
School of Computing
FACULTY OF ENGINEERING AND

PHYSICAL SCIENCE

Killer Sudoku as a Constraint Satisfaction Problem

Henry Davies

Submitted in accordance with the requirements for the degree of
Computer Science BSc

2019-2020

40 credits

i

The candidate confirms that the following have been submitted.

Items Format Recipient(s) and Date
Source code GitLab repository:

https://gitlab.com/
sc16hd/sc16hd_project

Public (08/05/2020)

Written report PDF Minerva (08/05/2020)

Type of project: Exploratory Software

The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

(Signature of Student) Henry Davies

c○ 2019-2020 The University of Leeds and Henry Davies

https://gitlab.com/sc16hd/sc16hd_project
https://gitlab.com/sc16hd/sc16hd_project

ii

Summary

A constraint satisfaction problem (CSP) is way of formulating a mathematical problem. CSPs
are studied in the field of artificial intelligence. Killer Sudoku is a popular variant of the
famous Sudoku puzzle. This project expresses Killer Sudoku as a CSP and compares the
performance of different computational methods for solving it. Solving is performed by software
built as part of the project that implements constraint solving methods.

iii

Acknowledgements

I would like to thank my supervisor Dr. Isolde Adler for her guidance and support throughout
the project. I would also like to thank my assessor Dr. Brandon Bennett for providing useful
feedback.

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Project aims and objectives . 2
1.3 Deliverables . 2

2 Project methodology 4
2.1 Initial plan . 4
2.2 Risk mitigation . 4

3 Background Research 5
3.1 What is a constraint satisfaction problem? . 5

3.1.1 Formal definition . 5
3.2 Constraint propagation . 6

3.2.1 Enforcing local consistency conditions . 6
3.2.1.1 Node consistency . 6
3.2.1.2 Arc consistency . 7
3.2.1.3 Higher level consistencies . 7

3.2.2 Rules iteration . 7
3.2.2.1 Propagator scheduling . 8

3.2.3 Global Constraints . 8
3.3 Search . 9

3.3.1 Search algorithms . 9
3.3.1.1 Generate and test . 9
3.3.1.2 Backtrack . 9
3.3.1.3 Backjump . 10
3.3.1.4 Forward checking . 10

3.3.2 Variable ordering . 11
3.3.3 Run time . 12

3.4 Constraint Programming Systems . 12
3.4.1 MiniZinc . 12

3.5 Killer Sudoku . 13
3.5.1 What is a Killer Sudoku? . 13
3.5.2 Human solving techniques . 14

3.5.2.1 Standard Sudoku techniques . 14
3.5.3 Killer Sudoku . 16

3.5.3.1 The ‘45 rule’ . 16
3.5.3.2 Cage elimination . 17

3.5.4 Puzzle difficulty . 17
3.5.5 Daily Killer Sudoku . 18

iv

CONTENTS v

4 Design and implementation 19
4.1 Design . 19

4.1.1 Expressing Killer Sudoku as a CSP . 19
4.1.2 Motivation for rule solve . 20

4.1.2.1 Choosing human techniques to implement as propagators 21
4.1.2.2 Propagator scheduling . 21

4.1.3 Search solve design . 22
4.1.4 MiniZinc solve design . 22

4.2 Implementation . 22
4.2.1 Technology . 22
4.2.2 Code structure . 22
4.2.3 Implementation of rule solve, search solve and MiniZinc solve 23

4.2.3.1 Rule solve implementation . 23
4.2.3.2 Search solve implementation . 24
4.2.3.3 MiniZinc solve implementation 25

4.2.4 Testing . 25
4.2.5 Obtaining and processing puzzle data . 25
4.2.6 Workflow . 26
4.2.7 Operating the solver . 26

5 Analysis 31
5.0.1 Performance of rule solve against the Gecode solver 31
5.0.2 Performance of search methods . 32
5.0.3 Performance of MiniZinc solve when running find_pseudo_cages() prop-

agator beforehand . 34
5.0.4 Performance of forward checking with different variable orderings 35

6 Conclusion 37
6.1 Summary . 37
6.2 Future work . 38
6.3 Legal, Social, Ethical and Professional issues . 39

6.3.1 Legal issues . 39
6.3.2 Social issues . 39
6.3.3 Ethical issues . 39
6.3.4 Professional issues . 39

6.4 Self Assessment . 39

References 41

Appendices 43

A External resources 44

B Solving configuration specification 45

C Results output 47

CONTENTS 1

D Software Repository 48

Chapter 1

Introduction

1.1 Overview

A constraint satisfaction problem (CSP) is way of formulating a mathematical problem. A CSP
can be solved using constraint satisfaction methods. There has been much study into
improving constraint satisfaction, both by increasing the efficiency of existing methods and
creating new methods. Improving constraint satisfaction methods is important because they
can be used to solve real life problems, such as scheduling and resource allocation [1].
Constraint satisfaction methods can be developed by observing their performance on
theoretical problems, such as the 4 Queens problem and map colouring problems.

On 12 November 2004 The Times newspaper began publishing Sudoku puzzles in the puzzle
section [2]. The puzzle presents a seemingly simple challenge: fill the puzzle grid with the
numbers 1 to 9 such that no row, column or box contains the same number. This challenge soon
began to captivate the minds of thousands, and the puzzle’s popularity boomed. Following up
on the popularity of Sudoku variations began to enter circulation that added additional rules,
presenting fresh challenges to solvers. These include Killer Sudoku, Kakuro and Jigsaw Sudoku.

Sudoku puzzles have been the subject of much study in the field of constraint satisfaction.
However, the study of its variants, namely Killer Sudoku, has been minimal in comparison.
This project will study Killer Sudoku as a CSP.

1.2 Project aims and objectives

The aim of the project is to express Killer Sudoku as a CSP and compare the performance of
different constraint satisfaction methods for solving it. The objectives of the project are:

• Introduce the area of constraint satisfaction

• Introduce Killer Sudoku and express it as a CSP

• Build a solver than solves Killer Sudoku puzzles using a variety of constraint satisfaction
methods

• Solve Killer Sudoku puzzles using a general purpose constraint solver

• Analyse and explain the performance of different solving methods

1.3 Deliverables

The deliverables for this project are the following:

2

CHAPTER 1. INTRODUCTION 3

• Source code for the solver. This is stored in a GitLab repository found here:
https://gitlab.com/sc16hd/sc16hd_project. A README file is included with
installation instructions.

