIX	
 B:	
 MATERIAL	
 USED.	
 ..	
 VI	

APPENDIX	
 C:	
 ETHICAL	
 ISSUES	
 ...	
 VII	

APPENDIX	
 D:	
 PROJECT	
 PLAN	
 ..	
 VIII	

THE	
 INITIAL	
 PROJECT	
 PLAN:	
 ..	
 VIII	

THE	
 ADJUSTED	
 PROJECT	
 PLAN:	
 ...	
 IX	

APPENDIX	
 E:	
 CODE	
 OF	
 CONVERT	
 QURANY	
 HTML	
 FILES	
 TO	
 XML	
 FILE	
 (QURANYTOXML.PY	
)	
 	
 X	

APPENDIX	
 F:	
 CODE	
 OF	
 CONVERTING	
 QURANIC	
 ARABIC	
 CORPUS	
 TXT	
 FILE	
 TO	
 XML	
 FILE	

(QACTOXML.PY)	
 ..	
 XIV	

APPENDIX	
 G:	
 CODE	
 OF	
 CONVERT	
 QURANA	
 XML	
 FILES	
 TO	
 XML	
 FILE	
 (QURANATOXML.PY)	
 	
 XIX	

	
 VI	

APPENDIX	
 H:	
 CODE	
 OF	
 MERGING	
 THE	
 THREE	
 XML	
 DATASETS	
 IN	
 ONE	
 XML	
 FILE	
 (MERGE.PY)	
 	
 XXI	

APPENDIX	
 I:	
 CODE	
 OF	
 ADDING	
 ARABIC	
 AND	
 LATIN	
 TEXT	
 TO	
 THE	
 MERGED	
 DATASET	

(ADDQURANICTEXT.PY)	
 ...	
 XXVII	

APPENDIX	
 J:	
 SKETCH	
 ENGINE	
 CONFIGURATION	
 FILE	
 ..	
 XXIX	

APPENDIX	
 K:	
 PART	
 OF	
 UNIFIED	
 QURANIC	
 ONTOLOGY	
 (UNIFIEDQURANICONTOLOGY.OWL)	
 	
 XXXII	

APPENDIX	
 L:	
 ABDULLAH	
 ALFAIFI	
 EVALUATION	
 ..	
 XXXIII	

APPENDIX	
 M:	
 SKETCH	
 ENGINE	
 SYSTEM	
 MANUAL	
 PROVIDED	
 TO	
 EVALUATORS:	
 	
 XL	

	
 1	

	

Chapter	
 1:	
 Introduction	
 	

Understanding	
 the	
 problem:	

The Holy Quran is the Muslims’ sacred scripture, and the Quranic text is considered the most perfect

example of classical Arabic (Shaʻrāwī, 1993). Therefore, linguists use computing techniques to

analyse Quranic texts in order to accomplish many goals. In fact, people who are interested in the

Holy Quran have both religious and linguistic motivations, such as studying the behaviour of a word

in every occurrence in the Quran to find a pattern or a Quranic language rule. Usually, to study a

Quranic word, three different levels of language analysis are considered. The first analysis is the

syntactic analysis, which involves mainly studying the relations between words in a sentence or verse.

The second analysis is the morphological analysis, which involves studying the word’s grammatical

features, while the third analysis is the semantic analysis, which mainly describes the word’s

meaning.

In the Quran there are many verses in which the pronouns referring to Allah are plural while in other

verses the pronouns are singular. However, in fact there is only one Allah, as many verses indicate

(e.g. verse, chapter). The reason for having different morphological features is becoming a debate

among Quranic researchers. However, it is agreed that there is a relationship between the verse

concepts and the morphological features, because in some verses the pronoun referring to Allah is in

the singular form while others are in the plural. Thus, a comprehensive dataset showing the pronoun

reference with its morphological features and verse concepts is needed to resolve Quranic debates.
Another debate is about the synonyms and antonyms of Quranic words. For instance, the word (rain)

is mentioned in the Quran using three Arabic words (gyv, mA’ and mtr). Each has a different root, but

all have the same meaning. By considering the context/verse concept related to that word, we can

infer the purpose of using each word. For example, the words (gyv) and (mA’) have been used in

verses with award and goodness concepts while the word (mtr) has been mentioned in verses with

scourge and bad deeds concepts. Thus, we cannot consider mtr as a synonym for gyv and mA’

because the Quran never uses the word (gyv) in relation to bad deed concepts.

However, taking into account the Quranic researchers’ motivations, there is an obvious demand for a

system which makes it possible to search and analyse Quranic words. This search aims to have three

levels of language analysis to produce a comprehensive word analysis.

In the second chapter, I investigate the current and online available Quran-related projects, and

conclude that these Quranic search tools have some limitations. These limitations can be categorized

in three points. First, some Quranic systems do not use all the Quranic chapters, but instead, restrict

their system to a few chapters because of issues related to the project team. Second, the search tool

	
 2	

used in some projects lacks capabilities in retrieving the Quranic words, for example, it is not possible

to retrieve feminine nouns using the Quranic Arabic Corpus search tools. Third, not all systems use a

common language; some use the Arabic vowelled script and others use the Buckwalter script.

However, it is argued here that unifying the declarations in each dataset will help get more results

from different datasets.

Furthermore, instead of having many systems and datasets sharing the same text but having different

functions and scripts, I argue that merging datasets’ annotations will overcome the keyword retrieval

limitations and solve the difference in scripts by using a common script. In addition, putting the

unified formatted datasets in one dataset helps achieve data integration, where the unified dataset is

independent of other datasets. (Lenzerini et al, 2002). Nonetheless, there is another challenge as each

dataset has its own file format and structure. So, to have a unified Quranic annotations dataset, I need

to unify the datasets’ formats as well.

In addition, by investigating the current Quranic ontologies, I conclude that there is a demand for a

Quranic ontology. Most ontologies are dedicated to describing one aspect of the Quran; for instance,

the ontology that studies antonyms was dedicated to finding the opposite nouns sharing the Time

concept only (Al-Khalifa et al., 2009). However, to date, there has been no research to produce an

otology that describes a word semantically and grammatically. The project aims to develop a unified

ontology describing the Quranic words in relation to their semantic and grammatical features. This

ontology will improve web/text searches. So, if a user searches for a word that has a concept meaning

or morphological features, other similar Quranic words sharing the same features can be shown in the

search results.

 The	
 project	
 aim:
The aims of this project are as follows:

1- create a unified annotations dataset by merging three Quranic annotations datasets

2- port the unified annotations dataset to a corpus tool in order to explore the Quranic text and

enhance the dataset’s usefulness by making it accessible online for researchers

3- convert the unified annotations dataset to the ontology format

4- examine the unified ontology by using an ontology editor.

Objectives:	

The objectives of this project are as follows:

1- understand the problem by investigating the existing Quranic datasets and ontologies

2- collect the Quranic datasets and understand their annotations, formats and tools if available

3- design three software to convert the three datasets’ formats into a unified format

4- design software to merge the three datasets into one unified dataset

5- find an appropriate corpus system to present the unified annotations dataset

	
 3	

6- test the corpus under the chosen system

7- evaluate the usage and usefulness of the unified corpus to Quranic researchers concerned with

the Arabic language and Quranic researchers

8- map the unified annotations dataset to ontology format

9- find an ontology tool to examine the converted ontology.

Minimum	
 requirements:	

1- acquiring datasets from three different Quranic datasets

2- processing the acquired datasets and converting them into one unified format

3- combining datasets to form one unified dataset

4- uploading the dataset into a corpus exploring system

5- converting the unified dataset to an ontology format

Degree	
 relevance:	

This project is conducted based on the knowledge and skills achieved from two modules of my MSc

Artificial Intelligence course. The COMP5410M Language module addresses many of the

fundamental principles of computational linguistics, such as corpus annotation, tagging, and tag sets.

In addition, the COMP5450M Knowledge Representation and Reasoning module focuses on the

fundamental principles in knowledge representation, such as logical analyses, description logic,

ontology in general, and AI knowledge bases. Therefore, the two modules have provided me with a

strong background about the project.

Research	
 methodology:	

The aim of the project is to create a unified annotations dataset in order to fully understand the

Quranic text and to increase the users’ knowledge. For instance, finding text patterns and clustering

the text with their grammatical and semantic features is a demand made by many Quranic scholars

and Arabic language researchers. However, these goals are considered as data mining tasks as the aim

is to increase the knowledge about the data. A suitable methodology for this project is the CRISP-

DM approach. This approach has several stages, as follows.

Business	
 understanding	

This phase defines the main objectives of this project. The project aims to help Quranic researchers

and Arabic language experts and learners. Its objective is mainly to understand clients’ needs by

investigating and analysing their requirements of having unified annotations datasets and ontologies.

According to Abbas et al. (2013), the current text search is limited to the keyword itself and works by

introducing the semantic web and tagging each word with its semantic and grammatical features. The

search output might show other un-typed words sharing similar features.

	
 4	

Therefore, this project aims to address the requirements of Quranic researchers by investigating and

merging three of the current Quranic annotations datasets and uploading the unified annotations

dataset to an exploring and search tool. By having a unified annotations dataset, a user can perform a

comprehensive analysis of words, verses and chapters as well. The unified annotations dataset aims to

increase the users knowledge by showing different annotations per word.

Data	
 understanding:	

The aim is to acquire and understand a range of annotations datasets and decide whether each

annotations dataset is appropriate to accomplish our goals. To understand a dataset, a comprehensive

reading of the project is needed.

In addition, this study aims to investigate the datasets by inspecting the covered chapters. In fact,

some projects have covered a few chapters of the Quran (Dror, 2004), while others have published a

domain model without the instances (Al-Khalifa et al., 2009).

Data	
 preparation	

After understanding the datasets, it is important to inspect the dataset format to consider whether the

data need to be prepared before implementing the merging process. I investigated the formats and

concluded that I would need to prepare the dataset by converting each dataset to a standard format

(XML file). This phase makes merging the prepared datasets in the modelling phase a much more

straightforward task.

Modelling	

The purpose of merging the three datasets is to increase the data knowledge by organising the way

that clients can use them. The model phase involved designing an appropriate solution to merge the

three datasets in order to accomplish the project’s objectives. Chapter Four discusses the solution

design. In addition, to make it possible to use the dataset, a corpus tool needed to be specified. The

aim of having a corpus tool is to allow users to browse the dataset with annotations and to make the

resource available through the Internet.

Evaluation	

The project produces three main outputs: first, the unified dataset, which merges the three datasets in

a standard format (XML); second, the unified dataset ported to the corpus tool (Sketch Engine) so

users can explore and search the dataset in an advanced level such as using Regular expressions; and

third, an OWL ontology version of the unified dataset ported to Protégé, an open source ontology

editor.

Stage one: The unified annotations XML dataset

	
 5	

To evaluate the unified annotations XML file, I used Xpath expressions to validate the merging

process. The Xpath outputs were compared to the equivalent information in each selected dataset.

This was during the design phase.

Since unifying the datasets would involve pre-processing the three datasets individually, I converted

each dataset to an XML version. Thus, these XML files needed to be verified and evaluated. To

accomplish that, I used again the Xpath expressions to query the XML file, then compared and

validated the results with the actual datasets tool output.

Stage two: Evaluating the Sketch Engine corpora

After the annotations had been merged and the unified file ported to the Sketch Engine tool, some

contributed typical users (Quranic researchers and Arabic language experts) evaluated the unified

dataset using the Sketch Engine tool. The aim of their evaluation was mainly to find concordance,

frequencies and thesaurus. According to dukes et al (2010), the Quranic Annotation corpus has made

a verb and lemma concordance listing the words with their frequencies. I used his words as a

foundation for the Sketch Engine tool. Identical results would show that the tool is perfect.

Stage three: Evaluating the unified OWL ontology through Protégé editor:

The evaluation was achieved by porting the unified Quranic ontology to Protégé editor and evaluating

the OWL ontology by querying the Quranic words using SPARQL language. The evaluation was

made by questioning the ontology and getting the answers. Then, the query results were validated by

comparing them with previous known answers. Identical results would indicate that the OWL

ontology is accurate.

Deployments:	

Unifying the datasets is not the end of the project. The clients’ feedback is vital in developing the

dataset accuracy and presentation. The feedback involved Re-implementing the data mining process

to add/change the solution design.

Deliverables:	

At the end of the project, four software prototypes will have been developed based on two main

functions.

The first function was to convert each dataset to a standard format. Since there are three datasets, then

creating a single converter prototype was a hard task. Thus, each dataset had to have its own format

converter.

The second function was the merging process. The fourth prototype merged the three datasets into

one dataset. The output of the fourth prototype is the unified annotations dataset and the Sketch

Engine corpus.

	
 6	

There was another planned prototype to convert the unified XML dataset to OWL ontology, but then

this was accomplished by using Protégé XMLTab.

Project	
 plan:	

The first project plan was changed due the unexpected long prototypes implementation and

background reading as well. The project direction was changed to address two main parts: the unified

Quranic dataset and the unified Quranic ontology. Thus, more tasks were need such as ontology

background research, finding an ontology editor and evaluating the ontology. The old project plan is

in appendix B.

Figure (1.1): Project plan

Feb-­‐13	
 Mar-­‐13	
 Apr-­‐13	
 Apr-­‐13	
 May-­‐13	
 Jun-­‐13	
 Jun-­‐13	
 Jul-­‐13	
 Aug-­‐13	
 Aug-­‐13	

Project	
 aim	
 and	
 requirement	

Background	
 reading	

Corpora	
 collecaon	
 	

Interim	
 report	

Unifying	
 the	
 corpora	
 format	
 	

Merging	
 the	
 corpora	
 into	
 one	
 corpus	

Evaluaang	
 the	
 XML	
 files	

Finding	
 and	
 understanding	
 a	
 corpus	
 tool	

Evaluaang	
 the	
 corpus	
 with	
 corpus	
 tool	

Background	
 reading	

Finding	
 ontology	
 editor	

Preparing	
 for	
 progress	
 meeang	

Evaluaaon	
 phase	

Wriang	
 up	
 the	
 final	
 report	

Proofreading	
 and	
 reviewing	
 the	
 report	

	
 7	

Chapter	
 2:	
 Background	
 research	

2.1	
 What	
 is	
 the	
 Holy	
 Quran?	

The Holy Quran is the religious text of Islam. The Quranic text is divided into 114 chapters, and each

chapter consists of a varying number of verses. A verse consists of a group of words. The Holy Quran

is Prophet Mohammed’s miracle and the most accurate resource of the Arabic language. Therefore,

finding incorrect syntax in the Quran is unusual.

2.2	
 The	
 current	
 Quran-­‐related	
 projects	

There are many existing Quran-related projects, each having different purposes and functions.

However, all Quranic projects share the same Quranic texts but produce different annotations, such as

annotations focusing on the morphological analyses of each word, while others focus on the semantic

analyses for each verse. In addition, these projects have different data models, such as using OWL to

describe the relations between Quranic vocabularies, while others use XML and HTML to present

their projects’ outputs. The following sections will provide more detail about these projects and

annotations.

2.2.1	
 Semantic	
 Opposition	
 Ontology	
 in	
 the	
 Holy	
 Quran	
 (SemQ)	

SemQ is a framework that comprises many steps to produce the output. The main purpose of SemQ is

to find the antonyms for an input verse. This project was developed by King Saud University in Saudi

Arabia. There are two basic components in the SemQ framework: the ontology file and the SemQ tool

(Al-Yahy et al., 2010). The ontology used in the framework is a domain ontology, or OWL model,

which describes the relations between Quranic vocabularies without listing and indexing every

occurrence of the Quranic words. The aim was to pass the verse’s noun words to the ontology model

via a tool to investigate the relations between any two nouns in the verse. However, the output of the

framework depends on whether the input verse has an opposite noun associated with a certain degree

of relationship, such as absolute and scalar. Nonetheless, the project addressed the problem of finding

an accurate tool to discover the antonyms of Arabic words. Studying semantic opposition is

considered a helpful resource in understanding a word’s meaning by presenting the opposite meaning

(Al-Khalifa et al., 2009).

Since finding the opposite words in the Quran requires a huge effort, the objective was reduced to

presenting one concept feature (Time features). Basically, the domain shows the Arabic nouns

associated with Time concepts in the Quran. The domain was restricted to the noun words describing

Time features only (Al-Khalifa et al., 2009). Thus, it can be indicated that the SemQ is concerned

with the word level only.

	
 8	

2.2.2	
 	
 Qurany	
 Concept	
 search	
 tool:	

Qurany is a search-by-concept tool which was developed by the postgraduate student Noorhan Abbas

at the University of Leeds as an MSc research project. The tool is available online

http://www.comp.leeds.ac.uk/nora/html, Figure 2.2. The purpose of the project is to search for a

keyword’s concept. So, searching for a keyword leads to finding similar keywords in every Quranic

verse, and then the search outputs lists verses containing the targeted keyword associated with many

concepts.

Figure 2.2: Qurany tool website

For example, in a search for the English keyword (olive), which is mentioned in the Quran, the search

tool will retrieve every verse that has the keyword (olive) and any words associated with the lists of

concepts. One of these concepts is the Agriculture concept, which is related to the olive concept. In

addition, the concepts list has a hierarchical structure, which means the concepts listed as one line

have angle brackets between them:

Science and Art> The Scientific Facts and the Indication to Facts which have been supported by the

Scientific Discoveries>Agriculture

This line is read as follows:

Moreover, the input keyword is lemmatized to increase the similarity measure. Then, the tool finds

the verses that match the lemmatized keyword. To increase the accuracy of the similarity, eight

English translations have been attached for each verse beside the Arabic verse text. Using these

translations, the system performance for extracting the (English) keywords is increased to 87%

(Abbas, 2009) but the search for Arabic keywords has a low performance, showing some unwanted

results. Nonetheless, tagging the Quranic words with their morphological annotations, such as the root

and lemma, would increase the retrieval performance.

Qurany has two module tools; the first module is the concept search tool as mentioned earlier, and the

second module is the Tree of concepts browser, which presents hierarchal predefined Quranic topic

groups. Each verse in the Quran is classified to one or more of these predefined concepts. The

	
 9	

Quranic concepts were taken from Mushaf Al Tajweed’s book and are considered as the gold standard

for evaluating the system classification. In Mushaf Al Tajweed, each topic has a list of all common

verses in the Quran (Abbas et al., 2009).

Qurany was developed to deal with the semantic retrieval of the verses’ keywords. So, each verse has

been annotated with many semantic tags to make it possible to search for similar verses sharing the

same concepts. Moreover, some verses were untagged with semantics due to implantation issues

(Abbas, 2009). However, having verses annotated with their semantic tags helps in finding

relationships between verses in general and words in principle as well.

Finally, the verse-concept files are stored in HTML format. The usefulness of the Concept tree is in

finding all verses under a topic easily. The results will be considered a valuable resource for Quranic

students and linguistic researchers.

The Qurany project has some limitations in retrieving Arabic keywords, and furthermore, does not

present the morphological and syntactic analyses for a target keyword. Thus, I argue that merging

Qurany with the Quranic Arabic Corpus will increase the retrieval performance for Arabic keywords.

2.2.3	
 Quranic	
 Arabic	
 Corpus	
 (QAC)	

The Quranic Arabic Corpus is published through the web and available at http://corpus.quran.com.

The website has many services such as a Quranic dictionary, an English translation of the Quran, and

the syntax Treebank. These services use the Quran Annotation Corpus as a dataset.

The Quranic dictionary has many advantages, such as the verb concordance, lemma concordance, and

morphology search tool. The verb and lemma concordances list the most frequent verbs in the Quran

and the most frequent lemma with their frequencies while the morphological search tool aims to

retrieve the morphological annotations for the input keyword. As Figure 2.4 shows, the tool makes it

possible to search for part-of-speech tags, such as searching for all adverbs in the Quran. Other

options are form, root, lemma and stem. The search tool accepts Arabic keywords and the Buckwalter

translation as well (Dukes et al., 2012).

Figure (2.4): The QAC morphological search tool.

In QAC, each word in the Quran is given its morphological and syntactical annotations. However, the

project lacks the addition of the semantic meaning to each Quranic word. This is because the aim was

to analyse each Quranic word morphologically and syntactically.

	
 10	

The annotation tag set is the syntactic and morphological features of the Arabic language, such as

POS tag, Stem/prefix/suffix feature, Gender, Person, Number, Aspect, Case, Mood, Verb form, Prefix

features and other grammatical features.

The corpus format is a text format with tab separation. Each segment or word appears on a line

beside the morphological annotations and its location information. The location is presented between

parentheses in the pattern (x:y:z:w), where x is the chapter number, y is the verse number in chapter x,

z is the segment number in verse y, and w is the token number in word z. As shown in Figure (2.5)

not all words have more than one token. If a word has many tokens, such as words with the

determiner ‘{l’ , a syntactic analysis has to be applied in order to find the appropriate tag annotation

for each segment (Dukes et al., 2011).