• The final report. This includes details on operating the solver.

https://gitlab.com/sc16hd/sc16hd_project

Chapter 2

Project methodology

2.1 Initial plan

Work on this project began in October 2019. This early work focused on selecting a CSP to
study and carrying out background research. This work was not particularly structured and
did not follow a plan. Development of the solver began in January 2020. The work was
organised into the following segments:

1. Develop solver implementing human techniques

2. Develop solver implementing search techniques

3. Solve Killer Sudoku puzzles using general purpose constraint solvers

4. Develop a tool to speed up translation of Killer Sudoku puzzles into a computer readable
format

5. Conduct a comparison of the performance of different solving methods for solving Killer
Sudoku puzzles

6. Write the final report

The development work required for segments 1, 2, 3 and 4 could be performed independently,
so the agile methodology was adopted. This allowed any major difficulties in developing each
segment to be discovered early on. It also allowed integration of each segment at early stages of
development. This mitigated the risk of integration becoming a huge task. This risk typically
arises when following the waterfall methodology.

2.2 Risk mitigation

There were no external dependencies for this project. Therefore the only risks for the project
were facing unexpected difficulties that could have had significant impacts on development, and
not being able to devote as much time to the project as intended. These risks could be
mitigated by decreasing the complexity of the project. This could be achieved by taking
some/all of the following actions:

• Implement fewer human methods than originally intended

• Implement fewer search methods than originally intended

• Do not integrate human and search methods

• Do not develop a tool to speed up translation of Killer Sudoku puzzles into a computer
readable format

• Compare the performance of solving methods less extensively

4

Chapter 3

Background Research

3.1 What is a constraint satisfaction problem?

A constraint satisfaction problem (CSP) is way of formulating a mathematical problem. A CSP
is defined by a set of variables, domains and constraints and is solved by applying constraint
satisfaction methods [3]. These methods can be split into two types, constraint propagation
and search.

3.1.1 Formal definition

A CSP is formally defined by a triple (X, D, C) [3].

X is a set of variables: {x1, ..., xn}
D is a set of domains: {D1, ..., Dn}
C is a set of constraints: {C1, ..., Cm}

Each variable xi has an associated domain Di. A variable xi can be assigned to any of the
values in Di. A constraint defines the combination of values that a subset of variables can be
assigned. A constraint Cj is defined by a tuple, (tj , Rj). tj ⊂ X is a subset of k variables and
Rj is a k-ary relation on the corresponding subset of domains [3]. A constraint Cj is satisfied if
the values assigned to variables tj satisfy the relation Rj .

An assignment is a mapping of variables to values. An assignment is consistent if all
constraints are satisfied. An assignment is complete if all variables are assigned. An assignment
that has any unassigned variables is a partial assignment. An assignment is a solution if it is
both consistent and complete [4].

We’ll now introduce a very simple CSP in words, and then express it in the form (X, D, C):

‘x must be smaller than y. x can take the value of 2, 5 or 7. y can take the value of 3, 4 or 6.’

There are only two variables, x and y:

X = {x, y}

The domain of x is 2, 5 and 7, and the domain of y is 3, 4 and 6:

Dx = {2, 5, 7}

Dy = {3, 4, 6}

D = { {2, 5, 7} , {3, 4, 6} }

5

CHAPTER 3. BACKGROUND RESEARCH 6

There is only one constraint, which is that x must be smaller than y. This is a binary
constraint, as it relates exactly two variables. Labelling the constraint with the number 1, the
constraint is:

C1 = ({x, y} , {(2, 3), (2, 4), (2, 6), (5, 6)})

As this is the only constraint, the set of constraints C is:

C = { ({x, y} , {(2, 3), (2, 4), (2, 6), (5, 6)}) }

3.2 Constraint propagation

Constraint propagation is a term used to describe any reasoning that updates the existing set of
domains or set of constraints to be more restrictive [5, p. 5]. A domain is made more restrictive
by removing one or more of its values. This is called filtering. The set of constraints are made
more restrictive by modifying existing specific constraints to permit fewer assignments or by
adding new constraints. Constraint propagation is achieved via inference on the existing
domains and constraints. When a CSP is made more restrictive, an equivalent CSP is
produced. Equivalent CSPs have the same set of solutions [4]. Due to the more restrictive
constraints and domains the equivalent CSP is simpler and easier to solve.

Methods of constraint propagation can be organised into two different categories, enforcing
local consistency conditions and iteration of reduction rules.

3.2.1 Enforcing local consistency conditions

Enforcing a local consistency condition filters the domains of a subset of variables such that all
possible assignments of the variables satisfy a subset of constraints. The subset of constraints is
determined by the level of local consistency that is being enforced. There are several levels of
local consistency, increasing from node consistency to arc consistency to path consistency. The
higher the level of consistency, the more restrictive the CSP becomes. The computational cost
of enforcing a level of local consistency increases as the level increases however. There exist
several different algorithms for enforcing each level of consistency.

3.2.1.1 Node consistency

A variable xi is node consistent if for all possible assignments of xi to values in Di, every unary
constraint on variable xi is satisfied [4]. A unary constraint concerns only one variable. Local
node consistency can be enforced by removing all elements of Di that do not satisfy the unary
constraints on variable xi. For example, a variable x1 has domain D1 = {1, 2, 3, 4, 5}. A unary
constraint C1 constrains x1 to be greater than 2. Enforcing node consistency removes values
from the domain that do not satisfy the constraint, resulting in D1 being filtered and updated
to {3, 4, 5}.

A CSP is globally node consistent if all variables are node consistent. Global node consistency
can be achieved by enforcing local node consistency on all variables. As unary constraints only

CHAPTER 3. BACKGROUND RESEARCH 7

concern a single variable, global node consistency can be enforced in one pass [4].

3.2.1.2 Arc consistency

A variable xi is arc consistent with variable xj if for every value a ∈ Di there exists a value
b ∈ Dj such that the assignment of xi to a and xj to b satisfies the binary constraint between
variables xi and xj [4]. If the assignment of variable xi to a and xj to b satisfies the binary
constraints, then a supports b. An arc arc(xi, xj) represents the binary constraint imposed on
xi by xj . To enforce arc consistency on arc(xi, xj), all values a ∈ Di that are not supported by
a value b ∈ Dj are removed from Di. For example, look back at the CSP introduced in section
3.1.1. If arc consistency is enforced on arc(x, y), 7 is removed from Dx, as there is no value in
Dy that supports assigning x to 7. Arc consistency is directional, meaning that if xi is arc
consistent with xj it does not necessarily mean that xj is arc consistent with xi.

This definition for arc consistency is limited to binary normalised CSPs. A binary normalised
CSP contains binary and unary constraints only. It is possible to encode every non-binary
constraint as a binary constraint [6].

If arc (xi, xj) is known to be consistent and arc consistency is enforced on arc (xj , xk), arc
(xi, xj) is no longer guaranteed to be consistent. Therefore global arc consistency cannot be
enforced in one pass. A simple algorithm developed for enforcing global arc consistency is
AC-1. In a single ‘pass’ the the algorithm enforces arc consistency on every arc in turn. If any
domains are filtered, the algorithm performs another pass. If a pass does not filter any domains
the algorithm ends, indicating the CSP is globally arc consistent [4].

3.2.1.3 Higher level consistencies

Arc consistency is considered the most important level of local consistency [5, p. 91]. This is
due to its use in solvers and because improvements in the efficiency of arc consistency
algorithms can be applied to algorithms that enforce other levels of consistency [5, p. 40].
However, higher levels of consistency do exist such as path consistency. Although enforcing
higher levels of consistency achieves more propagation than enforcing lower levels consistency,
the computational overhead in doing so is large [4].

3.2.2 Rules iteration

A reduction rule specifies the conditions necessary for filtering of a domain (or domains) to
occur [5, p. 68]. In section 3.1.1 constraints are formally defined with a relation that determines
the assignments the constraint permits. However, constraints are rarely implemented in this
way for two reasons. The first is that storing all permissible assignments for a constraint takes
up a lot of space. The second is that most common constraints have a structure that can be
taken advantage of when performing constraint propagation [5, p .497]. It is much harder to
take advantage of this structure if the constraint is implemented using the set of permissible
assignments. Implementing constraints using propagators addresses both these issues. A
propagator, p, is a function that maps domains to domains. Constraints are effectively

CHAPTER 3. BACKGROUND RESEARCH 8

implemented by a propagator or collection of propagators. Iterating propagators achieves
constraint propagation, hence the name ‘rules iteration’. Two properties of propagators are
decreasing and correctness [5, p .497]:

• Decreasing - For all domains D, p(D) ⊆ D

• Correctness - p will only filter values that cannot exist in a solution

If a propagator is not decreasing the propagator could potentially add values to domains,
achieving the opposite affect of constraint propagation. If a propagator is not correct, it may
falsely indicate a solution does not exist. These two properties ensure that propagation will
terminate and is correct. A propagator is at a fixed point if executing the propagator does not
filter any values. A mutual fixed point is reached when all propagators are at a fixed point [7,
p .23].

The strength of a propagator is determined by how much filtering the propagator performs. If
propagators p1 and p2 implement the same constraint, p1 is stronger than p2 if for all domains
D, p1(D) ⊆ p2(D). Stronger propagators filter more values than weaker propagators do for the
same constraint. As a result, using stronger propagators over weaker propagators makes the
CSP more restrictive. However, stronger propagators usually have higher algorithmic
complexity compared to weaker propagators, resulting in a higher cost of execution. Therefore
it is important to balance the amount of filtering performed by a propagator and the
propagator’s run time when selecting a propagator to execute [7, p .21].

3.2.2.1 Propagator scheduling

To achieve efficient constraint propagation propagators must be executed according to a
schedule. One method of scheduling is event directed scheduling [7, p .51]. An event describes a
modification to a domain. Propagators subscribe to events. When a propagator is executed, it
may trigger an event. Propagators that are subscribed to the triggered event are scheduled in a
queue. Propagators are executed sequentially from the queue, possibly triggering further events
leading to further propagators being scheduled. Once the queue is empty a mutual empty fixed
point has been reached. It is then not possible for any propagator to perform any more filtering.

A naive way of implementing event directed scheduling is to firstly create an event for every
domain that describes any modification to the domain. Every propagator subscribes to all
events. This is clearly inefficient, as some propagators that are queued may have no
dependence on the modified domain, and thus will perform no filtering when executed. A more
sophisticated approach is to only subscribe propagators to events that describe modifications to
domains that are relevant to the propagator.

3.2.3 Global Constraints

A global constraint implicitly defines the relation between a non-fixed number of variables [8]
[5, p .169]. An example is the alldifferent(xi, ..., xn) constraint. As the name suggests, this

CHAPTER 3. BACKGROUND RESEARCH 9

constraint forces all variables xi, ..., xn to be assigned different values. This is the formal
definition of the constraint [9]:

alldifferent(x1, ..., xn) = { (d1, ..., dn) | di ∈ Di, di 6= dj for i 6= j }

It is possible to express every global constraint explicitly using a number of binary constraints.
For example, the constraint alldifferent(x1, x2, x3) could be expressed instead by 3 binary
constraints x1 6= x2, x1 6= x2 and x2 6= x3. In this case only 3 explicit constraints are needed,
but if a constraint that restricted 10 variables from having the same value was required, then
45 binary constraints would be required. It’s obvious that modelling with global constraints has
the advantage of making modelling simpler. Another advantage is that propagating a global
constraint is more powerful than propagating all the equivalent binary constraints [10]. To
show this lets create some domains for the variables x1, x2 and x3 in this example: D1 =
{5, 7}, D2 = {5, 7} and D3 = {5, 7, 8}. Propagating each binary constraint (equivalent to
enforcing arc-consistency) would not result in any filtering. However, propagating the
alldifferent constraint would filter values 5 and 7 from D3.

3.3 Search

Search methods systematically explore the search space of a CSP attempting to find solutions.
The search space of a CSP is the set of all possible assignments, both partial and complete. A
search algorithm employs a strategy to explore the search space. A complete search algorithm
(not to be confused with complete assignment) will always find a solution if one exists [5,
p .85]. Therefore search algorithms can be used to show whether a solution exists or not for a
given CSP.

3.3.1 Search algorithms

3.3.1.1 Generate and test

Generate and test is a very simple search algorithm. Every possible complete assignment is
generated and tested to see if it is a solution. In the worst case every possible complete
assignment will be generated before a solution is found. This is equal to the Cartesian product
of all domains. Generate and test is very inefficient compared to other search algorithms [4].

3.3.1.2 Backtrack

Backtrack performs a depth-first search that incrementally builds a solution by extending a
partial assignment [4]. Backtrack is a complete search. When backtrack is first called the
partial assignment is the empty assignment (no variables have been assigned). Backtrack must
be provided with a variable order. The variable order determines the order by which variables
are ‘processed’. The default variable order usually orders variables in the order they were
defined [11]. When a variable is processed, backtrack attempts to extend the partial assignment
by assigning the variable to a value in its domain such that the extended assignment is
consistent. If every possible assignment of the variable to a value in its domain is inconsistent,
the search ‘backtracks’. This indicates that the partial assignment cannot be extended to a

CHAPTER 3. BACKGROUND RESEARCH 10

solution, and is called a ‘dead-end’. Backtrack unassigns the current variable, and then starts
reprocessing the previous variable in the variable order.