Figure (2.5): The morphological annotation in the Quran Annotation Corpus

2.2.4	
 QurAna	

QurAna is a search tool for the Text mining of the Quran project which can be found on the website

http://www.textminingthequran.com/apps/pron.php . This tool aims to show the pronoun references

by entering the verse and chapter numbers. Thus, this system retrieves the pronoun references by

entering an index consisting of chapter and verse indices, but cannot retrieve the verse by entering a

keyword. The user must know beforehand which verse s/he is going to search for (see Figure 2.6).

Figure (2.6): The pronoun references tool

The project’s purpose is to tag each pronoun in the Quran with the reference concepts. For example,

verse 5 in chapter 1 has the pronoun <yaka, which mainly refers to Allah. The discourse level in the

corpus is word level and the project covers all chapters in the Quran (Sharaf et al., 2012).

As shown in Figure (2.7), the QurAna tool uses a dataset formatted with XML. Thus, each chapter has

a <chapter> tag with id, each verse has a <verse> tag with id, and each verse segment has a <seg> tag

with id. If a segment is a pronoun, then the pronoun reference annotation is also applied. The pronoun

annotation theme contains three main parts.

	
 11	

The corresponding concept in the concept XML file will be referred to as <con> with the reference id.

The tag <pron> is the pronoun index in its chapter; <ant> is the segment id where the antecedent is

found in any chapters.

1- The pronoun id <pron id=’X’>: the pronoun index in a chapter.

2- The concept id: <con id=’X’>: the tool uses the concept file to find the corresponding

reference’s concept by using the id. The concept id retrieves the English and Arabic concepts,

(see Figure 2.8).

3- The antecedent id <ant id=’X’>: this mainly refers to the reference position in the Quran,

such as the reference concept in <yaka is Allah, which has the segment id 11. Returning to the

segment id, we find the same reference concept ‘Allah’ (Sharaf, 2012).

Figure 2.7: Part of QurAna corpus file

Figure 2.8: Concept file in QurAna.

By examining the difference between the antecedent id and the reference concept, we infer that both

of them represent the same information. In addition, the pronoun reference tool shows the antecedent

id by replacing the segment id with the referred segment text.

2.2.5	
 	
 QurSim	

QurSim is another search tool for the Text mining of the Quran project. This tool retrieves similar

verses by entering any verse id. The search output lists any similar verses as shown in Figure 2.9. This

tool focuses on finding semantically related pairs of verse in the Holy Quran. The relatedness is based

on ‘Tafsir’, a book written by the Quranic scholar Ibn Kathir (Sharaf, 2012).

This tool could be a valuable resource in understanding and discovering similar verses, which might

have common patterns. In addition, the discourse level in the QurSim corpus is verse level, where

each verse has been tagged with the most similar verse.

	
 12	

Figure (2.9): QurSim outputs

In Tafsir Ibn Kathir, the total number of related verses in the Quran is 7,679 pairs. Many verses

sharing the same word root have an understandable relatedness. On the other hand, 883 verses have

an ambiguous relationship and therefore are flagged as ‘not obvious’. The total number of obviously

related verses is 6,796. Thus, the tool has flagged each pair with their degree of relevance (Sharaf,

2012).

The dataset format used in the QurSim tool is formatted by XML as shown in Figure (2.10). Each

verse has seven XML tags as follows:<uid> is the incremental index of verse; <ss> the source

chapter; <sv> the source verse; <ts> the target chapter; <tv> the target verse; <common> is the

number of shared root words between the pair;; and <relevance> is the degree of similarity, which

takes a value of 0 or 1 or 2. A value of 0 means the verses are related but, to understand the relation,

you need to read the explanation of the two verses in Tafsir Ibn Kathir. A value of 1 means the verses

are related, but still inappropriate for training purpose. A value of 2 means the verses are very similar

and are ideal for training purposes (Sharaf, 2012).

Figure 2.10 : QurSim dataset format.

2.2.6	
 Morphological	
 Analysis	
 of	
 the	
 Quran	

A morphological analysis of the Quran project has been developed by the University of Haifa in

Israel. The project has two main parts; the first part is the morphological annotated corpus and the

second is the GUI search tool, mainly to retrieve Quranic words with specific morphological features

(Dror et al., 2004).

The Arabic language has complicated morphological analyses. Each Arabic root can have many

derived word forms. Therefore, a simple retrieval system will fail to find Arabic word occurrences in

a corpus, and the result will be restricted to the same lemma form in the source word. The system of

	
 13	

morphological analyses of the Quran has solved this issue by exhaustively analysing each Arabic

word. So, the system will retrieve all the derived forms of that lemma (Dror et al., 2004).

The dataset format is a plain text format with tab separation (see Figure 2.11). This type of dataset is

called an annotated corpus, where each word has its own annotation. The purpose of this corpus is to

be run under the SQL server or GUI interface in order to retrieve the Quranic word. So, the main

function of the corpus is to retrieve as much word information as possible in the Quran.

Figure (2.11): Part of the dataset format

As Figure (2.11) shows, the file is simply a text file, and each line has a single root word with its affix

and suffix separated by the ‘-’ character. In contrast, the morphological annotations are shown beside

each word. The annotations might have the following structure:

Root + Pattern + Part of speech + Case marking + gender + number + case.

The ‘+’ character is used as a separator between the structural analyses.

The purpose of this project was to retrieve the Quranic words associated with the morphological

annotations. The retrieving performance guarantees that each word sharing the same root will be

shown in the search outputs (Dror et al., 2004).

Unfortunately, this project came to a halt due to project team issues, and only a few chapters were

covered in the project.

2.3	
 Choosing	
 the	
 project	
 datasets:	
 	

This project aims to merge three datasets. To choose the dataset, we had to consider many criteria,

such as the chapter’s coverage, and the project’s completeness and function, as shown in Table 2.1.
Dataset Function Format Discourse

Level

Corpus

coverage

Completeness

1 SemQ ontology The opposite semantic

ontology

OWL

ontolog

y

Word Only one word

feature has been

covered.

No

2 QurSim dataset The relatedness verses XML

dataset

Verse All chapters Yes

3 Qurany dataset Find the verse concept HTML

dataset

Verse All chapters Yes

4 QurAna dataset Antecedence

assignment for each

pronoun

XML

dataset

Word All chapters Yes

	
 14	

Dataset Function Format Discourse

Level

Corpus

coverage

Completeness

5 QAC

Corpus

Morphological

analyses

Plain

text

corpus

Word All chapters Yes

6 Morphological

Analyses of the

Quran corpus

Comprehensive

morphological analyses

of Quranic words.

Plain

text

corpus

Word A few chapters

No

Table (2.1): summary of the existing Quranic datasets

SemQ ontology: To consider the SemQ ontology as one of the targeted datasets, I considered the

following:

1- SemQ ontology is an OWL model, which does not list all the Quranic words sharing the same

relations. For instance, the class (TimeFeature1) should be associated with certain instances

such as the instance word_id_1, which is located in chapter id 1 and verse id 1.

2- SemQ addresses only one feature type (Time feature). Therefore, I could not rely on the

ontology to express any opposite occurrences.

For the above reasons, it was concluded that SemQ has a different philosophy and cannot be proposed

in our unifying annotations ontologies.

Morphological Analyses of the Quran corpus: This project was not completed; therefore, it was

excluded from the targeted datasets because I was seeking to cover all Quranic chapters.

Quranic Arabic Corpus (QAC): This is one of the ideal datasets. The project was completed and

covers all Quranic chapters. This corpus has an obvious structure and can be pre-processed for

merging with other datasets.

The aim of choosing this corpus was to develop the morphological analysis search tool by adding

more annotations to it, such as the pronoun reference. In addition, I aimed to add all the

morphological and syntactic features that were not listed in the morphological search tool, such as

retrieving all words in the Quran having the feminine gender.

The pronoun reference search tool (QurAna): This is another of the ideal datasets. The dataset

format has an obvious structure; therefore, merging it with the QAC dataset would develop the output

by showing the QAC and QurAna annotations.

In fact, there is a previous study which merged the QurAna and QAC datasets. This merge was done

by the undergraduate student Zainb Alqassem in her final year project. The integrated file was

uploaded to a linguistic tool ‘Sketch Engine’ on the web. By using the Sketch Engine tool, many users

around the world will be able to use the integrated file easily. Her project produced four corpora files:

	
 15	

an Arabic language vowelled corpus , an Arabic language unvowelled corpus, a Latin alphabetic

vowelled corpus, and a Latin alphabetic unvowelled corpus (see Figure 2.11).

In fact, the merged file has some limitations, such as the lack of any search for the words according to

their grammatical features, such as the morphological search tool does partially. For example, it is not

possible to retrieve a specific type of grammar annotations, such as the feminine nouns in the

Alqassem project. More limitations regarding her project can be found in Chapter Four. Thus, I

needed to re-merge QAC and QurAna to add the annotations labels.

Qurany search tool dataset: Qurany is a verse-based dataset. Since we do not have semantic concepts

at the word level and the available semantic concepts are at the verse level, I aimed in this project to

add a diversity of language analyses annotations. Since we have the morphological and syntax

annotations (QAC and QurAna), I chose Qurany to add the semantic analyses annotations.

QurSim: QurSim and Qurany share the same objective, that is, finding similar verses. However,

Qurany adds the concepts to each verse. Thus, choosing one of them would be enough to accomplish

the third dataset. There were more advantages to adding Qurany than to adding Qursim. In fact,

Qurany adds the concepts which might be inherited to the word level, but this inheritance can be seen

as a disadvantage because not every word in the verse can express the same concept.

The selected datasets: Thus, the target datasets were the Quranic Arabic Corpus (QAC), QurAna and

Qurany datasets. The challenge of this merging is the different discourse levels each; for example, the

QAC and Qurana datasets have a word level while Qurany has a verse level.

	
 16	

	

Chapter	
 3:	
 Ontology	
 and	
 Corpus	
 Representations	
 and	
 Tools	

This chapter discusses the representation of datasets and ontology data models and investigates some

frequently used corpus tools and ontology editors.

3.1 Ontology data model:
Ontology aims to represent a domain by defining its vocabularies and their relationships. According

to Noy et al (2001), ontology can help researchers to share the common vocabulary in such a domain.

Moreover, ontology has extendability and re-usability features, so it can be extended to cover more

vocabularies by further researches. This kind of data model assumes that using the ontology in a

search engine will increase the retrieval performance by finding other inferred instances.

Examples of data models encoding the semantic are as follows:

3.1.1	
 RDF	
 model:	

This stands for Resource Description Framework (RDF). According to Lassila et al (1999), the syntax

used in RDF is much closer to XML syntax. In addition, one version of the popular RFD model is the

abstract model, which describes two related instances called a graph or triple. A triple has a subject

and object nodes which are related components. The subject is an entity and the object might be

another entity or a value (Lassila et al, 1999).

An example of Quranic RDF triples produced by Protégé editor is shown in the following figure(3.1):

Figure(3.1): An example of RDF triples.

The RDF model has limitations in describing the relationship feature between subject and object.

Such transitive and symmetric relations cannot be represented in RDF. The relationship types have

the ability to infer more knowledge.

3.1.2	
 Web	
 Ontology	
 Language	
 (OWL)	
 model:	

According to Antoniou (2004), the semantic web layers in figure (3.2) indicates that Ontology Web

Language (OWL) is built on top of the RDF model.

	
 17	

Figure(3.2): The semantic web layers; adopted from Antoniou (2004)

Moreover, OWL solved some RFD weaknesses such as adding the features types to the relationships.

Therefore, OWL adds the semantic to the data by defining the relation type. There are lots of relation

types and there are relation types specific to OWL such as the following:

• Functional Property:

If a relationship between an individual A and literal B is Functional Property, this means each

individual must have at least one relation to B. For example, in the unified uranic dataset

every segment must have Functional Property to POS literal, because every segment must

have a POS tag.

• Inverse Functional Property:

If two individuals A and B have an inverse relation R, it means that this is a unique

relationship and B cannot be shared with other individuals. For example, a verse id has an

inverse Functional Property in relation to its segments. So segment id 5 is the only feature

with a relation with verse id 1.

Figure (3.3): The inverse Functional Property

• Symmetric Property:

If A and B have a symmetric property relationship, then this means that A infers B and B

infers A. A and B together is literally an instance of the one class. However, in this study’s

unified dataset there is no example of this relationship. However, assume that segment id 1

and 2 represent a compound segment which forms a symmetric relationship with part of such

as the following figure:

Figure (3.4): the symmetric relation

	
 18	

• Transitive Property:

If A infers B and B infers C, then A and C individually have a transitive relationship. An

example is if Qurany Concept Pillars of Islam infers Islamic, and Islamic infers Oneness of

Allah, then Pillars of Islam infers the Oneness of Allah. Therefore, Pillars of Islam and

Oneness of Allah have a transitive relationship (figure 3.5).

Figure (3.5): the transitive property

3.2	
 Ontology	
 editors	
 and	
 tools:	
 	

The ontology Editor is defined as editors enabling the knowledge modelling which might have the

following features:

-­‐ Editor has a friendly graphical user interface.

-­‐ It can create ontology by writing the classes and instances with relations.

-­‐ Some editors can generate ontology from XML files and spreadsheets.

-­‐ It can explore the ontology’s class, instances and relations.

-­‐ Some editors can present the classes with relations as a graph view.

-­‐ A reasoning engine which applies the properties of the instances and obtains new knowledge.

-­‐ Can query the ontology by using a query language such as SPARQL.

There are lots of current ontology editors, which cannot all be listed in this project. According to

Alatrish (2012), Apollo and Protégé editors are the most frequently used in designing and processing

ontologies. He stated that Apollo and Protégé have significant features which are listed below.

3.2.1	
 Apollo:	

Apollo is a free ontology, editor-developed by the Knowledge Media Institute of The Open University

and it is available through http://apollo.open.ac.uk. This editor has many significant features, such as

the robust consistency engine, which ensure that individuals and relations are consistent. In addition,

Apollo has the ontologies inheritance feature, so an ontology can inherit other external ontology

vocabularies, because they are a single ontology. However, Apollo lacks supporting importing XML

files, an important criterion in choosing the project ontology editor. Moreover, Apollo does not

support the graphical view of ontology, which might improve understanding of the ontology design

(Alatrish, 2012).

	
 19	

Figure(3.6): Apollo editor interface (adopted from Apollo website

http://apollo.open.ac.uk/index.html).

3.2.2	
 Protégé:	

According to Alani et al (2005), Protégé has been described as “the killer app”. Protégé has many

significant features that make it a distinctive ontology editor. Protégé is a free application developed

by Stanford University and it is available through http://protege.stanford.edu. Protégé has a friendly

GUI that enables browsing of the ontology in hierarchal view.

Protégé has the ability to add an external plug-in to the application, enhancing its features. Some

plug-ins need to be installed by the user and some are built in features of the full version of Protégé.

The purpose of a plug-in is to add features such as visioning and merging ontologies, importing XML

files and many more features.

Jambalaya is a graphical viewer plug-in used by Protégé. It presents the ontology design in a dynamic

graphical view thereby visualizing ontology summaries by the main concepts /classes with relations.

In Jambalaya, classes are represented in square shapes and by clicking inside a square it shows the

class’s instances. The relations between classes are shown by red arrows. The representation shows

the type of relations between classes representing the property type, such as the transitive property

links between two un-successive classes.

Another important plug-in is the Protégé-OWL. It is a part of the Protégé full version. This plug-in

enables the use of the ontology reasoning by inferring the relation property.

The most important feature in Protégé is the ability to import XML files. It accepts XML through the

XML tab, which can be enabled through configuration options. Then, the imported file is mapped to

an ontology format such as OWL or RDF. This facility does not accept XML schema and accepts

only (.xml) files. Unfortunately, a research study examining the efficiency of importing XML file and

mapping to OWL ontology could not be found, but it seems like a novel approach.

Protégé has an efficient ability to manipulate ontologies of large size, which might be helpful in

dealing with the Unified Quranic ontology.

An example of using Protégé in developing Quranic ontology is the ontology based semantic search

in the Holy Quran project developed by Khan et al (2013). This project aims to build a question-and-

	
 20	

answer knowledge base. Queries can be constructed using SPARQL to retrieve instances having an

inferred relationship property.

Because of the above features, Protégé has been chosen as the ideal editor for this study’s XML

unified dataset. Using protégé’s facilities, an OWL ontology version of this XML file can be

generated.

3.3	
 Corpus	
 tools:	
 	

Undoubtedly, having a corpus without a tool enabling an explore function will not obtain the aim of

this project. Thus, a corpus tool must be determined. There are many corpus tools that met the project

requirement and can be used. Alqassem (2013), in her final year project, examined many corpus tools

such as the aConCorde, IntelliText and Sketch engine. But, Sketch Engine tool, a recent online corpus

tool which has many significant features. Another corpus using Sketch engine is the Arabic massive

corpus arTenTen (Habash et al, 2013). However, it is argued that Sketch engine has a significant

analyses features and it is able to operate the Arabic text. It has facilities enabling the manipulation of

Arabic text such as building the concordance and Thesaurus. But Sketch Engine has extraordinary

features that make it distinctive from other tools. This feature is the Corpus Query Language CQL,

which is involved in querying the corpus by using regular expressions. CQL is considered as an

advanced tool feature. Using CQL, words with specific grammar features or genre can be retrieved,

see figure (3.7) (3.8).

Figure(3.7): Sketch engine Search options in Brown Corpus.

Figure(3.8): The concordance of all Adventure words in Brown Corpus in Sketch engine

	
 21	

Another Corpus tool dedicated for Quranic text is LAMP tool, available in http://corpus.quran.com.

The tool mainly deals with two databases; the Quraic text database and the Quranic audio and visual

database. The tool is able to search for morphological features on Quranic text (figure 3.9), show the

syntactically parsing verses and visualize the initial Quranic ontology for Quranic nouns and

pronouns (Dukes, 2012). However, the tool can do search only for morphological features and has

limitations in search options as been described in chapter two. The tool is customized to Quran Arabic

Corpus and therefore can’t be adapted to be used in this project.

Figure(3.9): Morphological search tool in Quran Corpus (dukes,2012).

3.4	
 Corpus	
 representation:	

A corpus can be defined as a bunch of text which can be plain text or text tagged with linguistics

annotations such as POS tags (annotated corpus), the Brown corpus, or a structured text in XML

syntax, such as Wikipedia XML Corpus by Denoyer et al (2006). Hence, the Unified Quranic

Annotation dataset is considered to be an XML corpus.

3.4.1	
 Sketch	
 engine	
 representation	
 (format):	

The corpus in Sketch engine could be in plain text format; successive words in a txt file or an XML

file, or an xml tag specifying sentences and words. In fact, there are many standard file formats that

are accepted by Sketch Engine; tools such as PDF, MICROSOFT DOCUMENT, HTML, XML and

TXT. However, of more interest is XML, used in this study’s unified dataset. According to Sketch

Engine wiki, complex XML files such as schema will not be processed properly, but simple XML

files will be accepted and processed.

	
 22	

Chapter	
 4:	
 Design	
 the	
 Solution	

This chapter discusses the most suitable and reasonable design and format for unifying different

Quranic datasets. As we have different file formats, and we want to merge them in one file, we need to

unify each file format to make merging them much easier.

The first step in designing the solution is to have the selected datasets in a unified format or to

preprocess the datasets.

4.1	
 The	
 design	
 aims:	

There are many formats that can be used in unifying the datasets, such as XML, CSV (comma

separated value) and txt. However, finding a prober format is a vital decision. So, it is crucial to

consider the main goals of the design:

1-­‐ to have unified datasets to be used by a corpus exploring system (sketch engine).

2-­‐ for, the unified datasets to be mapped at the same time to the ontology format (OWL

ontology).

Figure (4.1): The aim of merging the three datasets

Sketch engine is a corpus exploring system which enables users to extract information and summarize

it efficiently. Sketch engine uses XML to define the corpus structure and hierarchy (Kilgarriff et al.,

2004). However, it does not accept the files format such as OWL or RDF. In addition, there are many

available approaches in mapping XML to the OWL ontology (see the Ontology chapter).

However, XML is a common file format in many corpus tools and would be considered as a proper

structure to accomplish our goals. Moreover, comparing XML to CSV, XML has the ability to describe

the hierarchy and relationships in an obvious and readable structure.

Regarding the XML complexity level, Sketch engine does not accept complex XML files, such as the

XML schema (Kilgarriff et al., 2004). So we have to restrict the XML complexity to a simple XML

dataset by describing the data without its constraints and data type definitions as the schema describes.

	
 23	

The eXtensible Markup Language provides robust information storage. Its importance comes from its

ability to store data with its description or metadata. An obvious feature of XML is the ability to

describe the hierarchal data, as will be seen in the Qurany concepts files; each concept is in a hierarchy

structure. Therefore, XML can describe these concepts in a multilevel structure.

Furthermore, XML is machine- and human-readable. Anyone who reads the XML file can initially

understand the main structure, but to retrieve specific content, the Xpath technique can be used.

Another advantage of XML is that it is an extensible file, which means it is applicable to extend the

dataset with more annotations (Fawcett et al., 2012).

Perhaps the most serious disadvantage of the final unified XML dataset is the increase in the file size.