Backtrack is highly susceptible to thrashing. Thrashing occurs when search fails repeatedly for
the same reason [4]. To explain thrashing lets create a CSP:

Variables: x1, x2, x3
Domains: D1 = {4, 6, 7}, D2 = {1, 3}, D3 = {2, 6}
Constraints: x1 > x2, x1 = x3

Backtrack processes x1 and x2, assigning x1 = 4 and x2 = 1, as these values satisfy the
constraint x1 > x2. Backtrack then processes x3. Backtrack attempts to extend the partial
assignment by assigning x3 to 2 and 6 in turn. Neither of these assignments satisfy the
constraint x1 = x3, so a dead-end has been reached. The search backtracks, and starts
reprocessing x2, this time assigning x2 = 3. Backtrack then starts processing x3. Once again,
the partial assignment cannot be extended, as neither assignment of x3 to 2 or 6 satisfies the
constraint x1 = x3. Search has once again reached a dead-end. Backtrack ‘backtracks’, and
starts reprocessing variable x1 as D2 has now been exhausted. In this case search has failed
twice for the same reason, which is that the assignment x1 = 4 cannot exist in a solution.

Thrashing is common with backtrack as the search does not consider which variable
assignments are causing inconsistency.

3.3.1.3 Backjump

Backjump search was designed to address thrashing [4]. Backjump is a complete algorithm.
Backjump also performs a depth-first search, but instead of performing a ‘backtrack’ performs
a ‘backjump’. Instead of reprocessing the previous variable in the variable order when unable
to extend a partial assignment, backjump reprocesses the latest variable in the variable order
whose assignment caused an inconsistency. In the CSP above, the partial assignment could not
be extended to x3 because the constraint x1 = x3 could not be satisfied. No constraint
concerning variable x2 was violated. Therefore the latest variable in the variable order whose
assignment caused inconsistency was x1. Backjump ‘backjumps’, and starts reprocessing x1.
Backjump skips the futile work that was performed by backtrack.

3.3.1.4 Forward checking

By integrating search and constraint propagation methods it is possible to create hybrid
methods [5, p .89]. Forward checking is a hybrid method. Forward checking is a complete
algorithm. Forward checking guarantees arc consistency between all assigned variables in the
current partial assignment [5, p .63]. For a given variable xi, forward checking extends the
current assignment by assigning xi to a value in its domain. A consistency check is then
performed by enforcing arc consistency on every constraint concerning xi. For example, in the
above CSP when forward checking processes x1 it assigns x1 = 4. Arc consistency is then
enforced on every constraint concerning x1, which are the constraints x1 > x2 and x1 = x3.

CHAPTER 3. BACKGROUND RESEARCH 11

Enforcing arc consistency on x1 > x2 results in no filtering of D2. Enforcing arc consistency on
x1 = x3 filters both 2 and 6 from D3. D3 is now empty. This indicates that the assignment of
x1 = 4 cannot exist in a solution, as there is no value that can be assigned to x3 such that
constraints are satisfied.

The advantage of forward checking compared to backtrack and backjump is that dead-ends are
discovered earlier. In this case the assignment of x1 = 4 was identified immediately as an
assignment that could not exist in a solution. Backtrack and backjump had to process variable
x3 before this was realised. Discovering dead-ends earlier increases the efficiency of search, as
less time is wasted attempting to extend partial assignments that cannot be built into
solutions. The efficiency of forward checking therefore should be greater than backtrack and
backjump. However, when forward checking assigns a variable there is an additional cost of
enforcing arc consistency. If the total cost of enforcing arc consistency throughout the duration
of search outweighs the saved cost of discovering dead-ends earlier, forward checking will not be
more efficient than backtrack and backjump [12].

3.3.2 Variable ordering

The simplest variable ordering orders variables in the order they were defined. However, other
variable orderings exist that can improve the efficiency of search. Orderings may be either
static or dynamic:

• Static - The ordering is fixed before search begins and never changes

• Dynamic - A new ordering is produced after each variable is assigned

An ordering is produced by running an ordering heuristic on the unassigned variables.
Backtrack and backjump can only work with static orderings [11]. Forward checking can work
with dynamic orderings. A common scheme for variable ordering comes from the ‘fail-first’
principle, which says "To succeed, try first where you are most likely to fail" [13, p .95]. For
search to find a solution it must assign all variables, which it does by extending a partial
assignment. Search may encounter dead-ends when attempting to extend the assignment. It is
better to discover dead-ends early on in search so partial assignments that do not lead to
solutions are not explored. One way of realising the fail-first principle is implementing a
heuristic that orders variables by the number of values in their domains in increasing order.
Using this heuristic the next variable chosen is always the variable that has the fewest values in
its domain. This heuristic performs very well on randomly generated problems but is not
always the best choice [11].

Another heuristic that realises the fail-first principle is choosing the next variable to be the
variable which has the most constraints with assigned variables [14]. This is because if a
variable is concerned by more constraints than another variable is, assigning a value to the
variable is likely to be harder.

CHAPTER 3. BACKGROUND RESEARCH 12

3.3.3 Run time

The run time of each search algorithm depends on the number of dead-ends the search
encounters before a solution is found. This in turn is dependent on the restrictiveness of the
CSP. As we know, a CSP can be made more restrictive through constraint propagation.
Therefore the more constraint propagation performed, the higher the increase in the efficiency
of search [4]. Constraint propagation comes at computational cost. The cost of constraint
propagation and search must therefore be balanced to achieve efficient solving. Constraint
propagation can make a CSP restrictive such that a backtrack-free search is possible [4]. This
means that when backtrack searches the CSP for a solution it finds a solution without
discovering any dead-ends, and hence doesn’t need to ‘backtrack’.

3.4 Constraint Programming Systems

Constraint Programming Systems have been built to solve CSPs. We will refer to them as
‘constraint solvers’. Constraint solvers are general purpose, meaning they are not built to solve
specific problems. Constraint solvers perform constraint propagation and search techniques.
Constraint propagation is implemented using propagators [5, p .497]. To solve a CSP using a
constraint solver the CSP must firstly be modelled in a language the solver understands. This
involves defining all variables, domains and constraints. It is essential for propagation based
constraint solvers to implement efficient propagators for ‘high level’ constraints [7, p .9]. Global
constraints are high level constraints, so it is important to use global constraints when
modelling where possible. The propagators implemented by a constraint solver are sufficient for
solving many problems but solvers can be extended by implementing additional propagators if
desired [5, p .496].