Since each annotation is described by an attribute, then this adds more size to the file (Fawcett et al.,

2012). However, the final output has a size of 20MB and can be ported to Sketch engine successfully.

4.2	
 Preprocessing	
 the	
 data:	

Alqassem merged file:

By looking at the available datasets, one merged dataset was done by Zainab Alqassem in her final year

project at the University of Leeds. She merged two datasets, namely, Quranic Arabic Corpus (QAC)

and QurAna. Both datasets have syntactic and morphological annotations per words. Alqassem merged

them and ported the merged file to Sketch engine. However, this project “A unified Quranic

Annotations and ontology” aims to extend the last merged dataset by Alqassem by merging one more

dataset (Qurany Concept) with the previous two. Therefore, I had to investigate her merged dataset and

decide if the merged file would be consistent with the third dataset (Qurany Concept). Consequently, I

came with following problems:

Alqassem used a combination of XML structure and vertical structure to define the word attributes as

the Sketch engine corpus format does. In the vertical line, each segment has been associated with its

POS tag, lemma, QAC features, and QurAna features. QurAna is concerned with annotating each

pronoun in the Quran Annotations corpus. In other words, any pronoun should have two kinds of

annotations: a QAC feature and a QurAna feature. Other kinds of words (verb, adjective, etc.) do not

have a particular annotation in QurAna. However, Alqassem decided to give each segment its QurAna

annotations (antecedent, aconcept and econcept) (see Figure 4.2); if the word is not a pronoun, a

NONE value has been given.

In exploring her merged file, I found many parts that were inconsistent with my aims, such as the

following:

1- Compound segments such Prefix and Stem have the same <seg id>, which leads to inconsistency

of segments ids, Figure (4.2).

	
 24	

Figure (4.2): Two segments share the same <seg id>.

2- The QAC grammar features were undivided. Therefore, retrieving words with a specific grammar

function is not applicable in her approach. For instance, if someone is interested in finding

feminine nouns in the Quran, unfortunately, this is not applicable. Sketch engine gives facilities to

restrict the search by typing the features as CQL or ticketing from the check box, but to have this

feature in Sketch engine, each grammar feature needs to be declared by an XML attribute or a

vertical line attribute separately.

3- The POS filter in her corpus does not work perfectly. I examined it by retrieving all nouns in the

corpus leading to incorrect results, and the result showed unwanted POS tags as shown in Figure

(4.3). In fact, this is a common problem in Sketch engine. To solve this issue, POS tags must be

declared as an XML segment’s attribute as well.

Figure (4.3): Searching for all nouns in the Quran retrieved incorrect results.

	
 25	

4- Some QurAna annotations had a missed value in the English concept as shown in Figure (4.4).

Figure (4.4): Missed value in QurAna English concept value.

However, the merged file by Alqassem had missed some annotations and needed to be revised.

Therefore, re-preprocessing the two annotations would solve these issues. The processing strategy must

be done in such a way that each segment must have a unique id. This is because we aim to convert the

XML to an ontology format (OWL), and in ontology, each instance should have a unique id.

Processing	
 the	
 three	
 datasets:	

The final merged XML file aims to merge three datasets: Quranic Arabic Corpus (QAC), QurAna

annotations and Qurany concepts. To merge the three datasets, I investigated two approaches:

First	
 approach:	

This involved merging the datasets by reading the three datasets in their actual format and fetching the

identical chapter id and verse id and segment id together. Then the three outputs were merged into one

line and written as an element in the XML tree. Using this approach, the processing took hours to cover

a few chapters in the Quran. In addition, two of the datasets are inconsistent in the segment id. The

Quran Corpus Annotation file has a segment id with a maximum of 128,119, while QurAna has a

segment id with a maximum of 127,795. The result has 1,000 segments without QurAna annotations.

So, this approach was not practical.

Second	
 approach:	

This involved converting each dataset into the XML version, and then selecting the wanted data using

Xpath expressions. Xpath makes it possible to extract a specific type of data in the file without reading

every line and to make comparisons each time. For example, Xpath could be used to extract the English

Qurany Concept element with the “tree” attribute by using python Element Tree API:
if verse_qurany.getchildren():

for QC in verse_qurany.findall('ENQuranyConcepts/[@tree]'):

QuranyConceptElem = ET.SubElement(verse_MT, 'QuranyConcepts')

In implementing this approach, the merging processing went quickly; it took about minutes to merge

the three datasets into one file. In addition, having an XML version for each dataset can be useful in

	
 26	

further research as it can be uploaded in a corpus tool like Sketch engine to make it accessible to other

researchers.

Figure (4.5): Merging the three datasets in the second approach

First	
 dataset:	
 Qurany	
 Concept:	

As mentioned in Chapter One, Qurany Concept is a search tool for Quranic keywords. The tool

retrieves verses that have the target keyword associated with the verse concepts. In addition, verses are

clustered according to their concepts. In contrast, some verses have no concepts, while other verses

might have more than one concept. However, we are concerned more about the verse clusters, which

might be used as a genre for each verse in each chapter. The data are published as html files in the

website http://www.comp.leeds.ac.uk/nora/html/. Each html file contains the information and concepts

for one verse.

By following the second approach, the 6,323 html files will be converted completely to one XML

structure. This conversion reduces the number of output files. So, instead of building 6,323 XML files,

it is possible to build one XML file containing the information regarding 6,323 verses; this leads to a

reduction in the time consumed and in the computer’s memory usage in reading the Qurany files. The

XML file contains all the information listed in the html file as the following elements and attributes:
 Element Attribute Level

1 Quran Nothing Root

2 chapter Id Quran’s sub element

3 verse Id Chapter’s sub element

4 text Lang (Arabic/English), author Verse’s sub element

5 QuranyConcept Lang(Arabic/Engish), tree Verse’s sub element

There are nine English translations for the verse. Each translation has been done by a different Islamic

scholar. In addition, I kept the original verse concepts without splitting the verse. The only modification

	
 27	

I did was to replace the angle bracket (>) with a semi colon (;). This is to avoid problems in translating

to XML entity references.

Figure (4.6) shows a sample of the desired XML design for the first chapter, first verse in the dataset.

Figure (4.6): The XML version of Qurany Concept dataset

Second	
 dataset:	
 Quranic	
 Arabic	
 Corpus	
 (QAC):	

The Quranic Arabic Corpus file is a tab separated text file. Each line has four main parts as shown in

Figure (4.7). These parts are location, form, tag and features respectively.

Location describes the segment’s location in four levels (chapter id: verse id: word id: token id). The

form part is the token text in the Buckwalter translation. The tag part is the token’s POS tag. The last

part is the grammar features of the token including Stem/Prefix/Affix, lemma and root, gender, number

and many other features.

Figure (4.7): Quranic Arabic Corpus text file.

	
 28	

Converting the file to XML format by adding the following elements and attributes:
 Element Attribute Level

1 Quran nothing Root

2 Chapter id Quran’s sub element

3 Verse id Chapter’s sub element

4 Seg Id, POS tag, lemma, root, gender,

number, person, grammar, token_id

Verse’s sub element

The token_id indicates whether a segment has more than one part. For example, Arabic words may be

linked with determiners (االل) as a prefix. There is no white space dividing the segment’s tokens, but each

token has its grammar features. This attribute will be significant in adding the Glue tag in Sketch

engine file format.

The grammar line has many features but no labels. For example, a grammar of D,M,3MP or EMPH has

no obvious meaning to the user. Thus, labelling each feature leads to more clarity than the actual QAC

list. To do this, each grammar line has been split and then labelled according to each Quranic Arabic

Corpus tag set in Figure (4.8).

Figure (4.8): Sample of the tag sets in the Quran Corpus web site.

The implemented design is shown in Figure (4.9):

Figure (4.9): Quran Corpus Annotations in XML format.

With this XML structure, it is possible to retrieve a specific word with a specific grammar feature or

POS tag using Xpath, such as the following python code:
import xml.etree.ElementTree as ET

root = ET.parse(‘QAC.xml’).getroot()

for segment in root.findall('.//seg/[@POSTag="N"]'):

	
 29	

print segment.attrib, segment.text

The results of Xpath are shown in Figure (4.10).

Figure (4.10): Xpath to retrieve all nouns in QAC.xml dataset

Third	
 dataset:	
 QurAna	
 annotations:	

In the QurAna dataset, there are 114 XML files and one concept file as well. Each XML file has a

chapter as a root element, and verse, segment and pron as sub elements as shown in Figure (4.11). The

aim of the preprocessing is to merge all XML files in one file and to eliminate the concept file. So, each

con id is replaced with its actual concepts in the concept file.

Figure (4.11): A part of pronxml-78.xml file

Figure (4.12): part of concept.xml file

Besides the many XML files, the <pron> element has the concepts’ information as (con) attribute. The

attribute’s value is an id used to import the actual concepts in Arabic and English from the concept file

(see Figure 4.12). As we want to decrease the number of files and make processing XML files more

practical and faster, I added the concept information (antecedent id, English and Arabic concept) to

<pron> element as attributes.

However, merging QurAna XML files into one XML file means integrating the QurAna dataset into

one file and so speeding up the final merging process. In addition, using this design, we can retrieve all

pronouns referring to any concept by using the Xpath.

The desired XML structure is in the following table:

	
 30	

 Element Attribute Level

1 Quran Nothing Root

2 Chapter Id Quran’s sub element

3 Verse Id Chapter’s sub element

4 Seg Id, ArConcept (Arabic concepts),

EnConcept (English concept) and

Antecedent id.

Verse’s sub element

A sample of QurAna.xml is seen in Figure (4.13).

Figure (4.13): QurAna in a merged XML file

By using this XML structure, it is possible to retrieve all pronouns sharing the (the believers)

concepts, for example. Xpath can be as follows:
words= root.findall('.//seg[@Enconcept=" the believers "]')

The results of that query are shown in Figure (4.14)

Figure (4.14): shows the result of using Xpath to retrieve (the believers) concept

4.3	
 Design	
 the	
 unified	
 Quranic	
 Annotation	
 dataset:	

4.3.1	
 The	
 Quran	
 Structure:	
 	

 The holy book Quran has 114 chapters. Each chapter has a different range of verses with a maximum

of 286 verses and a minimum of 3 verses. Each verse has many words or segments.

In our XML file, the root node is <Quran> as it contains all the chapters. XML should have one root

element, and 114 chapter sub elements.

4.3.2	
 XML	
 rules:	

To build an XML file, some W3C rules should be considered:

An XML file must have one root and the elements follow the root in a strict hierarchy. XML elements

must follow the XML naming rules. Thus, a space and starting with numbers in an element’s name is

	
 31	

not accepted. However, attributes’ values can have any kind of characters inside quotations.

Wrapping the XML elements is quite a sensitive process and should be done automatically using

XML API. Any invalid element leads to an invalid XML file.

4.3.3	
 Distributing	
 the	
 annotations:	

As we have three different annotations, I suggested the following annotation distribution:

• Quran level:

Quran is the parent for all elements in the tree, and has no attribute.

• Chapter level:

 This level has no annotations to be associated except the chapter id.

• Verse level:

By giving each verse a unique id, we avoid id duplications and make sure that each verse instance has

its unique id. This solution will be more practical in converting XML files to OWL ontology as is

shown in the ontology chapter.

In this level, Qurany concepts annotations are associated as a sub element to verse node.

The dilemma here in Qurany concepts is that each verse might have zero or more than one concept.

Another issue is that each concept in Qurany has many sub concepts in a hierarchical structure. For

example, Figure (4.15) shows four main concepts for one verse. A third issue is that each concept has

been written in the English and Arabic languages without them being labelled with the language

name, which makes splitting them more difficult.

Figure (4,15): concepts covered in verse 13,chapter 53(An-Najm).

To solve these issues, I investigated many approaches and tried to find the most appropriate design to

describe element hierarchy.

Approach#1:	

The first approach is to define an element <QuranyConcepts> with language and concept name

attributes and store the concept as a name string value such as that shown in Figure (4.16).

	
 32	

Figure (4.16): XML Qurany attributes design (1)

But after parsing the tree, getting the hierarchal concepts was inapplicable, as shown in Figure (4.17).

The only thing we can retrieve is the node attribute itself because there is no hierarchy structure

between the concepts.

Figure (4.17): Python program to retrieve Qurany concepts in XML in approach (1).

Approach#2:	

This approach creates a sub element of the verse node with <ENQuranyConcept> for English Qurany

concepts, and <ARQuranyConcept> for Arabic Qurany concepts. These two sub elements are the

parents for all the verse’s concepts. The concepts are added to the previous elements as a sub element

by splitting the concepts line into many concepts and creating the sub elements; see Figure (4.18).

Figure (4.18): The hierarchy structure of Qurany Concepts dataset.

With this approach, the concepts hierarchy is obvious and readable. Moreover, it is possible to retrieve

any concept or sub concept using Xpath, such as the following:

	
 33	

Figure (4.19): Python program to parse and query xml file.

I chose the second approach, as it is more practical in information retrieval and ontology mapping.

• Segment level:

Any verse consists of many words or segments. A segment is a sub element of the verse node. It is the

word morpheme (stem, prefix or suffix). Each segment has a unique id to avoid instance duplications.

Beside the segment id, QAC and QurAna annotations are associated in the segment level. To unify

QurAna and QAC annotations in one file, each annotation is associated as a segment attribute; see

Figure (4.20).

Figure (4.20): Unifying segment’s annotations

Each segment has been associated with the Quran Annotations Corpus. In addition, pronoun segments

have been associated with QurAna annotations as well.

An example of the overall design of the merged XML file is shown in Figure (4.21).

Figure (4.21): Part of the Merged Quranic XML file:

	
 34	

Chapter	
 5:	
 Implementation:	

5.1	
 Choosing	
 the	
 programming	
 language:	

There are a plenty of programming languages that would be sufficiently mature and effective in text

processing. However, we are seeking output efficiency. Obtaining an accurate and well-structured

output is the main concern when choosing the programming language. In fact, the execution time

factor was not considered in choosing the language; a target user will not use the software appropriate

to a unified Quranic dataset, but one that addresses the contents of the output file.

Dealing with the text of the Quran requires sensitive consideration, as it is a holy book. Missing some

Quranic text is unacceptable to the Muslim community. Thus, merging datasets dealing with

thousands of files can result in some of the Quranic text being missed during processing. Of course,

there are programming languages dedicated to processing holy books. However, a tracking process

must be considered when developing user techniques (e.g. Xpath) to validate output as accurate by

testing different segments and verses and comparing them with the actual text in the Holy Quran.

There are many choices of programming language that meet the requirements identified here, such as

Python, Java and c++. I have had experience of using Python through a language module and also

experience in processing corpora such as building n-grams, language dedication software and POS

tags n-grams. This was my first experience of using Python but it was found to be easy to learn and

expand knowledge in this area of programming.

Python has significant features which make it a friendly programming language. Python has a

dynamic coding feature, which reduces the amount of code lines (Rossum, 1997). For example, there

is no need to have type declarations for variables in Python whereas Java requires it.

On the other hand, Python has some disadvantages such as the limited speed of execution time and

memory usage. Python’s execution time is not the most perfect among programming languages. There

are many programming languages which outperform Python in execution time and memory usage,

such as C++ (Prechelt et al., 2000).

However, since the disadvantages of Python do not affect the output efficiency, it is preferred in

writing this project’s prototypes.

	
 35	

	

5.2	
 Using	
 XML	
 API	
 in	
 implementation	

To create an XML tree, I used the python Application Programming Interface (API) Element Tree in

creating the XML file for each of the three datasets. In addition, in the merging phase, I used the same

API in order to parse the tree and merge specific information.

The Element Tree is a fixable and fast container and uses the Xpath technique. The XML Element

Tree API confirmed that the XML structure is valid. Each opened element is closed automatically

when creating a new instance of the same element. Another reason for choosing Element Tree is that

it is built in all Python versions. There are some faster APIs, such as lxml, but since it needs to be

installed, and its installation depends on the operating system, I restricted my choices to Element Tree

API. I examined the Element Tree API and found it has a reasonable processing speed (Garabík,

2006).

Another advantage of using XML is in parsing the html file. It has been shown that Element Tree API

can parse simple html files, but complicated html files have inconsistent open and closed XML tags.

One disadvantage of using Element Tree API is the limitation of Xpath expressions. Only simple

expressions can be implemented in Element tree. While lxml implements much more complicated

expressions (Element Tree XML API documentations).

5.3	
 Converting	
 Qurany	
 to	
 xml	
 (QuranytoXML.py)	

As mentioned earlier, the Qurany concept search tool is published through the

http://www.quranytopics.appspot.com website as a list of html files. The files have a unified naming

theme starting with chapter number, then the dash ‘-’symbol followed by verse number. This naming

theme makes extracting the chapter and verse id straightforward as stated below. To upload the 6,323

html files, I used the “DownThemAll” utility in Firefox browser, which uploads all html files with

one click.

Each HTML file consists of three main parts. The first part shows the chapter and verse information

(chapter number, chapter name, verse number). The second part shows the eight English translations

of the verse. The third section shows the concepts/themes in Arabic and English languages

respectively.

The html markup has the same structure in all Qurany files. However, parsing the html file using the

XML parser in Python seemed impossible as I received the following error message:
xml.etree.ElementTree.ParseError: not well-formed (invalid token): line 6, column 20

By revising the html tags, I found many invalid tokens such as changing the letter case in the opening

and closing tags, as shown in Figure (5.1). Since the XML parser is case sensitive, this is seen

as two different tags.

	
 36	

Figure (5.1): Font tag with different letter case.

• Determine the root:

However, the first step in building the Qurany Concept XML tree is to determine the root of the tree.

As mentioned in the Design chapter, the root will be <Quran>; the container of all Quranic chapters.
root = ET.Element('Quran')

• Reading Qurany files and creating chapter and verse elements:

The collection of html files is contained in the glob container. The glob library contains a directory’s

files by providing the directory’s path as follows:
Qurany_files = glob.glob("qurany/*")

Thus, we can read any file inside the glob container as follows:
For htmlfile in sorted(Qurany_files):

At this stage, the implantation was working but the sorted function was not working properly. The

files were reading in ascending order. However, the file name has combinations of numbers and the

character ‘-’. Thus the results were ordered with chapter id first ignoring the verse id.

To solve the reading issue, two for loops were constructed to obtain the file name. The aim of the first

loop was to get the chapter id with a maximum range of 115, and the second for loop was to get the

verse id with a maximum range of 290. As mentioned earlier, each file had two parts with a dash in

the middle. The first part is the chapter number and second part is the verse number.

Another issue in the Element Tree API was when the chapter XML element definition was triggered,

a new chapter element was created and in the final design, each verse had its own chapter element.

This would add more XML tags since the chapter element is repeated for every verse. Since the aim is

to have one chapter element for all related verses, this issue was solved by comparing each new file to

see if its chapter id is the same as the previous file’s chapter id. The initial value for the previous

chapter was set to zero to get the condition for the first file in the directory.

Once the filename parameters were obtained (chapter id and verse id), the file name was constructed

by concatenating this information with the directory’s path then the file name was validated by testing

if the file is found in the directory. If yes, then a verse sub element was created for the chapter

element, then each line in the file name was read using the file function readlines(). After this, the

number of lines in the file to be used were counted in a further loop.
prev_chapter=0

for chapter_id in range(1,115):

 if pchapter!=chapter_id:

 chapter = ET.SubElement(root,'chapter')

 chapter.set('id',str(chapter_id))

 for verse_id in range(1,290):

 filename = path+str(chapter_id)+'-'+str(verse_id)+'.html'

	
 37	

 if filename in Qurany_files:

 verse = ET.SubElement(chapter,'verse')

 verse.set('id', str(verseid))

 htmltxt = open(filename).readlines()

lenhtmltxt = len(htmltxt)

• Extracting the verse text:

Figure (5.2): the verse Arabic text

To extract the verse Arabic text information, the file’s lines were read and specific html tags

compared. As shown in Figure 5.2 , the Arabic verse text starts after the tag. Thus, if

the tag is in the line, then the following line was read. This comparison is made by

using the ‘search regular expression’ function, which mainly returns true if the searched text is in the

line without considering its position.

The second step is to write this information in the verse text sub element to verse element and set the

element’s language attribute to Arabic.

Another issue in dealing with Arabic text in Python is the unicoding problems. Python reads the text

in binary by default, and while processing the Arabic text, Python encodes it using the default

encoding mode ‘UTF-8’. However, writing the encoded text into a file must be done in binary; thus, a

decoding function has to be set before writing the XML tree in the output file.
for line in range(lenhtmltxt):

 if re.search('',htmltxt[line]):

 Arabic_verse = htmltxt[line+1]

 Arabic_verse = re.sub(removechars,'',Arabic_verse)

verseText = ET.SubElement(verse,'text')

 verseText.set('lang', 'Arabic')

 #convert Byte to Unicode using Decode function

 verseText.text = Arabic_verse.decode('utf-8')

The Arabic verse has the verse id + the ‘}’character since the verse id is repeated and the character }

is to separate the verse id and text. A regular expression pattern '[\d+/}]' is constructed to remove this

unwanted digit and character.