3.4.1 MiniZinc

MiniZinc is a language used to model CSPs [15]. Using the MiniZinc program MiniZinc models
can be compiled and solved by a range of constraint solvers. These constraint solvers include
Gecode, Chuffed and Gurobi. The model does not have to specify how the solver should
attempt to solve the problem (constraints to propagate or search method to use, for example).
Annotations can be used to instruct the solver how to solve the problem if desired though. For
example, the solver can be instructed to use fail-first ordering when searching. [15, p .69].
Modelling is very easy using the MiniZinc language compared to implementing a model directly
using constraint solvers. MiniZinc has its own IDE and can be easily integrated into Python
using the ‘MiniZinc Python’ package [16].

This project aims to compare different methods for solving Killer Sudoku. Although constraint
solvers cannot be considered as a single ‘method’ for solving CSPs as they utilise a wide range
of methods when solving, examining their performance is still relevant to this study. It is not
relevant however to understand the intricacies of specific constraint solvers.

CHAPTER 3. BACKGROUND RESEARCH 13

3.5 Killer Sudoku

3.5.1 What is a Killer Sudoku?

Figure 3.1: A Standard Sudoku puzzle. Taken from Wikipedia [17].

Figure 3.2: A Killer Sudoku puzzle. Taken from Daily Killer Sudoku, puzzle ID 349 [18].

Killer Sudoku puzzles are a variant of Sudoku puzzles that add additional rules, or constraints
[19]. These additional rules also feature in Kakuro puzzles, which is another Japanese logic
puzzle. We will refer to Sudoku as Standard Sudoku to avoid confusion.

CHAPTER 3. BACKGROUND RESEARCH 14

Figure 3.1 shows a Standard Sudoku puzzle. To describe Standard Sudoku puzzles we firstly
need some terminology:

• Grid - The whole puzzle

• Cell - A single square that contains one number in the grid

– Blank cell - A cell that does not currently contain a number

– Clue cell - A cell whose number is defined initially

• Row - A horizontal line of 9 cells

• Column - A vertical line of 9 cells

• Box - A 3x3 subgrid of cells, indicated by bold lines

• House - The collective term for Rows, Columns and Boxes

Each cell can be entered with any of the numbers 1-9. The grid contains 9 rows, 9 columns and
9 boxes. These make up 27 houses. To complete the puzzle, every blank cell must be entered
such that all the houses contain all numbers 1-9. As can be seen in Figure 3.1, Standard
Sudoku’s feature clue cells. A proper sudoku puzzle will have only one solution [20].

Figure 3.2 shows a Killer Sudoku puzzle. Killer Sudoku puzzles have the same features as
Standard Sudoku puzzles, but additionally have cages. A cage is a group of cells indicated by a
dashed line. We will term the cells in a cage cage cells. Each cage contains a number, called the
cage clue. Killer Sudokus do not feature any clue cells. The conditions for completing a Killer
Sudoku are the same as Standard Sudoku with the additional rule that the values entered into
the cells in each cage must sum to the cage clue and must be unique.

3.5.2 Human solving techniques

When a person solves a Standard Sudoku or a Killer Sudoku they start with an incomplete
puzzle that contains blank cells. By applying a set of techniques the solver aims to enter every
blank cell such that the rules of the puzzle are satisfied. We will refer to the value entered into
a cell as the cell’s solid value. When solving the puzzle the solver may note down all the
possible solid values for a cell. We will refer to these values as the cell’s pencil values. All
techniques work on the same premise which is to eliminate pencil values. Once a cell has only a
single pencil value, the solver enters it into the cell.

As all the rules of Standard Sudoku apply to Killer Sudoku, all Standard Sudoku techniques
can be applied to Killer Sudoku puzzles. It is just as important to understand the Standard
Sudoku techniques as it is the Killer Sudoku techniques when attempting a puzzle.

3.5.2.1 Standard Sudoku techniques

There are a huge range of Sudoku techniques with differing difficulties. Some Standard Sudoku
techniques can be applied by observing solid values only. These techniques are considered

CHAPTER 3. BACKGROUND RESEARCH 15

‘easy’, as the solver doesn’t need to deduce any other information from the puzzle other than
what they see in front of them. One example technique is scanning:

Figure 3.3: A house with one empty cell [21]. Image from https://www.conceptispuzzles.com/

Observe the top middle box. It can be deduced that the number 9 must go in the middle of the
uppermost row, as it is the only cell in the box that can contain a 9 without violating the rules
of the puzzle.

Other techniques require deducing information from the pencil values as well as the pen values.
These techniques are considered more difficult to execute, as the solver first must make pencil
markings before applying a technique. One of these techniques is ‘naked pairs’:

Figure 3.4: A box before and after naked pairs is executed. Image from learn-sudoku.com [22]

The box on the left hand side shows the state of a box before naked pairs has been applied. The
cells highlighted green both have the same two pencil values, 2 and 3, and no others. From the
Sudoku rules we know that the box must contain the number 2 once and the number 3 once.
We are unable to work out which of the two cells contain 2 or 3, but we deduce that the other
cells in the box cannot contain either 2 or 3. Therefore 2 and 3 can be removed from the pencil
values of all other cells in the box. The resulting box is shown on on the right hand side. While
naked pairs did not allow us to enter a solid value, it did allow us to eliminate pencil values.

More difficult techniques include X-Wing and Swordfish [23]. We will not go into the details of
these. These techniques are considered more difficult because they require pencil values from
more cells to be observed. The cells also may not be as obviously related to each other. For
example, in X-Wing, 4 cells are observed, 2 in one row and 2 in another.

https://www.conceptispuzzles.com/
learn-sudoku.com

CHAPTER 3. BACKGROUND RESEARCH 16

3.5.3 Killer Sudoku

3.5.3.1 The ‘45 rule’

Just as with Standard Sudoku, there are a range of Killer Sudoku techniques of differing
difficulties. An easy Killer Sudoku technique involves exploiting the ‘45 rule’. The rules of the
puzzle state that every house must contain the numbers 1 to 9. Therefore the numbers entered
into every house must sum to 45 (as the numbers 1-9 sum to 45). This can be exploited to the
solver’s advantage. Application of the 45 rule is shown here:

Figure 3.5: A box before and after the 45 rule is applied. Images taken from Daily Killer Sudoku’s
Strategies page [24].

The 8 cells in the 3 cages with clues 13, 11 and 16 must sum to 40 (13 + 11 + 16). These 3
cages are contained entirely within the box. The only cell that is not contained in any of these
3 cages is the cell in the top right hand corner. As we know the other 8 cells must sum to 40,
and the 9 cells of the box must sum to 45, we know that the top right hand cell must contain
the number 5 (45 - 40).

The 45 rule can also be used to generate pseudo cages. A pseudo cage is the same as a regular
cage except that in some cases the cage cells can contain a number more than once. To derive
pseudo cages we must introduce two new terms: innie cells and outie cells [25]. Innie and outie
cells are relevant to a specific house. They are found by observing the cages in the house. If all
a cage’s cells are in the house then the cage does not contain any innie or outie cells. If any of a
cage’s cells are not contained within the house, then all its cells are either an innie or an outie.
The innies are the cells that are in the house. The outies are the cells that are not in the house.
This is best shown with an example.

Figure 3.6: Deriving pseudo cages. Section of puzzle with ID 20044 taken from Daily Killer
Sudoku [26].

The cage with clue 17 is the only cage with cells in the box that also has cells outside the box.
The two cells in the cage that are in the box are the innie cells, shaded in red. The two cells in
the cage that are outside the box are the outie cells, shaded in blue. Applying the 45 rule tells
us that the innie cells must sum to 11 (45 - (10 + 13 + 11)). This creates the first pseudo cage.
As the innie and outie cells are contained within the same cage with clue 17, and we know the

CHAPTER 3. BACKGROUND RESEARCH 17

innies must sum to 11, the outie cells must sum to 6. This creates the second pseudo cage.

The ‘45 rule’ can be extended and applied to groups of adjacent houses of the same type. We
will term these house blocks. For example, the first two rows of the puzzle can be grouped
together into a block. All the cells must now sum to 90, not 45. Groups of size 3 must sum to
135, and groups of 4 must sum to 180. Cages that contain cells inside and outside of the house
block are now the cages containing innie and outie cells. The same logic as before can now be
used to find pseudo cages.

3.5.3.2 Cage elimination

The number of cells in a cage and the cage clue can be used to eliminate pencil values. We will
name this technique ‘cage elimination’. These two pieces of information allow the solver to
calculate the combination of values that the cage can permit such that all values are unique
and sum to the cage clue. For example, lets say there is a cage with 2 cells and clue 6. There
are only 2 combinations of 2 unique values that sum to 6: (1, 5) and (2, 4). We will call these
the cage combinations. Therefore, each of the 2 cells can only be entered with one of the values
1, 2, 4 or 5. Any pencil value that is not one of these values can be eliminated. This logic can
be applied to every cage, including pseudo cages. This is why generating pseudo cages is useful,
as pseudo cages present more opportunities for eliminating pencil values. The difference when
applying this logic to pseudo cages is that pseudo cages in some cases may permit non-unique
values. Therefore the cage combinations also include combinations of non-unique values that
sum to to the pseudo cage clue.

3.5.4 Puzzle difficulty

There is no official standard for the difficulty of Sudoku and Killer Sudoku puzzles. A website
that publishes Sudoku puzzles for enthusiasts may rate a puzzle ‘Intermediate’, but if the same
puzzle were published in a newspaper if may be rated ‘Hard’. However, determining whether
one puzzle is more difficult than another can be achieved by observing the techniques required
to solve both puzzles. A puzzle that requires the use of harder techniques to solve it is a harder
puzzle than a puzzle that only requires the use of easier techniques to solve it [27]. For
example, a puzzle that can be solved by scanning only is considered easier than a puzzle that
can only be solved by using naked pairs.

Even if a puzzle requires difficult techniques to solve it, the frequency that these difficult
techniques will be used is small compared to the frequency that easy techniques will be used.
Some puzzles may require the use of a particular technique only once to solve it. If successfully
applied easier techniques also provide more useful information to a solver than harder
techniques. For example, scanning may result in entering a solid value, whereas naked pairs can
only eliminate pencil values. It is therefore a good strategy for a solver to execute the easier
techniques before executing the harder techniques.

CHAPTER 3. BACKGROUND RESEARCH 18

3.5.5 Daily Killer Sudoku

Daily Killer Sudoku, https://www.dailykillersudoku.com/, is a popular Killer Sudoku
puzzle website. The site has over 20,000 puzzles. Puzzles are guaranteed to be proper [28].
Each puzzle is assigned a difficulty 1-10. Puzzles are taken from Daily Killer Sudoku for this
study.

https://www.dailykillersudoku.com/

Chapter 4

Design and implementation

4.1 Design

The solver is designed as a constraint solver built specifically to solve Killer Sudoku puzzles. As
with general purpose constraint solvers, the implementation of constraint propagation and
search methods are core to the solver’s design.

4.1.1 Expressing Killer Sudoku as a CSP

Firstly lets express Killer Sudoku a CSP using the formal definition (X, D, C) introduced in
section 3.1.1. A Killer Sudoku contains 81 cells. Each cell corresponds to a variable. Each
variable can be labelled 1-81, giving the set of variables X = {x1, ...x81}. The variables can
instead be labelled more semantically with a row ID followed by a column ID. This makes it
easier to identify which cell corresponds to which variable and vice versa. The letters A− I are
used to represent the rows and the numbers 1 - 9 are used to represent the columns. For
example, xA6 corresponds to the cell in the 1st row, 6th column. Therefore, the set of variables,
X, is equal to:

{xA1, xA2, ..., xI8, xI9}

A Killer Sudoku puzzle contains no clue cells, meaning every cell can be assigned to one of the
numbers 1-9. Therefore the domain for every variable before solving begins is the same, and is
equal to the set of numbers 1-9:

{1, 2, 3, 4, 5, 6, 7, 8, 9}

After solving begins the domain of each variable will of course be filtered independently, so the
domains will no longer be equal.