Another problem was in making a comparison where the compared line consisted of a tab and new

line tag. These tags needed to be removed from each line to avoid incorrect matching. There were two

solutions to remove the tags. One was by using the regular expression, and the other was by using the

string function ‘replace’. By applying both each time, I found that the string function is much faster in

	
 38	

processing the file than the regular expression. It has been shown by many programmers that regular

expression slows down the processing. Thus, I used the string function replace as the solution.
htmltxt[line] = htmltxt[line].replace('\t’,'')

htmltxt[line] = htmltxt[line].replace('\n','')

• Extracting the eight translations and author name:
There are eight verse English translations after the verse Arabic text, and each has its own author. To

get these translations with author name, each one was assigned to the verse Text element but setting

the language attribute to English and adding the author attribute.

To get the author name, it can be seen in Figure 5.3 that the author name is located after the tag <font

color="#1645ae" size="4"> then by splitting the line with the mentioned tag. The result of splitting the line

shows two elements: the first is repeated verse and chapter ids, and the second is the author name.

Then, the second element is taken and the html tags removed using the regular expression with the

pattern removeHTLtags = '<.*?>'.

Figure 5.3: the author and English translation html tags.

Moreover, the author name has spaces at the sides. These spaces were removed using the strip string

function, which is dedicated to this purpose.

The extracted author name was assigned to a text verse element with the attribute Author.
if re.search('',htmltxt[line]):

htmltxt[line] = htmltxt[line].split('')[1]

 htmltxt[line] = re.sub(removeHTLtags,'',htmltxt[line])

 htmltxt[line]=htmltxt[line].strip()

 Author = htmltxt[line]

 verseText = ET.SubElement(verse,'text')

verseText.set('Author',Author)

To get the translations of the verse, as shown in Figure 5.3, the English translated verse started after

the tag <td>. Then, the html tags were removed and English was assigned in the language

attribute.
if re.search(r'<td>',htmltxt[line]):

 htmltxt[line] = re.sub(removeHTLtags,'',htmltxt[line])

 English_verse = htmltxt[line] #write the

verse text in English in Verse Node

 verseText.set('lang','English')

 verseText.text = English_verse

	
 39	

• Extracting verse Concept/themes:

In this part, to find a general theme of the html tags was complicated. I set the for loop to read the

concepts Arabic and English lines. However, I restricted the loop range to start from the index in the

 line;
if re.search('Concepts/Themes Covered:',htmltxt[line]):

 index = line+1

It can be seen in Figure 5.4 that each Arabic concept line has a previous tag <front size=”4”> or

</br></br>. Also, the English concept line has a previous tag </br> while the concepts list ends

before the tag . Thus, the for loop stops if the end of list is reached.

Figure (5.4): the concepts section and html tags

The software compares each line in the range to get the Arabic and English concepts. Once the target

tags are found, then the following line is read as it must be the Arabic or English concepts.

As mentioned already, the tab and new line tags had been removed from the concepts. However, there

was still unwanted space beside the sentence, which could be removed by keeping the actual

sentence’s space in two steps. This could be achieved first by stripping the text using the string

function ‘strip’, which meant removing spaces in the string’s first and last index and second, by

splitting the concepts line in the angle bracket < and creating a list of the concepts. This step would

remove the unwanted spaces and replace < with a semi colon. The replacement by semi colon was

vital since XML API treats the < by defining the reference XML entity. Thus, this kept the concepts

line clean of symbols, so it could be used by ‘merging.py’ software.
if htmltxt[i]=='</br></br>' or htmltxt[i]=='':

 ArabicConcepts = htmltxt[i+1]

 ArabicConcepts = ArabicConcepts.replace('\n','')

 ArabicConcepts = ArabicConcepts.replace('\t','')

 if ArabicConcepts !='':

 # remove speces but keep the concept's inside spaces.

 ArabicConcepts = ArabicConcepts.strip()

 ArabicConcepts = ArabicConcepts.split('>')

 B=""

 for c in ArabicConcepts:

 B +=c.strip() +';'

 #strip the last symbol

 B = B.strip(';')

	
 40	

After getting the concepts, it was possible to create the Qurany Concept sub element to verse by

setting the language attribute and setting the concept list as a value of the tree attribute. Again, the

Arabic text needed to be decoded to avoid Unicode problems.
 QuranyConcepts = ET.SubElement(verse,'QuranyConcepts')

 QuranyConcepts.set('lang', 'Arabic')

 QuranyConcepts.set('tree',B.decode('utf-8'))
The same coding was used in extracting the English version except the compared tag was only </br>.

• Building the tree:

After building the XML tree, the last step was to build the tree using the functions Element Tree

(root) and write. The write function output the tree in an XML file name ‘Qurany.xml’. Also, the

encoding mode in writing the contents was utf-8.
 tree = ET.ElementTree(root)

 tree.write(output,encoding='utf-8')

UTF-8 is the standard encoding in Python, which handles every character in the Unicode character

set. It has been proved that utf-8 is ideal in dealing with the Arabic language.

	
 5.4	
 Converting	
 Quran	
 Annotation	
 Corpus	
 (QAC)	
 to	
 XML	
 (QACtoXML.py):	

The Quran Annotation Corpus has a separated tab file; each line handles segment index, form, POS tag

and grammar features.

Figure (5.5): the Corpus headline

The corpus has the copyright in the first lines. To start reading the segments, we need to jump to the

first segment by using the search function in regular expression module to find the corpus headline as

shown in Figure (5.5):
for i in range(QACLinesLength):

 if re.search("LOCATION\tFORM\tTAG\tFEATURES",QAC[i]):

 index=i+1

Then, the line was split using the split function with tab ‘\t’ parameter. The result was a list containing

the four headline elements as follows:
QACLine = QAC[line].split("\t")

 Location = QACLine[0].replace('\n','')

 form = QACLine[1]

 postag = QACLine[2]

 features = QACLine[3].replace('\n','')

	
 41	

 features = features.strip()

Since feature and location elements were in the sides of the line, then they had to have new line tags

and spaces as well. To remove these spaces and tags, I used the replace function for the new line tag

and the strip function to delete the white spaces at the sides.

• Extracting the chapter, verse, segment and token ids:

I defined a function to extract the four elements of segment location. Then, the Location variable was

sent to the Location_extractor function. The function returned the four indices by splitting the location

with a colon : . The splitting result was a list with four elements, but, there was a problem with

segment id. A segment id is not a unique id in the same tree; this means it is possible for two different

segments to have the same id under the same verse. Relying on the QAC segment id would lead to the

loss of many segments. However, setting up an incremental segment index solved this issue.

According to Quranic Arabic Corpus documentation, the four elements were assigned to the

following structure:
def Location_extractor(Location):

 Location = Location.split(":")

 chapterid = Location[0]

 verseid = Location[1]

 segmentid= Location[2]

 tokenid=Location[3]

return chapterid,verseid,tokenid

The returned values were stored in the main part with the following line while the segment index

incremented by one:

chapterid,verseid,tokenid= Location_extractor(Location)

segmentid+=1

In addition, a token refers to a compound segment. So, I translated the token as a segment feature

where token id=2 means this segment has two components. seg.set('token_id', str(tokenid))

• Creating chapter, verse, segment, token elements:

To keep all the verses belonging to one chapter element, and to keep all segments belonging to one

verse element, the chapter and verse id had to be compared with the previous one. If it was the same,

then there was no need to define a new element. This was to avoid the redundancy of chapter id for

each verse related to it; the same happened for segments. Below is an example of creating a chapter

element.

 if prev_chapter_id != chapterid:

 chapter = ET.SubElement(root,'chapter')

 chapter.set('id', str(chapterid))

	
 42	

 prev_chapter_id = chapterid

• Assigning form to segment’s text:

The segment element was constructed as a sub element of verse. The aculae value of the segment is

the form. Assigning the form to the segment is as follows: seg.text=form

• Assigning POS tag to segment’s attribute:

As a POS tag describes the segment, it was ideal to add it as a segment attribute not as a segment sub

element. This facilitated retrieving the segments with specific POS tags (e.g. noun) in Xpath query.

• Assigning features to a segment’s attributes:

I defined a Features_extractor function, which takes the feature line as an input. The function splits

the line with pipe ‘|’ and creates a list of all features. Then, each feature in the list must pass through

the style detector. This detector checks the feature and classifies its style.

By observing the QAC annotations style, I found that there are three main styles for the feature

annotations as follows:

1- If the feature is Prefix, then the next feature is a prefix feature. Basically, the prefix

annotations are one of these two styles: PREFIX|A:INTG+ or PREFIX|ka+. Then, this feature

is passed to the predefined function PREFIX_Tager.

2- If a feature has a colon :, then this feature has two features as PRON:3MP, or a label with a

feature such as ROOT:qwl. Then, this kind of feature is passed to the defined function

Twinsfeatures.

3- However, if this is a single feature, then go to the labelling process. The actual QAC

annotations lack labels. Thus, a feature like 3MP or PCPL is not clear for the user. The

conversion software tries to solve this issue by adding a label for each feature in QAC. To do

this, a feature must be compared for all probable features. As a single feature might be MS,

which would mean this segment has a gender feature with M or Masculine and a number

feature with S or Singular (Dukes, 2011). The following is a sample code of feature

comparison from Singlefeature function:
if f1=='M' or f1=='F':

seg.set('Gender',f1)

The comparisons were made using different techniques depending on the feature complexity.

For those features with two or three excepted values, a simple if comparison was constructed

while if a feature had many values, such as the verb form, then a regular expression was used,

such as the following:
elif re.match(r'\([IVX]+\)',f1):

f1=f1.strip(")")

	
 43	

 f1=f1.strip("(")

 seg.set('Verb_Form',f1)

 These values and labels were taken from the Quran Annotation Corpus tag set available

online

The final step was to write all this information to the tree’s root (Quran) element and print the tree in

a QAX.xml file.

5.5	
 Converting	
 QurAna	
 to	
 xml	
 format	
 (QurAnatoXML.py):	

As mentioned in the chapter on design, QuraAna has 115 xml files and this software merges them in

one XML file. So, the first step is to put all QurAna xml files in the glob [? global] container with the

path QurAna_files = glob.glob('Quran-pron/*').

The reading process follows. Reading xml files means parsing their contents without actually reading

the lines of the files (. Readlines()) as the previous software. Thus, this process does not need a close

file function since no open file function was made.

As mentioned in relation to QuranytoXML.py software, getting an ordered list of files can be

accomplished through constructing a “for loop”. The “for loop” range is 1 to 115 and the file name is

constructed by using the iterator “ i” as in the following:
for i in range(1,115):

file = 'Quran-pron/pronxml-'+str(i)+'.xml'

The above code cannot read the file name (concepts.xml) for the concept file. To do that, a separate

code was developed to obtain a concepts file; the following lines parse the file and fetch the root.
Conceptfile=’Quran-pron/concepts.xml’

_concepts = ET.parse(conceptfile).getroot()

Again, the root for the final XML file is Quran:

root = ET.Element(‘Quran’)

Then, the “for loop” is iterated and gets each QurAna xml file and processes it as follows.

The root in QurAna xml is the chapter, while the final output is Quran. The change of root derives

from the merging idea where 115 chapters are merged into one Quran file. Thus, the XML file must

have one root element and the chapter element is repeated and cannot be used as the root. Thus, a root

element must be changed to a Quran element.
file_root = ET.parse(file).getroot()

Then, obtain the chapter (root) id by using .get XML function. The output is assigned to a constructed

chapter element.Then, iterating the root nodes using and examining the node tag by the following:

if node.tag=='verse':

If the node is verse then verse sub element is created and verse id is obtained and assigned to verse

element.

elif node.tag=='seg':

	
 44	

If the node is segment then segment sub element is created and segment id and text are obtained and

assigned to segment element.

If the node is the concept element, then getting the con attribute and iterating the concept tree is

necessary in order to find the equivalent con id. Then, if the corresponding concept is found in the

concepts file, the Arabic and English concepts are obtained and assigned to the segment attributed to

Arconcept and Enconcept respectively.
for concept in _concepts.iter():

 if concept.get('id') == node.get('con'):

for x in concept.getchildren():

 if x.tag=='arabic':

 seg.set('Arconcept',x.text)

 if x.tag=='english':

 seg.set('Enconcept',x.text)

The remaining attributes in the current node are pron id and Ant.
if node.get('id'):

 seg.set('PRON_id', node.get('id'))

The final step is to close the tree using tree= ET.ElementTree(root) and printing the tree using Element

tree write function (QurAnaxmlfile).

5.6	
 Merging	
 the	
 three	
 XML	
 files	
 in	
 one	
 XML	
 file	
 (merge.py):	

The first step is to parse and obtain the root for the three datasets as the following:
qac_root= ET.parse(qac).getroot()

qurana_root = ET.parse(qurana).getroot()

qurany_root = ET.parse(qurany).getroot()

Then, for loops were constructed to get chapter id, verse id segment id.

Qurany verses having id and concepts were assigned to the merge tree MT_verse node.

QAC and QurAna have the same approach, but QurAna and QAC have different segment indexing. In

QAC there is a segment with maximum id 128219 and in QurAna the maximum segment’s id is

127119. Thus, a new approach has to be constructed in order to merge two different indices.

According to Sharaf et al.(2012), QurAna uses QAC to obtain the pronoun segments only. The QurAna

project aims to annotate every pronoun in the Quran with referenced information. Thus, only pronoun

segments in QurAna are annotated, while other segments are not. Consequently, using the QurAna

index is not important because the QAC index has annotated segments. The approach used here is

declared in the following pseud code:

	
 45	

For QAC_segment in QAC:

 If QAC_segment is Pronoun then

 For QurAna_segment in QurAna:

 If QurAna_segment is Pronoun then

 Add QurAna_segment to QAC_segment

 Delete QurAna_segment

The programme reads the first pronoun in QurAna, then extends QAC Pronoun annotations by adding

QurAna segment information, and finally deletes the QurAna_segment so it can be used again.

This approach does not compare indices because they are different. However, it assumes that the first

pronoun to appear in QurAna is related to the QAC pronoun segment. To ensure this relationship, the

pronoun segment in QurAna is deleted.

To validate the approach, last pronoun in the unified Quran dataset has been checked to find the

associated QurAna annotation. Originally, the last pronoun in the Quran is located in the last verse in

chapter 112. Back to QurAna dataset, the last pronoun in the Quran has the concept (Allah). By

validating the concept in the unified Quranic XML dataset, the pronoun has the same concept. Thus,

the approach is accurate and correct.

However, as the segments ids in the unified dataset and QurAna are different, the Antecedent id

attribute was not added to segment annotations in unified dataset. The reason is that antecedent id uses

Qurana segment id and this segment id is different in the unified dataset. Also, some Antecedent ids

refer to the same value in QurAna concept. Thus, deleting the antecedent attribute will not influence the

pronoun reference concepts.

To present English Qurany Concepts in hierarchal elements, I used the following code. Any concept

contains whilte space or characters out of (Aa-Zz-0-9) will be replaced with underscore character(_):

if verse_qurany.findall('.//QuranyConcepts/[@lang="English"]'):
 Econcepts= verse_qurany.findall('QuranyConcepts/[@lang="English"]')
 for concept in c.get('tree').split(';'):

 concept=concept.strip()
 concept=re.sub('\W+','_',concept)
 ENcurrent = ET.SubElement(ENcurrent,concept)

During creating Qurany concept nodes, an error was arise which indecated invalid token. By

investigating Qurany concepts, there was the concept (12 sons of Jacob) which starts with number and

this is invalid XML node. Thus, I replace 12 with twelve to avoid XML naming problems.

	
 46	

The software has two main outputs. The first output is the Unified Quranic Annotation XML Dataset,

which will be mapped to OWL ontology as a last step in the project. The second output is the unified

Annotation Sketch engine Corpus. Getting two outputs is involved constructing two XML trees, one is

a normal XML file and the other with Sketch engine vertical lines.

However, dealing with XML through XML API causes some constriction in writing the BuckWalter

translation scripts. XML API translates some symbols to the predefined XML entity reference. Such

symbols ‘>’and ‘&’are written in XML file as > and & respectively. This is considered as an

obstacle to retrieving words containing such as these interpreted symbols. To solve this issue, a

function was defined to replace the entity references with blanks.
 for line in mergefile:

 line = line.replace('"','')

 line = line.replace('&','')

 line = line.replace(''','')

 line = line.replace('<','')

 line = line.replace('>','')

 finalfile.write(line)

5.7	
 Mapping	
 the	
 Unified	
 XML	
 file	
 to	
 the	
 Ontology	
 structure:	

One of the project’s aims is to create the Unified Quranic Ontology using the XML file. Creating

ontology from scratch takes a long time and a huge effort. However, there is an XML describing the

Quranic annotations relationships and labelling each vocabulary with its meaning, such as labelling

the Quranic annotations. Currently we do not have a complete ontology dedicated to describing every

Quranic word, for which there are many reasons. Khan et al (2013) stated that defining Quranic

taxonomy is causing a great debate among Islamic scholars who have different Islamic opinions. In

fact, there are many Quranic words which have having different commentaries, such as Alflq, which

has been described as another name for the word Moon or for the name of a hill. These are

completely different meanings, therefore, to convert the XML to ontology, an ontology data model

must be chosen.

.

 As stated in chapter three, OWL model has significant features in describing data semantically, this

type of modelling has been chosen as a target output in converting the unified Quranic dataset to an

ontology model.

	
 47	

Mapping	
 the	
 XML	
 to	
 OWL	
 Ontology:	

Figure(5.6): Mapping XML to OWL proposal by Bohring et al (2005).

There are many published approaches to mapping an XML file to OWL ontology. Such a

proposal published by Bohring et al (2005) illustrated a way of converting XML to OWL. It has

many steps as shown in figure (5.6). The approach assumes having an XML file, which holds the

actual data in hierarchy, and an XML schema which describes XML file data types and

hierarchies. The process of conversion is as follows:

1- The XML schema will be converted to OWL model or Domain model. The XML schema

and the OWL model are equivalent as they describe a domain by defining data types and

constraints.

2- Then, create the OWL instance by using the OWL model and XML data. The output is the

actual Quranic data defined by the OWL model definitions.

The obstacle to using this proposal is that the XML dataset lacks an XML schema. There are many

proposals for creating the XML schema by developing a prototype, creating the schema automatically

by reading the XML data and inferring the structure. But, this could lead to the creation of an

imperfect XML schema. However, the schema must be created manually. Another option for solving

this problem is to rebuild the OWL model and create it manually. This solution sounds more accurate

but is not practical; creating an ontology model from scratch needs a lot of effort and time.

Moreover, the XML structure could be used in modelling the OWL domain. From this understanding

of the unified dataset the desired OWL model output design can be drawn, as in the following figure.

Figure (5.7): The OWL model design

	
 48	

There are three main components of the OWL model design. The first component is class, which can

be chapter class, verse class, segment class and Qurany concept classes. Each class instance must

have a unique identifier. Thus, chapter, verse, and segment must have a unique id.

The second component is the class’s data type property, which is a relationship between a class and a

literal value only. For instance, a segment class can have a data type property relationship with POS

tag. However, values such POS tag, lemma, gender are considered as literal, not as a class. This is to

avoid the functional property influence where each segment must have a relation with gender class

where some segment does not have a gender.

The third component is the object property, which defines the relationship between two classes only,

such as chapter class and verse class which has the hasVerse object property. The property also has

the inverse feature just as verse class and chapter class have the relation hasChapter. These properties

could be OWL special features, just as chapter and segment ids have a transitive relation property

hasSeg.

To implement this design, a prototype has to be developed. In this study three prototypes were

developed and took time to construct correctly. The restricted project plan cannot be extended to

develop a fourth prototype. Also, incorporating details about ontologies and how to convert XML to

OWL by reading many resources took a long time. Therefore, another approach was tried.

This alternative solution discovered that some ontology editors accept XML files. As discussed in

chapter three, Protégé has the facility to convert an XML file to OWL ontology.

This project used the Protégé version 3.5, with full installation, in order to obtain all Protégé features

and plug-ins. To start Protégé, create a new project and select OWL/RDF files. Then, to convert the

XML file, the XML tab must be enabled in Protégé. To do this, click on the project tab and select

configure. Then a list of Protégé plug-ins appears and shows the XML tab option. Clicking on that

option will activate the XML tab option and display it alongside the Protégé main tabs.

The XML tab has two options for importing files. The first option is to import xml tree, and the

second is to import XML instance. By examining the two options, both of them will be found to have

the same function, which is to import an xml file. Then, by selecting the unified Quranic dataset XML

file and then clicking on import, the dataset components will be shown in the class panel. Clicking on

the OWLClass tab will bring up the converted ontology’s components, listed in hierarchy.

Part of the converted OWL ontology is in Appendix K.

5.8	
 	
 Porting	
 the	
 Unified	
 XML	
 file	
 to	
 the	
 Sketch	
 engine	
 tool:	

Preparing the unified Quranic dataset in Sketch Engine format has produced the following main

points:

-­‐ It is proved that Sketch Engine accepts the XML corpus. The XML tags can describe the

document structure (sentence, word, paragraph tags) and grammar features.