Before we express the rules of Killer Sudoku as formal constraints in the set C, lets express the
rules of Standard Sudoku as constraints. A Standard Sudoku’s rules state that all houses must
contain the numbers 1-9. Equivalent, every cell in a house must be entered with a number 1-9,
and all numbers in a house must be different. This can be expressed using a combination of
alldifferent constraints [29]. The following constraint, C1 = (t1, R1), constrains all cells in
row A to take different values:

t1 = {xA1, ..., xA9}
R1 = {(a, ..., i) : alldifferent(a, ..., i) & (a, ..., i) ∈ DA1 × · · · ×DA9}

A similar constraint is required for every other house in the puzzle, totalling 27 constraints.
Killer Sudoku adds cages to Standard Sudoku, as described in section 3.5.1. To express Killer
Sudoku as a CSP an additional constraint must be created for each cage. The constraint must
constrain the cage cells to take unique values and sum to the cage clue. Lets create a constraint

19

CHAPTER 4. DESIGN AND IMPLEMENTATION 20

for the cage containing the 3rd, 4th and 5th cells in the first row that has a cage clue of 15 in
figure 3.2. As there exist 27 constraint already, lets number the constraint for this cage number
28. Our constraint, C28 = (t28, R28), is defined:

t28 = {xA3, xA4, xA5}
R28 = {(a, b, c) : alldifferent(a, b, c) & a+ b+ c = 15 & (a, b, c) ∈ DA3 ×DA4 ×DA5}

A similar constraint is required for every cage. Killer Sudoku has now been formulated as a
CSP. Solver design was influenced by this formulation. The solver implements three different
types of solve. Rule solve executes human techniques on the puzzle. Search solve executes
search techniques on the puzzle. MiniZinc solve models the puzzle and executes the MiniZinc
solver.

4.1.2 Motivation for rule solve

Constraint propagation can be performed either by enforcing local consistencies or iterating
reduction rules (i.e. executing propagators). The solver opts to implement propagators as its
design is based off of general purpose constraint solvers, where propagators are the preferred
method of constraint propagation.

When a person solves a Killer Sudoku they apply different techniques to eliminate pencil
values. This equates to constraint propagation in CSP terms, and the techniques themselves
equate to propagators. All Killer Sudoku puzzles no matter how hard their difficulty can be
solved solely by human techniques without any guessing. All human techniques are derived
from / exploit the rules of the puzzle. For example, scanning and naked pairs exploit the rule
that each house must contain the numbers 1-9. We have shown that a Killer Sudoku’s rules can
be expressed formally with only two types of constraint. An alldifferent constraint for each
house, and a constraint combining the alldifferent constraint with a sum constraint for each
cage. A constraint solver therefore only requires two propagators to solve any Killer Sudoku,
one for each type of constraint. A propagator is not required for each human technique. The
filtering that would be performed by propagators for scanning and naked pairs would also be
performed by a propagator for the alldifferent constraint, since both these techniques are
derived from the rule that the alldifferent constraint implements.

Although a constraint solver does not require propagators for human techniques to solve a
Killer Sudoku, this doesn’t mean they shouldn’t be implemented. Lets show this by examining
a propagator for scanning. The propagator for alldifferent performs more filtering than the
propagator for scanning, meaning it is a stronger propagator. As mentioned in section 3.2.2,
stronger propagators usually have higher algorithmic complexity resulting in a higher cost of
execution. An algorithm used commonly to implement the alldifferent propagator has
complexity O(m2 · d2) [30]. The scanning propagator is quite simple, and should have a much
lower running time than this. For a given house, the propagator must find all the solid values.
The propagator must then remove each solid value from the pencil values of the incomplete
cells in the house. The running time of executing scanning should therefore be lower than the

CHAPTER 4. DESIGN AND IMPLEMENTATION 21

running time of executing the propagator for alldifferent. Rule solve is motivated by the
fact that solving with propagators for human rules can outperform solving with general
purpose propagators only. Of course if a puzzle requires more techniques than scanning to solve
it, the scanning propagator would reach fixed point before the puzzle is solved.

4.1.2.1 Choosing human techniques to implement as propagators

The solver implements 5 propagators, each propagating a human technique:

• elim_house() - propagates scanning

• elim_single_candidates() - propagates single candidates

• elim_naked_pairs() - propagates naked pairs

• find_pseudo_cages() - propagates 45 rule

• elim_cages() - propagates cage elimination

All propagators except find_pseudo_cages() perform constraint propagation by filtering
domains (eliminating pencil values). find_pseudo_cages() however adds new constraints
(pseudo cages). find_pseudo_cages() is only called within elim_cages(), as the additional
constraints are only beneficial for cage elimination. The other propagators are called
independently.

4.1.2.2 Propagator scheduling

As described in section 3.2.2.1, one method of propagator scheduling is event directed
scheduling, which involves implementing events and having propagators subscribe to them. The
solver implements two types of event. One type is triggered by a change to a cell’s pencil
values. elim_single_candidates() and elim_naked_pairs() subscribe to events of this type.
The second event type is triggered by a change to a cell’s solid value. The previous two
propagators as well as elim_house() subscribe to events of this type. The second event type
was implemented because the propagator elim_house() only bases its eliminations on solid
values, and does not consider pencil values at all. Therefore it is wasteful to subscribe
elim_house() to an event triggered by a change to cell’s pencil values.

The propagator elim_cages() does not subscribe to events and is instead queued when the
queue is empty. When the solver was being developed initially an extremely naive method of
propagator scheduling was used. All propagators were placed into a loop, which would exit if
no eliminations occurred during a complete iteration of the loop. This is wasteful because some
propagators will execute even their input variables are unchanged since they last executed,
meaning it is impossible for them to make any eliminations. Each propagator implemented
applying a human technique to the whole puzzle. All propagators except elim_cages() were
then modified to only apply a rule a specified house. This was to allow implementation of
scheduling. Due to its complex implementation elim_cages() was much harder to modify in
this manner, so it was not modified.

CHAPTER 4. DESIGN AND IMPLEMENTATION 22

4.1.3 Search solve design

Three search techniques are implemented for search solve: backtrack, backjump and forward
checking. Generate and test is not implemented because it is too inefficient. Backtrack was
chosen to be implemented because it is the simplest search technique to implement. Backjump
was chosen to be implemented because it attempts to address issues with backtrack, so
comparing the two algorithms is interesting. Forward checking was chosen to implemented as it
is a hybrid method, and so is fundamentally different to backtrack and backjump.

4.1.4 MiniZinc solve design

MiniZinc solve was designed to encode a puzzle in the MiniZinc language whatever state it may
be in (for example, unsolved or nearly solved) and solve it with the backend Gecode solver.

4.2 Implementation

4.2.1 Technology

The solver is implemented in Python. Development was extremely iterative and features were
developed in small chunks. The development work for a feature could change the overall
architecture drastically. Development of this style favours Python because of the speed at
which functionality can be implemented and Python’s high flexibility. Other languages such as
C and C++ offer better control over memory than Python, which can result in higher efficiency
when performing certain tasks. However, Python was opted for because its flexibility
outweighed the advantages of other languages.