	
 49	

-­‐ In addition to using XML tags to describe the document structure, Sketch Engine uses vertical

lines in listing the word attributes. This vertical line enables the application of language

grammar to improve word behaviour such as in word sketches. Word sketches are involved in

finding a lemma with the most frequent neighbour words and in listing the findings in tabular

form.

The attributes of vertical lines can be defined in many ways. There is no single way of

defining them. Also, some predefined attributes are more strictly defined in Sketch Engine.

The important thing in creating the corpus and vertical line is to separate the attributes with

tabs. Such a vertical line is used in the project’s dataset in the following way:

Word Lemma TAG

-­‐ Features and annotations having a hierarchical structure and multi-valued annotations can be

represented in Sketch Engine. This type of annotation has to be defined in a recursive header.

Sketch Engine uses symbols to describe the hierarchy and the multi-valued features. According

to the Corpora header definition in Sketch Engine, a header having multiple values can be

represented using these symbols

POSTag = Noun|Noun::PN

5.8.1	
 Implementing	
 Sketch	
 Engine	
 formats:	

To implement the Sketch Engine format functions have been defined in merge.py prototype. The

process of creating an XML corpus is the same as creating the unified Quranic Annotation dataset,

except for adding some changes in the segment text and the hierarchal xml elements.

1- Implementing the vertical line structure.

To add the vertical line in the core corpus text (segment text), a function has been defined to add

the three components of our defined attributes.
seg_MT = ET.SubElement(verse_MT,'seg')

seg_MT.text = str(text.decode('utf-8')) +'\t'+ str(Lemma.decode('utf-8')) + '\t' + str(pos)

2- Implementing the hierarchal and multi-valued XML elements.

The hierarchal and multi-valued XML elements are represented in Qurany concept elements. The

defined function SketchEngineFormat returns the XML value in Sketch Engine format. The symbol

‘|’ represents the multi-valued element, while ‘::’ represents the hierarchal feature in the element.

 conceptline = conceptline.split(';')

 return '|'.join('::'.join(conceptline[:INDX]) for INDX in range(1,len(conceptline)+1)).strip()

Sketch Engine hierarchal format is very sensitive in requiring spaces between the text and the

symbols. Thus, a strip function has been used to guarantee that no spaces appear between lines of text.

	
 50	

5.8.2	
 Configuring	
 the	
 Corpus:	

To upload the XML Quranic corpus, Sketch Engine must be configured to compile the corpus

structure. There are hierarchal and multi-valued elements, therefore a corpus definition is required.

An example of defining the Qurany concepts has the following components:

an element that has attributes defined by structure; a basic XML element which has no attributes and

can be defined simply by writing ATTRIBUTE"word", and a structure defined by a tree attribute,

which lists the Qurany concepts.

Another optional feature can be defined as the Label. It can handle a title of the element to be

displayed in text type queries in Sketch Engine. A MULTIVALUE feature must be specified to indicate

that an element can have more than one value with the same element name. Specifying ‘1’ to

MULTIVALUE enables the feature. MULTISEP must be defined with a symbol such as ‘|’. This

symbol indicates that an XML element can have more than one value. HIERARCHICAL can also be

defined by a symbol, and ‘::’ was used in this study to indicate that a previous element is a parent of

the second element, such as Pillars of Islam::Islamic.

STRUCTURE "ENQuranyConcepts" {

ATTRIBUTE "tree"{

LABEL "English Qurany Concepts Tree"

MULTIVALUE "1"

MULTISEP "|"

HIERARCHICAL "::"}}

Another element, such as chapter element with id attribute, can be defined simply as below. The same

definition is used for the verse and segment elements.

STRUCTURE "chapter" {

ATTRIBUTE "id"{

LABEL "Chapter Number"}}

The complete configuration file can be found in the Appendix J to this dissertation.

Using Text types, a user can specify their search by selecting any of the grammar and/or semantic

feature.

	
 51	

	

Chapter 6: Evaluation
This chapter evaluates three main outputs; the unified annotations XML dataset; the Sketch Engine

tool, and the unified Quranic OWL ontology using Protégé editor.

6.1 Evaluating the unified Quranic Annotations XML Dataset:
To evaluate the XML file, Xpath expressions were used to get the answers to the following questions.

These questions measure the data integrity and the accuracy of the merged XML dataset

(Unified_Quranic_Corpus_v1.xml).

1- Find all verses which have the concept Hunting

Xpath code:

XML_root= ET.parse("mergeLast_Version.xml").getroot()

verses = XML_root.findall('.//verse')

concepts = verse.findall('.//Hunting')

The answer:

2- Find segments having Noun POS tag and verb form II.

Xpath code:

exp2 = XML_root.findall('.//seg/[@POSTag="N"][@Verb_Form="II"]')

The answer(part of the result with the total number):

3- Find all segments having Pronoun referring to Allah.

exp2 = XML_root.findall('.//seg/[@Enconcept="Allah"]')

The answer:

	
 52	

Evaluation Discussion:
Three questions are posed in order to measure the merged XML file accuracy and evaluate the three

datasets by finding the related annotations.

The first question measures the correctness and accuracy of Qurany concepts verse annotations. To

know whether the results are accurate or not, Qurany concept/Topic website

(http://quranytopics.appspot.com) was used to navigate the concept of ‘tree’ to Hunting concepts and

to browse how many verses are found under that definition. It was found that there are four verses

related to the hunting concept. Thus, the results found in the XML file are correct.

The second question measures the accuracy of QAC annotations in the merged dataset. The question

posed to find nouns tagged with N and verb form II produced a result of 279 occurrences of segments.

To validate the result, the QAC morphology search tool available in Quran corpus website

(http://corpus.quran.com/morphologicalsearch.jsp) gave the same result shown in figure (6.1), which

indicated that the unified XML file is correct.

Figure (6.1): The morphological search tool

As mentioned in chapter two, the tool has limited search options, for example, it cannot be used to

validate noun with gender occurrences.

The third question measures QurAna pronoun references. There are 3,061 pronouns in Quran

referring to Allah. In fact, there is no available tool that can be used to validate the result. However,

according to QurAna published paper (Sharaf et al., 2012), there are 3,061 pronoun references to

Allah. Thus, the unified XML file has proven accuracy.

6.2 Evaluating the unified Quranic Annotations XML Dataset in Sketch engine:

Translating the SKE corpus to Arabic:
Since the contributing users are Arabic native speakers, they cannot evaluate the Latin corpus, so two

more datasets were created by replacing the segment text with Arabic text. In Alqassem’s (2013)

merging of databases project, she first merged and translated the Quran text and created four Quranic

corpora; an unvowelled Arabic corpus; a vowelled Arabic corpus; an unvowelled Latin corpus, and a

	
 53	

vowelled Latin corpus. Thus, her translations created an Arabic version of the unified dataset. To do

this, a prototype was developed which mainly reads Alqassem’s four corpora, obtains the text and re-

assigns the segment’s text.

First, this dataset file parses (SKE_Unfied_Quranic_Corpus_Latin_v1.xml) file and obtains all

segments using the Findall function with the Xpath expressions.

Self-Evaluation:
Opening the unified dataset in Sketch Engine reveals many search options. However, there are five

main ways to query the corpus. Two ways were tested, the first being the simple query in which a

word is simply entered. The second is the advanced query using CQL, such as querying every word in

the corpus with Gender F.

Figure(6.2): CQL query result

Testing the POS Filter:
Sketch engine has the option to create the POS filter using the POS attribute in a corpus vertical line.

Thus, by examining the POS filter, the results were shown to be incorrect and the filter needed to be

developed. However, the POS filter was adapted by labelling the POS tags using the defined function

SKEPosFilter in merge.py prototype. Each POS value is passed to the function and returned with a

POS label such as the following:

if pos == 'N' or pos=='PN' or pos=='IMPN':

 return "Noun|Noun::"+pos

Then, configure the corpus to accept the POS labels and present them in a multi choice box as the

following figure:

	
 54	

Figure(6.3): Sketch engine POS filter

To test the POS tag, a query for finding noun words with verb form II was constructed. The result is

shown in figure (6.4) . Obviously, the same result of 279 nouns with II verb form was achieved. Thus,

the POS filter and grammar filter were proved to be correct and accurate.

Figure(6.4): Testing POS filter options

Testing the Qurany concept ‘Hunting’:

Figure (6.5): Qurany concepts search options

The query was also made by CQL [word=’.*’]. By clicking on the Hunting concept on Qurany with

the concept ‘tree’, the following result was produced:

	
 55	

Figure (6.6): The query outputs

The result shows how many segments are related to hunting. However, the actual verses id can be

viewed through (view option) and by changing the view to verse number. There are four verses; verse

670, 763, 764 and 765. Comparing these with the XML evaluation result using Xpath demonstrated

that the result is accurate and correct.

Testing the Pronoun reference to Allah:
By clicking on the concept Allah and retrieving all words, the result showed 3,061 occurrences of

pronouns referring to the Allah concept. Thus, the SKE tool was shown to retrieve accurate results.

Figure(6.7): QurAna concepts search options

Using Sketch Engine features:
-­‐ Word frequency:

-­‐ Occurrences of the word Eml (work in English) was tested in the corpus. To check the POS

tags frequencies of Eml, the Frequency Option was tested, and then the frequency criterion

was tested with POS tag. The result is shown in the figure (6.8) below.

	
 56	

Figure(6.8): The frequency of Eml POS tags

-­‐ Concept frequency for a word:

-­‐ To view the concept frequency for the word Eml the frequency option was used but in

conjunction with the Qurany concept criteria.

Figure (6.9): Concepts frequency for word Eml

The output showed that the word Eml is mentioned in the Quran but associated with the concept of

‘faith’. The word Eml is associated with Faith 621 times, although there are only 359 occurrences of

Eml. However, since a verse could have more than one Qurany concept, the faith concept is repeated

with the same word occurrence. Thus, a relation between Eml (which means work in English) and

Faith as a word related to human faith can be made.

-­‐ Word Sketch:

-­‐ Word Sketch is used to show a word's grammatical and collocation behaviour in the corpus.

Figure(6.10): Word Sketches

	
 57	

Users-Evaluation:

The project aims to help three main user types: Quranic researchers, Arabic language and linguistics

experts and Arabic language students.

Dr. Ahlam Aldhubayi is a Quranic researcher from Imam Muhammad bin Saud Islamic University in

Saudi Arabia. Her research aimed to investigate the explicit and implicit occurrences of the word

‘mind’ (Eql). Her aim was to perform a comprehensive analysis for the word to indicate a religious

pattern of how the Quran uses the word (Eql) and which concepts are shared. She investigated every

occurrence of the word (Eql) in Sketch Engine and explored their verse concepts. However, it took

her only a short time to find comprehensive analyses for each occurrence in the Quran. She stated in

her evaluation that “there is a demand for a Quranic tool to help in studying Quranic word behaviour

and to analyse such behaviour comprehensively”. Moreover, there is a need for an accurate source

showing the Quranic words associated with their grammatical and semantic features. In addition,

classifying the words with their grammatical features will help to indicate general patterns and

collocations as well.

Dr. Nawal Alhelwa is an Arabic linguistic researcher in Princess Noura University, Kingdom of

Saudi Arabia. She evaluated the unvowelled Arabic corpus by querying the word ‘scourge’ (ععذذاابب).Her

search aimed to find the semantic concepts related to the word. She stated in her evaluation “the

system and the dataset are useful for linguistic researches except for some limitation in the syntax

annotations”. The syntax annotations do not show the Indicative, Subjunctive and Jussive in detail.

Usually, Arabic language researchers aim to find the reason behind verbal moods such as these.

Dr. Amany Altawili is a Quranic researcher from Imam Muhammad bin Saud Islamic University.

Currently, she is doing new research to study the behavior of some Quranic words. She evaluated the

concordance of the Quranic word ‘prefer’(ففضضلل). She stated in her evaluation that “the system is

good and it can serve the demands of Quranic researchers”.

Mr. Abdullah Alfaifi is a Lecturer in TAFL Teaching Arabic as Foreign

Language, and PhD student. He evaluated the unvowelled Arabic corpus and made queries to find the

pronoun (k) (كك) and its grammar features, such as the feminine and masculine. The system offers a

variety of analysis options. He found the corpus beneficial for Arabic language researchers and stated

“the corpus seems to have well-structured design which provide useful features (PoS, Syntactic, and

Semantic) that enable users to search in the Quranic text for different purposes, Quranic and linguistic

studies.”

	
 58	

However, the brief presentation (manual) provided to the evaluators needs to be expanded to cover

more details in the system. (The evaluation is in Appendix L)

Mr. Mishal Alhusan is an Arabic language teacher in the Ministry of Education in Saudi Arabia. He

evaluated the usage of the word ‘ييققااتتلل’ in relation to Jihad concepts. He was able to cluster the Jihad

concepts words based on the Gender type and the POS tags.

6.3 Evaluating the unified Quranic OWL ontology:
The class triples and Class hierarchy:

Figure (6.11): The Unified Quranic Ontology in Protégé .

Unfortunately, the size of the ontology is very large (135MB), therefore the heap size of the virtual

machine in Protégé requires a greatly increased memory size, to as much as 5,000MB because the

reasoning of the ontology means creating more inferred instances, which occupy more memory.

Therefore, it is necessary to increase the heap size to the whole required memory.

However, Protégé still cannot run the reasoning of a large ontology. This takes several hours without

any noticeable progress in the reason log. To evaluate the mapped ontology, the domain was limited

to the second chapter only in the Quran. Chapter 2 is considered to be the longest chapter in Quranic

with a maximum of 280 verses. Thus, this chapter could reflect and cover a lot of concepts and

grammar annotations.

So, it was necessary to run the semantic reasoner (Pellet 1.5.2) on the Quran’s chapter 2. Pellet and

DIG are the standard reasoners in Protégé 3.5. But, DIG suffers from some reasoning limitations, such

as the inability to load the whole ontology (Protégé)

The resoner checked the consistency and the inferred instances, the log shows in figure (6.12) has

successfully checked the ontology.

	
 59	

Figure(6.12): Computing the inferred instance(left) and checking ontology consistency (right).

Some Observations:

The hierarchy of subclasses in the class browser has the same level. For example, verse and Qurany

concepts have the same level in the browser but the verse triple shows that the Qurany concepts class

is a subclass of verse. Thus, the class browser does not reflect the actual class hierarchy.

When porting the XML file to Protégé through XML Tab, Protégé gave each instance a generated ID

and used it to refer to the instance. The generated ID has a different indexing style where chapter id 1

is translated to 67. In the unified XML dataset, chapter ids have there strictly order. For future

enhancement, a chapter id can be replaced by the chapter’s name. Thus, having an id for a chapter

will not change its name.

The properties types have not been specified, thus manual adjustment has to be made to object

properties. By making an object property a transitive property, a new knowledge can be inferred.

Testing the OWL ontology using SPARQL on chapter 2:
Protocol and RDF Query Language (SPARQL) is a questioning language which can search in RDF

triples and get the answers. To test the ontology, the following questions were used to look for the

answers in the ontology. However, the answers were already known.

Question1: A women who has been mentioned in chapter 2?

Answer: Mary (Maryam).

SPARQL:

SELECT ?seg

WHERE { ?verse :QuranyConceptsSlot ?Women. ?seg :_POSTag "PN". ?seg :_Gender "F"}

Question2: Who is the man who lost his deeds in chapter2?

Answer: Fir'aun' (Pharaoh)

SPARQL:

	
 60	

SELECT ?seg

WHERE {?verse :QuranyConceptsSlot ?Lost_Deeds. ?seg :_POSTag "PN". ?seg :_Gender 'M'}

The ontology answers the questions correctly. Although the semantic was assigned to the verses only,

the segments inherit the verses concepts. This ontology could be used in a question-and-answer

system, where a question is translated to SPRAQL to obtain the answer.

Chapter 7: Conclusion
This project describes the underlying approach of creating Unified Quranic Corpus and Ontology.

Three selected datasets were merged in one file in unified format successfully. The Unified XML

corpus has been loaded to Sketch engine and been used successfully and efficiently. The evaluators

have positive feedback about the dataset and the tool. Thus, Sketch engine is a perfect in dealing with

huge datasets and has a robust search tool and options.

In addition, The unified XML dataset has been converted to OWL ontology. The Unified Quranic

ontology has been loaded to Protégé ontology editor. But, protégé is not capable of handling large

ontology such the entire Quranic ontology with more than 100 MB. Obviously, protégé is perfect tool

in processing small ontology.

Overall, Sketch engine and protégé tools have different functions and aims and thus can not be

compared. But, Sketch engine outperforms protégé in processing huge datasets, and has effective

website that enable sharing the resource. In the other hand, protégé is a stand-alone tool where it has

the facility of sharing but with still has limitations.

Ideas	
 for	
 further	
 work:	

This project can be extended to have more annotations to be shared through sketch engine tool.

Another enhancement is to merge the QAC search interface with Sketch engine to make the merged

Quran dataset interfaced more user-friendly. In addition, a follow-on project for another religious text,

such as the Bible or the Book of Mormon or a collection of Haddith.

	
 I	

References:	

	

Abbas, N. 2009. Qurany ‘Search for a Concept’ Tool .[online]Available at:
http://www.comp.leeds.ac.uk/nora.

Abbas, N., Aldhubayi, L., Al-Khalifa, H., Alqassem, Z., Atwell, E., Dukes, K., Sawalha, M., Sharaf,
A., (2013). Unifying linguistic annotations and ontologies for the Arabic Quran. The WACL’2
Second Workshop on Arabic Corpus Linguistics, Lancaster University, UK.

Al-Khalifa, H., Al-Yahya, M. Bahanshal, A. and Al-Odah I. (2009). SemQ: A Proposed Framework
for Representing Semantic Opposition in the Holy Quran using Semantic Web Technologies. The
2009 International conference on the Current Trends in Information Technology (CTIT’09), Dubai,
UAE. 15-16 December 2009.

Al-Yahya, M., Al-Khalifa, H., Bahanshal, A., Al-Odah, I., & Al-Helwah, N. (2010, July). An
ontological Model for Representing Semantic Lexicons: An Application on Time Nouns in the Holy
Quran. Arabian Journal for Science and Engineering, 35(2), 21.

Alani, H., Hara, K.O., Shadbolt, N., (2005), “Common features of killer apps: A comparison with
Protégé”, In: 8th International Prot Conference, 18-21 July 2005, Madrid, Spain.

Alatrish, E. (2012), Comparison of Ontology Editors, eRAF Journal on Computing, University of
Belgrade, Serbia, Vol. 4,

Alqassem, Z., (2013). Unifying Quranic Analyses into a Single Database. Final year project report,
University of Leeds.

Antoniou, G. (2004). A semantic web primer. (pp. 18-31). MIT Press.

Antoniou, G., & Van Harmelen, F. (2009). Web ontology language: Owl. In Handbook on ontologies
(pp. 91-110). Springer Berlin Heidelberg.

Bohring, H., & Auer, S. (2005). Mapping XML to OWL Ontologies. Leipziger Informatik-Tage, 72,
147-156.

Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J.,& Horrocks, I. (2000).
The semantic web: The roles of XML and RDF. Internet Computing, IEEE, 4(5), 63-73.

Dror, J., Shaharabani, D., Talmon, R., & Wintner, S. (2004). Morphological Analysis of the Qur'an.
Literary and linguistic computing, 19(4), 431-452.

Dukes, K., & Atwell, E. (2012). LAMP: A Multimodal Web Platform for Collaborative Linguistic
Analysis. In Proceedings of LREC.

Dukes, K., & Habash, N. (2010, May). Morphological annotation of quranic Arabic. In Proceedings
of the Language Resources and Evaluation Conference (LREC).

	
 II	

Dukes, K., Atwell, E., & Habash, N. (2011). Supervised collaboration for syntactic annotation of
Quranic Arabic. Language Resources and Evaluation, 1-30.

Element Tree XML API – Python documentations. [Online]. Available:
http://docs.python.org/2/library/xml.etree.elementtree.html

Garabík, R. (2006). Processing XML Text with Python and ElementTree–a Practical Experience.
INSIGHT INTO THE SLOVAK AND CZECH CORPUS LINGUISTICS, 160.

Gruber, T. (2008). What is an Ontology. Encyclopedia of Database Systems, 1.

Habash, Y. B. N., Ordan, A. K. N., & Suchomel, R. R. V. (2013) arTenTen: a new, vast corpus for
Arabic.

Khan, H. U., Saqlain, S. M., Shoaib, M., & Sher, M. (2013), Ontology Based Semantic Search in
Holy Quran, International Journal of future computer and communication, Vol 2, No. 6.

Kilgarriff, A., Rychly, P., Smrz, P., & Tugwell, D. (2004). ITRI-04-08 The Sketch Engine.
Information Technology, 105, 116.

Lassila, O., & Swick, R. R. (1999). Resource description framework (RDF) model and syntax
specification.

Lenzerini, M. (2002, June). Data integration: A theoretical perspective. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 233-246).
ACM.

Motik, B., Parsia, B., & Patel-Schneider, P. F. (2009). OWL 2 Web Ontology Language XML
serialization. W3C Recommendation, W3C–World Wide Web Consortium.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first
ontology.

Prechelt, L. (2000). An empirical comparison of C, C++, Java, Perl, Python, Rexx and Tcl. IEEE
Computer, 33(10), 23-29.

Protégé Ontology Library - Protégé Wiki. [Online]. Available:
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

Rodrigues, T., Rosa, P., & Cardoso, J. (2006). Mapping XML to Exiting OWL ontologies. In
International Conference WWW/Internet (pp. 72-77).

Shaʻrāwī, M. M. (1993). Tafsīr al-Shaʻrāwī (Vol. 3). Akhbār al-Yawm. PP(5-15).

Sharaf, A. B. M., & Atwell, E. (2012). QurAna: Corpus of the Quran annotated with Pronominal
Anaphora. LREC 2012.

Sharaf, A. B. M., & Atwell, E. (2012). QurSim: A corpus for evaluation of relatedness in short texts.
LREC 2012.

Van Deursen, D., Poppe, C., Martens, G., Mannens, E., & Walle, R. (2008, November). XML to RDF
conversion: a generic approach. In Automated solutions for Cross Media Content and Multi-channel
Distribution, 2008. AXMEDIS'08. International Conference on (pp. 138-144). IEEE.

	
 III	

Yahia, N., Mokhtar, S. A., & Ahmed, A. (2012). Automatic Generation of OWL Ontology from XML
Data Source. arXiv preprint arXiv:1206.0570.

Yauri, A. R., Kadir, R. A., Azman, A., & Murad, M. A. A. (2012, March). Quranic-based concepts:
Verse relations extraction using Manchester OWL syntax. In Information Retrieval & Knowledge
Management (CAMP), 2012 International Conference on (pp. 317-321). IEEE.

	

	

	

	

	

	

	

	
 IV	

	

	

Appendix	
 A:	
 Personal	
 Reflection	

Undertaking this project was an adventure and a complex journey, full of ups and downs. Through

the period of 8 months working on this project, many challenges have been faced. One of the main

challenges was the project framework required to achieve the project objectives. As the project

revolved around addressing research problems by semantic web/text search and combined two

research areas: neutral language processing and knowledge representation and reasoning, thus,

intensive reading of background research on the semantic web and data models was involved. In

addition, obtaining in great detail knowledge of the building and the evaluation of XML files has

been a great experience and given me a better understanding of this field.

The biggest challenge I went through working on this project was to have a clear aim and

understanding of the problem that needed to be tackled. At the beginning, there was an unclear

appreciation of the difference between corpora and ontology. The project title was ‘A unified

Quranic ontologies’ when, in fact, there are few available Quranic ontologies which did not meet

the project goal. As a result, the direction followed was to deal with the proposed three datasets that

cannot be considered as ontology but rather as an annotated corpus or dataset because they are not

in a standard ontology data model such as first order logic or RDF. However, during the interim

report The project assessor Dr. Lau has provided valuable feedback on the project and its value. Her

feedback pushed the project in a clearer direction, which resulted in changing the project title and

plan. Thus, the project title was changed to ‘unified Quranic annotations and ontologies’ in order to

accomplish the first goal of merging the datasets in one dataset or annotated XML corpus. The new

goal was to convert the merged dataset to an ontology standard data model. As a result of changing

the title, the project plan was altered as well in order to consider corpora and ontology as two main

parts of the project.

In addition, during term two, I suffered a broken foot. The illness prevented me walking normally

for three weeks. This added more pressure since I’m a single mother and have four years old

daughter to take care of her. Despite the difficulties that I had, the supervisor Dr. Eric Atwell and

the school of computing in the university were supportive, sympathetic and reassuring. So, if you

have any personal problems or constraints which affect your project work, seek advice from

Supervisor or Director of Student Education rather than struggling on alone.

	
 V	

My advice to fellow students and researchers to believe in them selves and never to give up and to

always come back to their supervisor if there are any doubts.

In addition, it was a pleasure to be a co-author in presenting the paper ‘the Unifying linguistic

annotations and ontologies for the Arabic Quran) in WACL’2 Second Workshop on Arabic Corpus

Linguistics, Lancaster University in July 2013’. This experience provided me on techniques of

presenting an academic paper and I look forward for more to writing more papers.

Finally, in the past year I have continuously developed, the knowledge and experience I have

gained through the project is worthwhile. It has deepen my understanding in language processing

and semantic search. I truly enjoyed spending my time on it. It is hoped that this project will shed

some light in this field of research and provide future researcher with a useful starting point.

	
 VI	

Appendix	
 B:	
 Material	
 Used.	

	

This project has used three datasets without changing their content. As the copyright in Quranic Arabic
Corpus and QurAna datasets permit the right to use the data without add changes.

QurAna Copyright

Quranic Arabic Corpus copyright

	
 VII	

Appendix	
 C:	
 Ethical	
 issues	

The project doesn’t contain any private or personal data and it is out of ethical issues.

	
 VIII	

Appendix	
 D:	
 project	
 plan	

The	
 initial	
 project	
 plan:	

Gantt	
 Chart:	

	

Feb-­‐13	
 Mar-­‐13	
 Apr-­‐13	
 Apr-­‐13	
 May-­‐13	
 Jun-­‐13	
 Jun-­‐13	
 Jul-­‐13	
 Aug-­‐13	
 Aug-­‐13	

Project	
 aim	
 and	
 requirement	

Background	
 reading	

corpora	
 collecaon	
 	

Interim	
 report	

unifying	
 the	
 corpora	
 format	
 	

Merging	
 the	
 corpora	
 into	
 one	
 corpus	

Finding	
 a	
 corpus	
 tool	

Evaluate	
 the	
 corpus	
 with	
 corpus	
 tool	

Progress	
 meeang	

Users	
 Evaluaaon	
 	

Write	
 up	
 the	
 final	
 report	

proofreading	
 and	
 review	
 the	
 report	

	
 IX	

	

The	
 adjusted	
 project	
 plan:	

	

Gantt	
 Chart:	

Feb-­‐13	
 Mar-­‐13	
 Apr-­‐13	
 Apr-­‐13	
 May-­‐13	
 Jun-­‐13	
 Jun-­‐13	
 Jul-­‐13	
 Aug-­‐13	
 Aug-­‐13	

Project	
 aim	
 and	
 requirement	

Background	
 reading	

corpora	
 collecaon	
 	

Interim	
 report	

unifying	
 the	
 corpora	
 format	
 	

Merging	
 the	
 corpora	
 into	
 one	
 corpus	

Finding	
 a	
 corpus	
 tool	

Evaluate	
 the	
 corpus	
 with	
 corpus	
 tool	

Progress	
 meeang	

Users	
 Evaluaaon	
 	

Write	
 up	
 the	
 final	
 report	

proofreading	
 and	
 review	
 the	
 report	

	
 X	

Appendix	
 E:	
 Code	
 of	
 Convert	
 Qurany	
 HTML	
 files	
 to	
 XML	
 file	

(QuranytoXML.py	
)	

#	
 -­‐*-­‐	
 coding:	
 utf-­‐8	
 -­‐*-­‐	

import	
 re	

import	
 glob	

import	
 xml.etree.ElementTree	
 as	
 ET	

from	
 xml.etree	
 import	
 ElementTree	

	

#define	
 global	
 variables:	

output	
 =	
 open('Qurany.xml','w')	

#Specify	
 the	
 tree	
 root	

root	
 =	
 ET.Element('Quran')	

def	
 main():	
 	

	
 verse_INDX=0	

	
 Qurany_files	
 =	
 glob.glob("qurany/*")	

	
 for	
 chapter_id	
 in	
 range(1,115):	
 	

	
 	
 	
 #Create	
 Chapter	
 node	

	
 	
 	
 chapter	
 =	
 ET.SubElement(root,'chapter')	

	
 	
 	
 chapter.set('id',str(chapter_id))	
 	

	
 	
 	
 #Files	
 declarations	
 	
 	
 	

	
 	
 	
 for	
 verse_id	
 in	
 range(1,288):	

	
 	
 	
 	
 filename	
 =	
 'qurany/'	
 +	
 str(chapter_id)+'-­‐'+str(verse_id)+'.html'	

	
 	
 	
 	
 if	
 filename	
 in	
 Qurany_files:	

	
 	
 	
 	
 	
 #write	
 the	
 verse	
 ID	
 in	
 Verse	
 Node	

	
 	
 	
 	
 	
 verse_INDX+=1	

	
 	
 	
 	
 	
 verse	
 =	
 ET.SubElement(chapter,'verse')	

	
 	
 	
 	
 	
 verse.set('id',	
 str(verse_INDX))	

	
 	
 	
 	
 	
 htmltxt	
 =	
 open(filename).readlines()	

	
 	
 	
 	
 	
 lenhtmltxt	
 =	
 len(htmltxt)	

	

	

	
 	
 	
 	
 	
 #setup	
 Regular	
 Expression	
 patterns	
 to	
 clean	
 the	
 data	

	
 	
 	
 	
 	
 Tag_NewLine_markup	
 ='[\t\n]'	
 #removes	
 taps	
 and	
 newline	

markup	

	
 	
 	
 	
 	
 removechars	
 =	
 '[\d+/}/{\n\t]'	
 #removes	
 the	
 verse	
 character	
 e.g.:	
 1}	

	
 	
 	
 	
 	
 removeHTLtags	
 =	
 '<.*?>'	
 #removes	
 HTML	
 tags	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 #read	
 the	
 Qurany	
 html	
 file	
 	

	
 	
 	
 	
 	
 for	
 line	
 in	
 range(lenhtmltxt):	

	
 	
 	
 	
 	
 	
 if	
 re.search('<font	
 size="5">',htmltxt[line]):	

	
 	
 	
 	
 	
 	
 	
 Arabic_verse	
 =	
 htmltxt[line+1].strip()	

	
 XI	

	
 	
 	
 	
 	
 	
 	
 Arabic_verse	
 =	

re.sub(removechars,'',Arabic_verse)	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 #write	
 the	
 verse	
 text	
 in	
 Arabic	
 in	
 Verse	
 Node	

	
 	
 	
 	
 	
 	
 	
 verseText	
 =	
 ET.SubElement(verse,'text')	

	
 	
 	
 	
 	
 	
 	
 verseText.set('lang',	
 'Arabic'	
)	

	
 	
 	
 	
 	
 	
 	
 #convert	
 Byte	
 to	
 Unicode	
 using	
 Decode	
 function	

	
 	
 	
 	
 	
 	
 	
 verseText.text	
 =	
 Arabic_verse.decode('utf-­‐8')	

	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 htmltxt[line]	
 =	
 htmltxt[line].replace('\n','')	

	
 	
 	
 	
 	
 	
 htmltxt[line]	
 =	
 htmltxt[line].replace('\t','')	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 if	
 re.search('<font	
 color="#1645ae"	

size="4">',htmltxt[line]):	

	
 	
 	
 	
 	
 	
 	
 htmltxt[line]	
 =	
 htmltxt[line].split('<font	

color="#1645ae"	
 size="4">')[1]	

	
 	
 	
 	
 	
 	
 	
 htmltxt[line]	
 =	

re.sub(removeHTLtags,'',htmltxt[line])	

	
 	
 	
 	
 	
 	
 	
 htmltxt[line]=htmltxt[line].strip()	

	
 	
 	
 	
 	
 	
 	
 Author	
 =	
 htmltxt[line]	

	
 	
 	
 	
 	
 	
 	
 verseText	
 =	
 ET.SubElement(verse,'text')	

	
 	
 	
 	
 	
 	
 	
 verseText.set('Author',Author)	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 if	
 re.search(r'<td><Font	
 size="4">',htmltxt[line]):	
 	

	
 	
 	
 	
 	
 	
 	
 htmltxt[line]	
 =	

re.sub(removeHTLtags,'',htmltxt[line])	

	
 	
 	
 	
 	
 	
 	
 English_verse	
 =	
 htmltxt[line].strip()	

	
 	
 	
 	
 	
 	
 	
 English_verse	
 =	
 English_verse.replace("'",'')	

	
 	
 	
 	
 	
 	
 	
 English_verse	
 =	
 English_verse.replace('"','')	

	
 	
 	
 	
 	
 	
 	
 verseText.set('lang','English')	

	
 	
 	
 	
 	
 	
 	
 verseText.text	
 =	
 English_verse	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 if	
 re.search('Concepts/Themes	
 Covered:',htmltxt[line]):	

	
 	
 	
 	
 	
 	
 	
 index	
 =	
 line+1	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 for	
 i	
 in	
 range(index,lenhtmltxt):	

	
 	
 	
 	
 	
 	
 	
 	
 htmltxt[i]	
 =	
 htmltxt[i].replace('\n','')	

	
 	
 	
 	
 	
 	
 	
 	
 htmltxt[i]	
 =	
 htmltxt[i].replace('\t','')	

	
 	
 	
 	
 	
 	
 	
 	
 #Arabic	
 Concepts	
 List	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 htmltxt[i]=='</br></br>'	
 or	

htmltxt[i]=='<font	
 size="4">':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 ArabicConcepts	
 =	
 htmltxt[i+1]	

	
 	
 	
 	
 	
 	
 	
 	
 	
 ArabicConcepts	
 =	

ArabicConcepts.replace('\n','')	

	
 XII	

	
 	
 	
 	
 	
 	
 	
 	
 	
 ArabicConcepts	
 =	

ArabicConcepts.replace('\t','')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 ArabicConcepts	
 !='':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 remove	
 speces	
 but	

keep	
 the	
 concept's	
 inside	
 spaces.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ArabicConcepts	
 =	

ArabicConcepts.strip()	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ArabicConcepts	
 =	

ArabicConcepts.split('>')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B=""	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 c	
 in	

ArabicConcepts:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B	

+=c.strip()	
 +';'	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #strip	
 the	
 last	
 symbol	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B	
 =	
 B.strip(';')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 QuranyConcepts	
 =	

ET.SubElement(verse,'QuranyConcepts')	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 QuranyConcepts.set('lang',	
 'Arabic')	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 QuranyConcepts.set('tree',B.decode('utf-­‐8'))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 elif	
 htmltxt[i]	
 ==	
 '</br>':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 #English	
 Concepts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EnglishConcepts	
 =	

htmltxt[i+1]	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EnglishConcepts	
 =	

EnglishConcepts.replace('\n','')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EnglishConcepts	
 =	

EnglishConcepts.replace('\t','')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EnglishConcepts	
 =	

EnglishConcepts.split('>')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B=""	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 c	
 in	

EnglishConcepts:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B	

+=c.strip('	
 ')	
 +';'	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EQuranyConcepts	
 =	

B.strip(';')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 QuranyConcepts	
 =	

ET.SubElement(verse,'QuranyConcepts')	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 QuranyConcepts.set('lang','English'	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 QuranyConcepts.set('tree',EQuranyConcepts)	

	
 	

	
 	
 	
 	
 	
 	
 	
 	

	
 XIII	

#write	
 the	
 tree	

	
 	
 	
 tree	
 =	
 ET.ElementTree(root)	

	
 	
 	
 tree.write(output,encoding='utf-­‐8')	

	

	
 	
 	

if	
 __name__	
 ==	
 '__main__':	

	
 main()	

	
 XIV	

Appendix	
 F:	
 Code	
 of	
 Converting	
 Quranic	
 Arabic	
 Corpus	
 TXT	

file	
 to	
 XML	
 file	
 (QACtoXML.py)	

#	
 -­‐*-­‐	
 coding:	
 utf-­‐8	
 -­‐*-­‐	

import	
 re	

import	
 xml.etree.ElementTree	
 as	
 ET	

from	
 xml.etree	
 import	
 ElementTree	

	

root	
 =	
 ET.Element('Quran')	

xmlQAC	
 =	
 open('QAC.xml','w')	

	

	

def	
 main():	

	

	
 segmentid=0	

	
 prev_chpater_id=0	

	
 prev_verse_id=0	

	
 prev_seg_id=0	

	
 verse_INDX=0	

	
 	

	
 	

	
 	

	
 QAC	
 =	
 open('quranic-­‐corpus-­‐morphology-­‐0.4.txt').readlines()	

	
 QACLinesLength	
 =	
 len(QAC)	

	
 	

	
 for	
 i	
 in	
 range(QACLinesLength):	

	
 	
 if	
 re.search("LOCATION\tFORM\tTAG\tFEATURES",QAC[i]):	

	
 	
 	
 index=i+1	

	
 	
 	

	
 #chapter/verse/segment	
 info	

	
 for	
 line	
 in	
 range(index,QACLinesLength):	

	
 	
 	

	
 	
 QACLine	
 =	
 QAC[line].split("\t")	
 	

	
 	
 Location	
 =	
 QACLine[0].replace('\n','')	

	
 	
 Location	
 =	
 Location.strip(')')	

	
 	
 Location	
 =	
 Location.strip('(')	

	
 	

	
 	
 form	
 =	
 QACLine[1]	

	
 	
 postag	
 =	
 QACLine[2]	

	
 	
 features	
 =	
 QACLine[3].replace('\n','')	

	
 	
 features	
 =	
 features.strip()	

	
 	
 chapterid,verseid,tokenid=	
 Location_extractor(Location)	

	
 XV	

	
 	
 segmentid+=1	

	
 	
 	

	
 	
 	
 	

	
 	
 if	
 	
 prev_chpater_id	
 !=	
 chapterid:	

	
 	
 	
 chapter	
 =	
 ET.SubElement(root,'chapter')	

	
 	
 	
 chapter.set('id',	
 str(chapterid))	

	
 	
 	
 prev_chpater_id	
 =	
 chapterid	

	
 	
 	
 	

	
 	
 if	
 prev_verse_id	
 !=	
 verseid:	

	
 	
 	
 verse_INDX	
 +=	
 1	
 	

	
 	
 	
 verse	
 =	
 ET.SubElement(chapter,'verse')	

	
 	
 	
 verse.set('id',	
 str(verse_INDX))	

	
 	
 	
 prev_verse_id	
 =	
 verseid	

	
 	
 	

	
 	
 if	
 prev_seg_id	
 !=	
 segmentid:	

	
 	
 	
 seg	
 =	
 ET.SubElement(verse,'seg')	

	
 	
 	
 seg.set('id',	
 str(segmentid))	

	
 	
 	
 prev_seg_id	
 =	
 segmentid	

	
 	
 seg.set('token_id',	
 str(tokenid))	

	
 	
 seg.text=form	

	
 	
 seg.set('POSTag',postag)	

	
 	
 Features_extractor(features,seg)	

	
 	
 	

	

	
 tree	
 =	
 ET.ElementTree(root)	

	
 tree.write(xmlQAC)	

	
 xmlQAC.close()	

	
 	
 	
 	

	

def	
 Location_extractor(Location):	

	
 Location	
 =	
 Location.split(":")	

	
 chapterid	
 =	
 Location[0]	

	
 verseid	
 =	
 Location[1]	

	
 tokenid=Location[3]	
 	

	
 return	
 chapterid,verseid,tokenid	

	

	

	

def	
 Features_extractor(features,seg):	

	
 features	
 =	
 features.split("|")	
 	

	
 for	
 feature	
 in	
 features:	

	
 	
 feature	
 =	
 feature.strip()	

	
 	
 	

	
 	
 #if	
 feature	
 is	
 like	
 PREFIX|A:INTG+	
 or	
 PREFIX|ka+	
 	
 	

	
 	
 if	
 feature	
 ==	
 'PREFIX':	

	
 XVI	

	
 	
 	
 	
 PREFIX_Tager(features[0],features[1],seg)	

	
 	
 	
 	
 break	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 #if	
 feature	
 has	
 a	
 colon	
 :	
 ,	
 such	
 as	
 	
 PRON:3MP	
 or	
 ROOT:qwl:	
 	

	
 	
 elif	
 ":"	
 in	
 feature:	

	
 	
 	
 	
 Twinsfeatures(feature.split(":")[0],feature.split(":")[1],seg)	

	

	
 	
 else:	

	
 	
 	
 	
 #if	
 the	
 feature	
 has	
 a	
 single	
 word	
 such	
 as	
 2MP,	
 M	
 ...	
 	

	
 	
 	
 	
 Singlefeature(feature,seg)	

	
 	
 	

	

	
 	
 	
 	

def	
 PREFIX_Tager(f1,f2,seg):	

	
 	
 #if	
 the	
 Prefix	
 has	
 this	
 form	
 PREFIX|A:INTG+	

	
 	
 if	
 ":"	
 in	
 f2:	

	
 	
 	
 seg.set('PREFIX',f2.split(":")[0])	

	
 	
 	
 	
 	

	
 	
 	
 #put	
 the	
 Prefix	
 in	
 the	
 Grammar	
 node	

	
 	
 	
 seg.set('Grammar',f1)	

	
 	
 	
 	

	
 	
 else:	

	
 	
 #if	
 the	
 Prefix	
 has	
 this	
 form	
 PREFIX|ka+	

	
 	
 	
 seg.set('Grammar',	
 f1)	

	
 	
 	
 seg.set('Prefix_features',f2)	

	
 	
 	
 	

	

	
 	

	

def	
 Twinsfeatures(f1,f2,seg):	

	
 #	
 'POS'	
 feature	
 is	
 deleted	
 since	
 it's	
 repeated:	

	
 if	
 f1=='ROOT':	

	
 	
 seg.set('Root',f2)	

	
 	
 	

	
 elif	
 f1=='PRON':	

	
 	
 #NO	
 need	
 for	
 this	
 peace	
 of	
 info,	
 output.write('\tgrammar2="'+	
 f1	
 +	
 '"')	

	
 	
 Singlefeature(f2,seg)	
 	
 	
 #PRON	
 has	
 an	
 additional	
 features	
 and	
 need	
 to	
 be	
 labeled	

using	
 Singlefeature	
 	

	
 	

	
 elif	
 f1=='SP':	

	
 	
 seg.set('special',f2)	

	
 	

	
 elif	
 f1=='MOOD':	

	
 	
 seg.set('MOOD',f2)	

	
 	
 	

	
 XVII	

	
 elif	
 f1=='LEM':	

	
 	
 seg.set('Lemma',	
 f2.encode('utf-­‐8'))	

	

	

	

def	
 Singlefeature(f1,seg):	

	

	
 if	
 re.match(r'STEM|SUFFIX',f1):	

	
 	
 seg.set('Grammar',	
 f1)	

	
 	

	
 	

	
 elif	
 	

re.match(r'3MS|2MS|1MS|3MD|2MD|1MD|3MP|2MP|1MP|3FS|2FS|1FS|3FD|2FD|1FD|3FP|2FP
|1FP',f1):	

	
 	
 	
 seg.set('Person',	
 f1[0]	
 +	
 'P')	

	
 	
 	
 seg.set('Gender',f1[1])	

	
 	
 	
 seg.set('Number',	
 f1[2])	

	
 	
 	
 	

	
 elif	
 	
 re.match(r'MS|MD|MP|FS|FD|FP',f1):	

	
 	
 	

	
 	
 	
 seg.set('Gender',	
 f1[0])	

	
 	
 	
 seg.set('Number',	
 f1[1])	

	
 	
 	

	
 elif	
 	
 re.match(r'1P|1D|1S|2P|2D|2S|3P|3D|3S',f1):	

	
 	
 	
 seg.set('Person',f1[0]	
 +	
 'P')	

	
 	
 	
 seg.set('Number',	
 f1[1])	

	
 	

	
 elif	
 	
 re.match(r'/[123][MF]',f1):	

	
 	
 	
 seg.set('Person',	
 f1[0]+	
 'P')	

	
 	
 	
 seg.set('Gender',	
 f1[1])	

	
 	
 	
 	

	
 	
 	
 	

	
 elif	
 	
 f1=='M'	
 or	
 f1=='F':	
 #re.match(r'[MF]',f1):	

	
 	
 	
 seg.set('Gender',f1)	

	
 	
 	
 	

	
 elif	
 	
 f1=="P"	
 or	
 f1=="D"	
 or	
 f1=="S":	
 #re.match(r'[PDS]',f1):	

	
 	
 	
 seg.set('Number',f1)	

	
 	

	
 elif	
 	
 f1=='PERF'	
 or	
 f1=='IMPF'	
 or	
 f1=='IMPV':	

	
 	
 	
 seg.set('Aspect',f1)	

	
 	
 	
 	

	
 	

	
 elif	
 	
 f1=='ACT'	
 or	
 f1=='PASS':	

	
 	
 	
 seg.set('Voice',	
 f1)	

	
 	
 	

	
 XVIII	

	
 elif	
 	
 re.match(r'\([IVX]+\)',f1):	

	
 	
 	
 f1=f1.strip(")")	

	
 	
 	
 f1=f1.strip("(")	

	
 	
 	
 seg.set('Verb_Form',f1)	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	

	
 elif	
 	
 f1=="PCPL"	
 or	
 f1=="VN":	
 #re.match(r'PCPL|VN',f1):	

	
 	
 	
 seg.set('Derivation',f1)	

	
 	

	
 	
 	

	
 elif	
 	
 f1=='DEF'	
 or	
 f1=='INDEF':	

	
 	
 	
 seg.set('State',f1)	

	
 	
 	
 	

	
 	
 	
 	

	
 elif	
 	
 f1=='NOM'	
 or	
 f1=='ACC'	
 or	
 f1=='GEN':	

	
 	
 	
 seg.set('Case',f1)	

	
 	

	
 	
 	
 	

	
 elif	
 	
 f1	
 =='SUBJ'	
 or	
 f1	
 =='JUS'	
 or	
 f1	
 =='ENG'	
 or	
 f1	
 =='IND':	

	
 	
 	
 seg.set('Mood',f1)	

	
 	

	
 	

	
 	
 	

	
 	
 	

if	
 __name__	
 ==	
 '__main__':	

	
 main()	

	

	

	

	

	

	
 XIX	

	

Appendix	
 G:	
 Code	
 of	
 Convert	
 QurAna	
 XML	
 files	
 to	
 XML	
 file	

(QurAnatoXML.py)	

#	
 -­‐*-­‐	
 coding:	
 utf-­‐8	
 -­‐*-­‐	

import	
 xml.etree.ElementTree	
 as	
 ET	

from	
 xml.etree	
 import	
 ElementTree	

import	
 glob	

	

conceptfile='Quran-­‐pron/concepts.xml'	

_concepts	
 =	
 ET.parse(conceptfile).getroot()	

concept	
 =	
 open(conceptfile,'r')	

xmlfile	
 =	
 open('QurAna.xml','w')	

verse_INDX=0	

prev_chapter_id=1	

QurAna_files	
 =	
 glob.glob('Quran-­‐pron/*')	

root	
 =	
 ET.Element('Quran')	

	

for	
 i	
 in	
 range(1,115):	

	
 	

	
 file	
 =	
 'Quran-­‐pron/pronxml-­‐'+str(i)+'.xml'	

	
 if	
 file	
 in	
 	
 QurAna_files:	

	
 	
 #chapter	
 id:	

	
 	
 _chapter	
 =	
 ET.parse(file).getroot()	

	
 	
 chapterid	
 =	
 _chapter.get('id')	

	
 	
 chapter	
 =	
 ET.SubElement(root,'chapter')	

	
 	
 chapter.set('id',chapterid)	

	
 	

	
 	
 for	
 node	
 in	
 _chapter.iter():	

	
 	
 	
 if	
 node.tag=='verse':	

	
 	
 	
 	
 verse_INDX	
 +=	
 1	
 	

	
 	
 	
 	
 verseid	
 =	
 node.get('id')	

	
 	
 	
 	
 verse	
 =	
 ET.SubElement(chapter,'verse')	

	
 	
 	
 	
 verse.set('id',str(verse_INDX))	
 	

	
 	
 	
 	
 	

	
 	
 	
 	
 	

	
 	
 	
 	
 	

	
 	
 	
 elif	
 node.tag=='seg':	

	
 	
 	
 	
 segid=node.get('id')	

	
 	
 	
 	
 seg	
 =	
 ET.SubElement(verse,'seg')	

	
 	
 	
 	
 seg.set('id',segid)	

	
 	
 	
 	
 seg.text	
 =	
 	
 node.text	

	
 	
 	
 	
 	

	
 	
 	
 if	
 node.tag=='pron':	

	
 	
 	
 	
 for	
 e	
 in	
 node.getchildren():	

	
 	
 	
 	
 	
 if	
 node.get('con'):	

	
 	
 	
 	
 	
 	
 for	
 concept	
 in	
 _concepts.iter():	

	
 	
 	
 	
 	
 	
 	
 if	
 concept.get('id')	
 ==	
 '2054':	

	
 	
 	
 	
 	
 	
 	
 	
 concept.set('id','1054')	

	
 XX	

	
 	
 	
 	
 	
 	
 	
 if	
 concept.get('id')	
 ==	
 node.get('con'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 x	
 in	

concept.getchildren():	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 x.tag=='arabic':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ArTXT	
 =	

x.text	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg.set('Arconcept',ArTXT.strip())	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 x.tag=='english':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EnTXT	
 =	

x.text	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg.set('Enconcept',EnTXT.strip())	

	
 	
 	
 	
 	
 if	
 	
 node.get('id'):	

	
 	
 	
 	
 	
 	
 	
 	
 seg.set('PRON_id',node.get('id'))	

	
 	
 	
 	
 	
 if	
 	
 node.get('ant'):	

	
 	
 	
 	
 	
 	
 	
 	
 seg.set('ant',node.get('ant'))	

	
 	
 	
 	
 	
 	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	

tree=	
 ET.ElementTree(root)	

tree.write(xmlfile,	
 encoding="utf-­‐8")	
 	
 	
 	
 	

xmlfile.close()	

	

	

	

	
 	

	

	
 XXI	

	

	

Appendix	
 H:	
 Code	
 of	
 Merging	
 the	
 three	
 XML	
 datasets	
 in	
 one	

XML	
 file	
 (merge.py)	

	
 #	
 -­‐*-­‐	
 coding:	
 utf-­‐8	
 -­‐*-­‐	

#import	
 	
 The	
 ElementTree	
 XML	
 API	

import	
 xml.etree.ElementTree	
 as	
 ET	

from	
 xml.etree	
 import	
 ElementTree	

from	
 xml.dom	
 import	
 minidom	

import	
 re	

	

	

	

#Sketch	
 engine	
 POS	
 filter	
 format	

def	
 	
 SKEPosFilter(pos):	

	

	
 	
 if	
 pos	
 ==	
 'N'	
 or	
 pos=='PN'	
 or	
 pos=='IMPN':	

	
 	
 	
 return	
 "Noun|Noun::"+pos	

	
 	
 elif	
 pos=='PRON'	
 or	
 pos=='DEM'	
 or	
 pos=='REL':	
 	
 	
 	

	
 	
 	
 return	
 "Pronouns|Pronouns::"+pos	

	
 	
 	
 	

	
 	
 elif	
 pos=='ADJ'	
 or	
 pos=='NUM':	

	
 	
 	
 return	
 "Nominals|Nominals::"+pos	

	
 	
 	
 	

	
 	
 elif	
 pos=='T'	
 or	
 pos=='LOC':	

	
 	
 	
 return	
 "Adverbs|Adverbs::"+pos	
 	
 	
 	

	
 	
 	
 	

	
 	
 elif	
 pos=='V':	

	
 	
 	
 return	
 "Verb|Verb::"+pos	

	
 	
 	
 	

	
 	
 elif	
 pos=='P':	

	
 	
 	
 return	
 "Prepositions|Prepositions::"+pos	
 	
 	

	
 	
 	

	
 	
 elif	
 pos=='EMPH'	
 or	
 pos=='IMPV'	
 or	
 pos=='PRP':	

	
 	
 	
 return	
 "lam	
 prefixes|lam	
 prefixes::"+pos	

	
 	
 	

	
 	
 elif	
 pos=='CONJ'	
 or	
 pos=='SUB':	

	
 	
 	
 return	
 "Conjunctions|Conjunctions::"+pos	

	
 	
 	
 	

	
 	
 elif	
 pos=='ACC'	
 or	
 pos=='CIRC'	
 or	
 pos=='COM'	
 or	
 pos=='RSLT'	
 or	
 pos=='AMD'or	

pos=='ANS'	
 or	
 pos=='AVR'or	
 pos=='CAUS'	
 or	
 pos=='CERT'	
 or	
 pos=='COND'	
 or	
 pos=='EQ'	
 or	
 pos=='EXH'	

or	
 pos=='EXL'	
 or	
 pos=='EXP'	
 or	
 pos=='FUT'	
 or	
 pos=='INC'	
 or	
 pos=='INTG'	
 or	
 pos=='NEG'	
 or	

pos=='PREV'	
 or	
 pos=='PRO'	
 or	
 pos=='REM'	
 or	
 pos=='RES'	
 or	
 pos=='RET'	
 or	
 pos=='SUP'	
 or	
 pos=='SUR'	

or	
 pos=='VOC':	

	
 	
 	
 return	
 "Particles|Particles::"+pos	

	
 XXII	

	
 	
 	

	
 	
 elif	
 pos=='INL':	

	
 	
 	
 return	
 "Disconnected	
 Letters|Disconnected	
 Letters::"+pos	

	
 	
 else:	

	
 	
 	
 return	
 pos+'|'+pos+'::'+pos	

	

#Sketch	
 engine	
 hierarchal	
 elements	
 format	

def	
 SketchEngineFormat(conceptline):	

	
 conceptline=conceptline.strip()	

	
 conceptline	
 =	
 conceptline.split(';')	

	
 return	
 '|'.join('::'.join(conceptline[:INDX])	
 for	
 INDX	
 in	
 range(1,len(conceptline)+1)).strip()	

	
 	

	

#Function	
 to	
 remove	
 XML	
 Entity	
 References	

def	
 removeXMLReference(filename):	

	
 newfile	
 =	
 filename.split('.')[0]	
 +	
 '_v1.xml'	

	
 output	
 =	
 open(newfile,'w')	

	
 filename	
 =	
 open(filename).readlines()	

	
 for	
 line	
 in	
 filename:	

	
 	
 line	
 =	
 line.replace('"','')	

	
 	
 line	
 =	
 line.replace('&','')	

	
 	
 line	
 =	
 line.replace(''','')	

	
 	
 line	
 =	
 line.replace('<','')	

	
 	
 line	
 =	
 line.replace('>','')	

	
 	
 output.write(line)	

	
 output.close()	

	

def	
 SKEformat(file):	

	

	
 root	
 =	
 ET.parse(file).getroot()	

	
 for	
 node	
 in	
 root.iter():	

	
 	
 if	
 node.get('POSTag'):	

	
 	
 	
 node.attrib['POSTag']=SKEPosFilter(node.get('POSTag'))	

	
 	
 if	
 node.get('Enconcept'):	

	
 	
 	
 node.attrib['Enconcept']='Prnoun	
 Reference(English)|Prnoun	

Reference(English)::'+node.get('Enconcept').strip()	

	
 	
 if	
 node.get('Arconcept'):	

	
 	
 	
 node.attrib['Arconcept']='Prnoun	
 Reference(Arabic)|Prnoun	

Reference(Arabic)::'+node.get('Arconcept').strip()	

	
 tree	
 =	
 ET.ElementTree(root)	
 	
 	

	
 SKE_filename='SKE_Unfied_Quranic_Corpus_Latin.xml'	

	
 SKE_output	
 =	
 open(SKE_filename,'w')	
 	

	
 converttostring	
 =	
 ElementTree.tostring(root,encoding='utf-­‐8')	

	
 parsingTree	
 =	
 minidom.parseString(converttostring)	

	
 convertedtree=	
 parsingTree.toprettyxml(indent="",encoding='utf-­‐8')	

	
 SKE_output.write(convertedtree)	

	
 SKE_output.close()	

	
 removeXMLReference(SKE_filename)	
 	

	

	

#Defining	
 the	
 output	
 files	

	
 XXIII	

filename='Unified_Quranic_Corpus.xml'	

output	
 =	
 open(filename,'w')	

	

SKE_filename='SKE_Unfied_Quranic_Corpus_VLatin.xml'	

SKE_output	
 =	
 open(SKE_filename,'w')	

	

#Parsing	
 the	
 three	
 XML	
 files	

qac_tree=	
 ET.parse("QAC.xml").getroot()	

qurana_tree	
 =	
 ET.parse("QurAna.xml").getroot()	

qurany_tree	
 =	
 ET.parse("Qurany.xml").getroot()	

	

#initialise	
 chapter,verse	
 and	
 segment	
 counters	
 to	
 zero	

Prev_chid=0	

Prev_vid=0	

segid=0	

	

#Define	
 the	
 XML	
 root	
 Element	
 in	
 the	
 two	
 outputs	

root	
 =	
 ET.Element('Quran')	

SKEroot	
 =	
 	
 ET.Element('Quran')	

	

	

#compare	
 the	
 chapters	
 ids	

for	
 ch_qurana	
 in	
 qurana_tree:	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 ch_qac	
 in	
 qac_tree:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 ch_qurany	
 in	
 qurany_tree:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 ch_qurana.get('id')	
 ==	
 ch_qac.get('id')	
 ==	
 ch_qurany.get('id'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 Prev_chid!=ch_qurana.get('id'):	

	
 	
 	
 	
 	
 chapter_MT	
 =	
 ET.SubElement(root,'chapter')	

	
 	
 	
 	
 	
 chapter_MT.set('id',ch_qurana.get('id')	
)	

	
 	
 	
 	
 	
 chapter_SKE	
 =	
 ET.SubElement(SKEroot,'chapter')	

	
 	
 	
 	
 	
 chapter_SKE.set('id',ch_qurana.get('id')	
)	

	
 	
 	
 	
 	
 Prev_chid=chapter_MT.get('id')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 verse_qurana	
 in	
 ch_qurana.getchildren():	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 verse_qac	
 in	
 ch_qac.getchildren():	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 verse_qurany	
 in	
 ch_qurany.getchildren():	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	

verse_qurany.get('id')==verse_qurana.get('id')	
 ==	
 verse_qac.get('id'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 verse_MT	
 =	

ET.SubElement(chapter_MT,'verse')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 verse_MT.set('id',verse_qurana.get('id')	
)	

	
 	
 	
 	
 	
 	
 	
 	
 verse_SKE	
 =	

ET.SubElement(chapter_SKE,'verse')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 verse_SKE.set('id',verse_qurana.get('id')	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 #Merge	
 Qurany	
 concepts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #retive	
 Qurany	
 verse	
 English	
 concepts	
 using	
 the	
 XPath	

	
 	
 	
 	
 	
 	
 	
 	
 if	

verse_qurany.findall('.//QuranyConcepts/[@lang="English"]'):	

	
 XXIV	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 Econcepts=	
 verse_qurany.findall('QuranyConcepts/[@lang="English"]')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	

c	
 in	
 Econcepts:	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 ENcurrent	
 =	
 ET.SubElement(verse_MT,	
 'QuranyConcepts')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 ENcurrent_SKE	
 =	
 ET.SubElement(verse_SKE,	
 'ENQuranyConcepts')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 ENcurrent_SKE.set('tree',	
 SketchEngineFormat(c.get('tree')))	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 for	
 concept	
 in	
 c.get('tree').split(';'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 concept=concept.strip()	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 concept=re.sub('\W+','_',concept)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 if	
 concept=='12SonsofJacob':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 concept='twelveSonsofJacob'	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 ENcurrent	
 =	
 ET.SubElement(ENcurrent,concept)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 #Add	
 the	
 Arabic	
 Qurany	
 Concepts	

to	
 Sketch	
 engine	
 corpus	
 only.	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 if	

verse_qurany.findall('.//QuranyConcepts/[@lang="Arabic"]'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 Econcepts=	
 verse_qurany.findall('QuranyConcepts/[@lang="Arabic"]')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	

c	
 in	
 Econcepts:	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 ENcurrent_SKE	
 =	
 ET.SubElement(verse_SKE,	
 'ARQuranyConcepts')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 ENcurrent_SKE.set('tree',	
 SketchEngineFormat(c.get('tree')))	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 #Merge	
 QAC	
 with	
 QurAna	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 seg_qac	
 in	

verse_qac.getchildren():	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 #FIND	
 POS	
 TAG	
 IF	
 IT	
 IS	
 PRON	
 TAG	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 pos	
 =	
 seg_qac.get('POSTag')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 if	
 pos=='PRON':	

	
 XXV	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 for	
 v	
 in	
 verse_qurana.getchildren():	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 if	
 v.get('PRON_id'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 if	
 v.get('Enconcept'):	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 seg_qac.set("Arconcept",v.get('Arconcept'))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 seg_qac.set("Enconcept",v.get('Enconcept'))	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 del	
 v.attrib['PRON_id']	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 break	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg_MT	
 =	
 ET.SubElement(verse_MT,'seg')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg_MT.attrib	
 =	
 seg_qac.attrib	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg_SKE	
 =	
 ET.SubElement(verse_SKE,'seg')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg_SKE.attrib	
 =	
 seg_qac.attrib	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 #Add	
 Sketch	
 engine	
 Glue	
 tag	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 if	
 seg_SKE.get('token_id')	
 >	
 '1':	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 glue	
 =	
 ET.SubElement(verse_SKE,'g')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 text	
 =	
 str(seg_qac.text)	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 text	
 =	
 text.replace('\n','')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 if	
 	
 seg_SKE.get('Lemma'):	

	
 XXVI	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 Lemma	
 =	
 seg_SKE.get('Lemma')	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 else:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 Lemma=text	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 #Write	
 the	
 vertical	
 line	
 attributes	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg_SKE.text	
 =	
 str(text.decode('utf-­‐8'))	
 +'\t'+	
 str(Lemma.decode('utf-­‐8'))	
 +	
 '\t'	
 +	
 str(pos)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 seg_MT.text	
 =	
 text.decode('utf-­‐8')	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 #close	
 the	
 tree	
 and	
 write	
 it	
 in	
 the	
 output	
 file	

tree	
 =	
 ET.ElementTree(root)	
 	
 	
 	

#no	
 need	
 for	
 pretty	
 print	
 	

converttostring	
 =	
 ElementTree.tostring(root,encoding='utf-­‐8')	

parsingTree	
 =	
 minidom.parseString(converttostring)	

convertedtree=	
 parsingTree.toprettyxml(indent="",encoding='utf-­‐8')	

output.write(convertedtree)	

output.close()	
 	
 	

	

	

#sketch	
 engine	
 file	

	

SKE_tree	
 =	
 ET.ElementTree(SKEroot)	
 	
 	
 	

SKE_tree.write(SKE_output)	

SKE_output.close()	
 	
 	

SKEformat(SKE_filename)	

#remove	
 XML	
 entity	
 reference	
 characters	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

removeXMLReference(filename)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 XXVII	

	

	
 	

	

Appendix	
 I:	
 Code	
 of	
 adding	
 Arabic	
 and	
 Latin	
 text	
 to	
 the	

merged	
 dataset	
 (AddQuranicText.py)	

	

import	
 xml.etree.ElementTree	
 as	
 ET	

from	
 xml.etree	
 import	
 ElementTree	

from	
 xml.dom	
 import	
 minidom	

import	
 re	

	

	

	

def	
 GetText(input,	
 output):	

	
 XML_root=	
 ET.parse("SKE_Unified_Quranic_Corpus_Latin_v1.xml").getroot()	

	
 segments	
 =	
 XML_root.findall('.//seg')	

	
 segINDX	
 =	
 len(segments)	

	
 INDX	
 =0	
 	

	
 for	
 line	
 in	
 input:	
 	
 	
 	

	
 	
 if	
 	
 not	
 re.match('<seg	
 id',line)	
 and	
 not	
 re.match('<chapter	
 id',line)	
 and	
 not	

re.match('<verse	
 id',line)	
 and	
 not	
 re.match('</',line)	
 and	
 not	
 re.match('<g/>',line):	

	
 	
 	
 if	
 line	
 !=	
 '\n'	
 or	
 line	
 !=	
 '\t':	

	
 	
 	
 	
 #print	
 line	

	
 	
 	
 	
 text	
 =	
 line.split('\t')[0].strip('\n')	

	
 	
 	
 	
 lemma	
 =	
 line.split('\t')[2].strip('\n')	

	
 	
 	
 	
 pos	
 =	
 line.split('\t')[1].strip('\n')	
 	
 	
 	

	
 	
 	
 	
 if	
 INDX	
 >=	
 segINDX:	

	
 	
 	
 	
 	
 break	

	
 	
 	
 	
 else:	

	
 	
 	
 	
 	
 segments[INDX].text	
 =	
 text.decode('utf-­‐8')	
 +	
 '\t'+	

lemma.decode('utf-­‐8')	
 +	
 '\t'+	
 pos	

	
 	
 	
 	
 	
 INDX	
 =	
 INDX+1	
 	
 	
 	
 	

	

	
 tree	
 =	
 ET.ElementTree(XML_root)	
 	
 	
 	

	
 #no	
 need	
 for	
 pretty	
 print	
 	

	
 converttostring	
 =	
 ElementTree.tostring(XML_root,encoding='utf-­‐8')	

	
 parsingTree	
 =	
 minidom.parseString(converttostring)	

	
 convertedtree=	
 parsingTree.toprettyxml(indent="",encoding='utf-­‐8')	

	
 output.write(convertedtree)	

	
 #tree.write(output)	

	
 output.close()	
 	
 	

	

	

	
 XXVIII	

	

	

	
 	

AUVSKE	
 =	
 open('UnifiedSKE_AU.xml','w')	

AVSKE	
 =	
 open('UnifiedSKE_AV.xml','w')	

LUSKE	
 =	
 open('UnifiedSKE_LU.xml','w')	

	

AUV	
 =	
 open('IC/integrateAU.txt').readlines()	

AV	
 =	
 open('IC/integrateAV.txt').readlines()	

LUV	
 =	
 open('IC/integrateLU.txt').readlines()	

	

GetText(AUV,AUVSKE)	

GetText(AV,AVSKE)	

GetText(LUV,LUSKE)	

	

	

AUVSKE.close()	

AVSKE.close()	

LUSKE.close()	

	

	

	

	

	

	

	

	

	

	

	

	

	
 XXIX	

	

Appendix	
 J:	
 Sketch	
 engine	
 configuration	
 file	

NAME "Unified Quranic Annotations (Arabic Vowelled)"
PATH "/corpora/ca/user_data/zainabAlquassem/manatee/	
 UnifiedSKE_AU/"
ENCODING "UTF-8"
WPOSLIST ",noun,N|PN, pronoun, PRON|DEM|REL, adverb,LOC|T, Derived nominals,ADJ|
IMPN, verb,V, Preposition,P, l?m Prefixes,EMPH| IMPV| PRP, Conjunction,CONJ|SUB,
Particle,ACC| AMD| ANS| AVR| CAUS| CERT| CIRC| COM| COND | EQ | EXH | EXL| EXP| FUT|
INC| INT| INTG| NE"
LPOSLIST ",noun,N|PN, pronoun, PRON|DEM|REL, adverb,LOC|T, Derived nominals,ADJ|
IMPN, verb,V, Preposition,P, l?m Prefixes,EMPH| IMPV| PRP, Conjunction,CONJ|SUB,
Particle,ACC| AMD| ANS| AVR| CAUS| CERT| CIRC| COM| COND | EQ | EXH | EXL| EXP| FUT|
INC| INT| INTG| NE"
TAGSETDOC "http://corpus.quran.com/documentation/tagset.jsp"
FILESTRUCTURE ""
RIGHTTOLEFT "1"
ALIGNED ""
SUBCDEF ""
SUBCBASE "/corpora/ca/user_data/zainabAlquassem/manatee/	
 UnifiedSKE_AU/subcorp"
DOCSTRUCTURE ""

ATTRIBUTE "word"
ATTRIBUTE "lemma"
ATTRIBUTE "tag"
ATTRIBUTE "lemma_lc" {
 DYNAMIC "utf8lowercase"
 DYNLIB "internal"
 ARG1 "C"
 FUNTYPE "s"
 FROMATTR "lemma"
 TYPE "index"
 TRANSQUERY "yes"
}
ATTRIBUTE "lc" {
 DYNAMIC "utf8lowercase"
 DYNLIB "internal"
 ARG1 "C"
 FUNTYPE "s"
 FROMATTR "word"
 TYPE "index"
 TRANSQUERY "yes"
}

STRUCTURE "chapter" {
ATTRIBUTE "id"{
LABEL "Chapter ID"
}
}
STRUCTURE "verse" {
ATTRIBUTE "id"{
LABEL "Verse ID"
}

	
 XXX	

}
STRUCTURE "seg"{
ATTRIBUTE "id"{
LABEL "Segment ID"
}
ATTRIBUTE "POSTAG"{
 MULTIVALUE "1"
 MULTISEP "|"
 HIERARCHICAL "::"
 LABEL "POS Tag"
}
ATTRIBUTE "State"{
LABEL "Segment State (INDEF=indefinite)"
}
ATTRIBUTE "Morpheme"{
LABEL "Morpheme"
}
ATTRIBUTE "Verb_Form"{
LABEL "Verb Form"
}
ATTRIBUTE "Derivation"{
LABEL "Derivation"
}
ATTRIBUTE "special"{
LABEL "Special Grammar (أأخخووااتتههاا وو إإنن وو ككاانن)"
}
ATTRIBUTE "Case"{
LABEL "Case"
}
ATTRIBUTE "MOOD"{
LABEL "MOOD"
}
ATTRIBUTE "Number"{
LABEL "Number(S=Singular, D=Dual, P=Plural)"
}
ATTRIBUTE "Person"{
LABEL "Person"
}
ATTRIBUTE "Gender"{
LABEL "Gender (M=Masculine, F= feminine)"
}
ATTRIBUTE "Root"{
LABEL "Root"
}
ATTRIBUTE "PREFIX"{
LABEL "Prefix Letter"
}

ATTRIBUTE "Prefix_features"{
LABEL "Prefix Features"
}
ATTRIBUTE "ARconcept"{
LABEL "Arabic QurAna Concepts"
MULTIVALUE "1"
 MULTISEP "|"

	
 XXXI	

 HIERARCHICAL "::"

}
ATTRIBUTE "ENconcept"{
 LABEL "English QurAna Concepts"
MULTIVALUE "1"
 MULTISEP "|"
 HIERARCHICAL "::"
}
}

STRUCTURE "ENQuranyConcepts " {
 ATTRIBUTE "tree"{
 LABEL "Qurany Concepts Tree"
 MULTIVALUE "1"
 MULTISEP "|"
 HIERARCHICAL "::"
}

}

STRUCTURE "ARQuranyConcepts " {
 ATTRIBUTE "tree"{
 LABEL "Qurany Concepts Tree"
 MULTIVALUE "1"
 MULTISEP "|"
 HIERARCHICAL "::"
}

}

STRUCTURE "QuranyConcepts"{
ATTRIBUTE "tree"{
LABEL "Qurany Concepts"
 MULTIVALUE "1"
 MULTISEP "|"

}

}

STRUCTURE "g" {
 DISPLAYTAG 0
 DISPLAYBEGIN "_EMPTY_"
}

WSDEF "/corpora/ca/user_data/zainabAlquassem/sg/grammar_12.txt"
WSPOSLIST ","

	
 XXXII	

	

Appendix	
 K:	
 Part	
 of	
 Unified	
 Quranic	
 Ontology	

(UnifiedQuranicOntology.owl)	

	

	

	

	

	

	

	
 XXXIII	

	

Appendix	
 L:	
 Abdullah	
 Alfaifi	
 evaluation	

Evaluation	
 of	
 Luluh	
 Aldhubayi’s	
 Project	

Abdullah	
 Alfaifi	

Introduction	

This	
 is	
 a	
 brief	
 evaluation	
 of	
 the	
 Unified	
 Quranic	
 Annotations	
 and	
 Ontologies	
 project	
 of	
 Luluh	

Aldhubayi.	
 I	
 didn’t	
 have	
 full	
 information	
 about	
 the	
 project	
 except	
 a	
 PowerPoint	
 presentation	
 file	

(.pptx)	
 which	
 explains	
 (1)	
 how	
 to	
 login	
 to	
 the	
 project	
 account	
 on	
 the	
 SketchEngine	
 website,	
 (2)	
 some	

features	
 that	
 can	
 be	
 used	
 for	
 searching	
 the	
 corpus	
 (PoS,	
 Syntactic,	
 and	
 Semantic	
 features),	
 but	
 it	
 can	

be	
 seen	
 that	
 the	
 project	
 idea	
 is	
 to	
 provide	
 users	
 with	
 a	
 unified	
 method	
 of	
 annotation	
 which	
 can	
 be	

used	
 for	
 morphological,	
 syntactic,	
 and	
 semantic	
 search	
 and	
 analysis	
 in	
 the	
 Quranic	
 text.	
 	

As	
 a	
 specialist	
 in	
 Arabic,	
 my	
 evaluation	
 will	
 focus	
 on	
 searching	
 the	
 Arabic	
 text,	
 unvowelled	
 in	

particular	
 (Error!	
 Reference	
 source	
 not	
 found.),	
 which	
 may	
 clearly	
 show	
 how	
 we	
 can	
 apply	
 the	

corpus	
 features	
 to	
 our	
 search	
 and	
 analysis.	

	

Figure	
 1:	
 The	
 main	
 screen	
 of	
 the	
 project	
 on	
 Sketch	
 Engine	

	

	

	

Evaluation	

Figure	
 2:	
 The	
 “Arabic_unvowelled”	
 corpus	
 was	
 selected	
 for	
 the	
 search	

	
 XXXIV	

The	
 evaluation	
 started	
 by	
 searching	
 for	
 the	
 pronoun	

	."كك" I	
 typed	

	"كك" in	
 the	
 Simple	
 query	
 text-­‐field,	

and	
 selected	
 Pronoun	
 from	
 the	
 list	
 POS	
 TAG	
 to	
 generate	
 concordances	
 that	
 include	
 this	
 specific	

pronoun	
 (Figure	
 3).	
 1,166	
 instances	
 were	
 shown	
 (Figure	
 4).	

	

	

Figure	
 3:	
 Searching	
 for	
 the	
 pronoun	

	"كك"

	
 XXXV	

	

Figure	
 4:	
 Results	
 of	
 searching	
 for	

	"كك"

I	
 then	
 clicked	
 on	
 the	
 View	
 options	
 on	
 the	
 left	
 hand	
 side	
 of	
 the	
 screen,	
 and	
 in	
 order	
 to	
 hide	
 the	

metadata	
 I	
 unselected	
 all	
 attributes	
 check	
 boxes	
 except	
 word,	
 then	
 selected	
 the	
 tag	
 <g>	
 from	

Structures	
 list	
 to	
 remove	
 spaces	
 between	
 segmented	
 morphemes	
 and	
 shows	
 Arabic	
 words	
 in	
 a	

correct	
 form	
 (e.g.	

	"یينفقق وونن" to	
 be	

	,("یينفقوونن" then	
 clicked	
 on	
 the	
 "Change	
 View	
 Option"	
 button	
 (Figure	
 5),	

this	
 showed	
 the	
 concordances	
 of	
 all	
 instances	
 of	
 the	
 pronoun	

	"كك" with	
 no	
 metadata	
 (Figure	
 6).	

	

Figure	
 5:	
 Changing	
 the	
 view	
 options	
 to	
 hide	
 the	
 metadata	

	
 XXXVI	

	

Figure	
 6:	
 Results	
 of	
 the	
 pronoun	
 كك"" 	
 after	
 hiding	
 the	
 metadata	

In	
 order	
 to	
 have	
 concordances	
 of	
 the	
 dual	
 form	
 of	
 the	
 same	
 pronoun	

	,"كك" the	
 feature	
 D	
 was	
 selected	

from	
 the	
 list	
 NUMBER(S=SINGULAR,	
 D=DUAL,	
 P=PLURAL)	
 (Figure	
 7).	
 However,	
 a	
 message	
 of	
 “Empty	

result”	
 was	
 shown	
 (Figure	
 8).	

	

Figure	
 7:	
 How	
 to	
 search	
 using	
 CQL	
 in	
 Sketch	
 Engine	

	

Figure	
 8:	
 Empty	
 result	
 when	
 selecting	
 the	
 dual	
 feature	
 with	
 the	
 pronoun	

	"كك"

	
 XXXVII	

The	
 solution	
 was	
 to	
 enter	
 the	
 dual	
 form	

	"كما" (Figure	
 9)	
 with	
 unselecting	
 the	
 feature	
 D,	
 this	
 gave	
 the	

correct	
 result	
 (Figure	
 10).	

	

Figure	
 9:	
 Searching	
 for	
 the	
 dual	
 form	
 of	
 the	
 pronoun	
 "كك"

	

Figure	
 10:	
 The	
 result	
 appears	
 when	
 using	
 the	
 form	

	"كما"

I	
 noticed	
 that	
 using	
 the	
 feature	
 D	
 from	
 the	
 list	
 NUMBER(S=SINGULAR,	
 D=DUAL,	
 P=PLURAL),	
 would	

be	
 useless	
 if	
 I	
 still	
 need	
 to	
 change	
 the	
 form	
 itself.	
 In	
 other	
 words,	
 I	
 can	
 search	
 for	
 the	
 form	

	"كما"
directly	
 with	
 no	
 need	
 to	
 select	
 the	
 dual	
 feature	
 check	
 box,	
 as	
 I	
 already	
 did.	

It	
 is	
 known	
 in	
 traditional	
 Arabic	
 linguistics	
 that	
 some	
 pronouns	
 have	
 one	
 lemma	
 for	
 their	
 forms.	
 For	

instance,	
 the	
 pronoun	
 [Hā’	
 ’lġā’ib]	
 "االغائبب "ھھھهاء 	
 has	
 five	
 different	
 forms:	

	
 XXXVIII	

"هه" .1 	
 (3rd	
 	
 person,	
 Masculine,	
 Singular)	

"ھھھها" .2 	
 (3rd	
 	
 person,	
 Feminine,	
 Singular)	

"ھھھهما" .3 	
 (3rd	
 	
 person,	
 Masculine	
 or	
 Feminine,	
 Dual)	

"ھھھهمم" .4 	
 (3rd	
 	
 person,	
 Masculine,	
 Plural)	

"ھھھهنن" .5 	
 (3rd	
 	
 person,	
 Feminine,	
 Plural)	
 	

They	
 share	
 the	
 same	
 lemma	

	"هه" which	
 is	
 the	
 same	
 form	
 as	
 the	
 3_M_S.	
 The	
 additional	
 characters	
 then	

(e.g.	

	,"اا"
	,"ما"
	,"مم"
	("نن" indicate	
 the	
 features	
 of	
 gender	
 and	
 number,	
 so	
 some	
 linguists	
 consider	
 the	

pronoun	

	,"ھھھهما" for	
 example,	
 as	
 two	
 morphemes	

	"هه") and	

	.("ما" This	
 is	
 also	
 applied	
 to	
 the	
 pronoun	

	"كك"
(with	
 a	
 sole	
 different	
 in	
 the	
 3_F_S	
 form	
 which	
 has	
 a	
 short	
 vowel	

)ـِ (instead	
 of	
 the	
 long	
 vowel	

	.("اا" 	

On	
 the	
 other	
 hand,	
 if	
 I	
 search	
 for	
 two	
 pronouns	
 that	
 have	
 the	
 same	
 form,	
 in	
 such	
 case	
 features	
 work	

perfectly.	
 For	
 instance,	
 searching	
 for	
 ""ككَ 	
 (3_M_S)	
 and	
 ""ككِ 	
 (3_F_S)	
 can	
 be	
 done	
 in	
 the	
 unvowelled	

corpus	
 using	
 the	
 gender	
 feature	
 (Figure	
 11)	
 which	
 shows	
 good	
 results	
 (Figure	
 12	
 and	
 Figure	
 13).	

	

Figure	
 11:	
 Using	
 the	
 gender	
 feature	
 to	
 distinguish	
 between	
 different	
 pronouns	

	

Figure	
 12:	
 Result	
 of	
 searching	
 for	
 the	
 feminine	
 form	
 of	
 the	
 pronoun	

	"كك"

	
 XXXIX	

	

Figure	
 13:	
 Result	
 of	
 searching	
 for	
 the	
 masculine	
 form	
 of	
 the	
 pronoun	

	"كك"

My	
 suggestion	
 for	
 improving	
 the	
 use	
 of	
 the	
 features	
 included	
 is	
 to	
 add	
 more	
 attention	
 to	
 the	

method	
 used	
 for	
 extracting	
 lemmas,	
 which	
 is	
 linguistically	
 important	
 in	
 some	
 cases	
 of	
 corpus	

analysis.	

	

Conclusion	

It	
 can	
 be	
 concluded	
 from	
 this	
 brief	
 evaluation	
 that	
 the	
 Unified	
 Quranic	
 Annotations	
 and	
 Ontologies	

corpus	
 seems	
 to	
 have	
 well-­‐structured	
 design	
 which	
 provide	
 useful	
 features	
 (PoS,	
 Syntactic,	
 and	

Semantic)	
 that	
 enable	
 users	
 to	
 search	
 in	
 the	
 Quranic	
 text	
 for	
 different	
 purposes,	
 Quranic	
 and	

linguistic	
 studies.	

I	
 believe	
 that	
 a	
 corpus	
 with	
 such	
 number	
 of	
 features	
 can	
 be	
 beneficial	
 for	
 many	
 researchers	
 in	

different	
 domains,	
 so	
 I	
 recommend	
 Luluh	
 to	
 develop	
 a	
 brief	
 guideline	
 that	
 explains	
 in	
 details	
 how	
 to	

benefit	
 from	
 each	
 feature	
 with	
 examples	
 illustrating	
 to	
 the	
 potential	
 users	
 the	
 advantages	
 of	
 this	

corpus.	
 Another	
 recommendation	
 is	
 to	
 publish	
 a	
 short	
 research	
 paper	
 –collaborating	
 with	
 some	

academic	
 members–	
 in	
 order	
 to	
 introduce	
 this	
 corpus	
 to	
 a	
 broader	
 audience	
 of	
 researchers.	

	

	
 XL	

Appendix	
 M:	
 Sketch	
 engine	
 system	
 manual	
 provided	
 to	

evaluators:	

	
 XLI	

	
 XLII	

	
 XLIII	

	
 XLIV	

	
 XLV	

	
 XLVI	

	
 XLVII	

	
 XLVIII	

	
 XLIX	

	
 L	

	
 LI	

	
 LII	

	
 LIII	

	
 LIV	

	
 LV	

	
 LVI	

	
 LVII	

	
 LVIII	

	
 LIX	

	
 LX	

	
 LXI	

	
 LXII	

	
 LXIII	

	
 LXIV	