The code repository is on by GitLab. In early stages of development all development was made
on the ‘master’ branch. However, feature branches were then used. Before each feature was
developed an ‘issue’ was created. A branch was then created for the issue. Once the
development work for the feature had been completed, the branch was merged back into master
and the issue marked as complete. Making changes to the master branch directly was avoided.

The solver is run from the command line. The code was written in the PyCharm IDE [31].
Three additional programs are required to operate the solver, MiniZinc [32], Firefox [33] and
geckodriver [34].

4.2.2 Code structure

In early prototypes simple data structures such as lists and tuples were used to represent
elements of Killer Sudoku puzzles such as cells and pencil values. Human techniques were
implemented as standalone functions that took these data structures as input. While this
approach was satisfactory when implementing Standard Sudoku, when it came to implementing
Killer Sudoku there were a lot of problems. It became difficult to remember which data
structure represented each element and which indexes held required values. An OOP approach
was adopted to solve these issues. Classes were created to implement different elements of
puzzles.

CHAPTER 4. DESIGN AND IMPLEMENTATION 23

The project structure follows guidelines given by Jean-Paul Calderone is his guide ‘Filesystem
structure of a Python project’ [35].

4.2.3 Implementation of rule solve, search solve and MiniZinc solve

4.2.3.1 Rule solve implementation

Figure 4.1: Class diagram

4 main classes are used for puzzle representation: Sudoku, KillerSudoku, Cage and Cell. The
class diagram is shown in figure 4.1. Only relationships are shown, as there are too many fields
and methods to display. Understanding these fields and methods is not necessary to
understand rule solve at a high level. Standard Sudoku is implemented by the Sudoku class.
Each Sudoku object has 81 Cell objects (one for each cell in a puzzle). The propagators
elim_houses(), elim_single_candidates() and elim_naked_pairs() are methods of
Sudoku. Each of these propagates a human technique on a given house. For example, calling
elim_naked_pairs("row", 0) propagates the human technique ‘naked pairs’ on the 1st row
(indexes start at 0).

Killer Sudoku is implemented by the KillerSudoku class. KillerSudoku extends Sudoku, so
propagators of Sudoku can also by executed on KillerSudoku objects. Each KillerSudoku
object has a number of Cage objects. Each Cage object has a reference to a number of Cell
objects. Each Cage has a clue field for storing the cages clue. Propagators
find_pseudo_cages() and elim_cages() are methods of KillerSudoku. find_pseudo_cages()
has two parameters, houses_block_count and max_cells_in_cage. houses_block_count
determines the size of the house block to use when finding pseudo cages, as described in section
3.5.3.1. max_cells_in_cage determines the maximum number of cells allowed in a pseudo
cage. For example, if max_cells_in_cage was set to 2 the method would only return pseudo
cages with 1 or 2 cells. Pseudo cages with more than 2 cells would not be created. The higher
the values of these parameters, the more pseudo cages will be created and hence the more
constraint propagation performed. However, the running time also increases. The parameters
therefore allow the balance between constraint propagation and running time to be adjusted.

Rule solve can be instructed to end execution by specifying a value for timeout or minimum
‘remaining domain values’ (RDVs). If neither are specified rule solve will execute until the

CHAPTER 4. DESIGN AND IMPLEMENTATION 24

propagators have reached a mutual fixed point. If a timeout is specified, after executing a
propagator rule solve checks if the time elapsed has exceeded the timeout value. If it has, rule
solve terminates. RDVs are the total number of remaining pencil values for uncompleted cells.
They give a measure of the amount of filtering that has been performed. When a Killer Sudoku
is created, there are 729 RDVs, as there are 81 uncompleted cells each with 9 pencil values.
When the puzzle is solved there are 0 RDVs, as there are no uncompleted cells. A puzzle with
between 0 and 729 RDVs is partially solved. If a minimum number of RDVs is specified, rule
solve will check after executing each propagator whether the puzzle’s RDVs has fallen below
the minimum number specified. If they have, execution will stop. A puzzle’s RDVs are
inversely proportional to the amount of filtering, and hence constraint propagation, that has
been performed. Stopping execution when RDVs falls below a certain number controls how
much constraint propagation is performed on the puzzle.

Rule solve returns True if the puzzle has been solved. Rule solve returns False if rule solve
could not solve the puzzle, meaning the propagators reached a mutual fixed point. Rule solve
returns ‘timed_out’ if the given timeout value was reached before rule solve finished execution.
Rule solve returns ‘min_rdv_reached’ if the number of RDVs falls below the number given.

elim_cages() implements the human technique cage elimination described in section 3.5.3.2.
For a given cage, elim_cages() must calculate the cage combinations. Initially the
combinations were found by inputting both the cage’s clue and the number of cells in the cage
into an algorithm. This algorithm, find_cage_combinations_unique_numbers(), can be
found in
‘Killer_Sudoku_Solver/killer_sudoku_solver/core/classes/loaders/CombinationsFileGenerator.py’.
Due to the algorithms high complexity, its running time accounted for a significant proportion
of the solver’s total running time. To address this issue every possible cage combination was
generated and put into a file ‘combinations_unique.csv’. A class CombinationsLoader has a
method to load this file and store the cage combinations in memory. Now whenever
elim_cages() requires cage combinations to be generated it calls a method in
CombinationsLoader which performs a simple lookup in memory and returns the cage
combinations. This reduces solve time drastically.

4.2.3.2 Search solve implementation

The 3 search techniques, backtrack, backjump and forward checking, are implemented as
standalone functions that do not belong to any class. Each search technique has its own file
that contains two functions. The first function implements the search technique and the second
function is a ‘test’ that is called by the first function to check the consistency of an assignment.
The test function has a different implementation for each search technique because each
technique requires different information from the test. Backtrack only needs to know whether
an assignment is consistent or not. Backjump needs to know for an inconsistent assignment
which variable caused the inconsistency. Backjump’s test could also be used as backtrack’s test,
with backtrack ignoring the extra information. However, backjump’s test function has a slower
running time than backtrack’s. For this reason the test is not reused, as backtrack’s running

CHAPTER 4. DESIGN AND IMPLEMENTATION 25

time would be increased unnecessarily. The test performed by forward checking is
fundamentally different to both backtrack and backjump (as it involves enforcing arc
consistency), so it must have its own test function.

Two variable orderings are implemented. The first ordering, named ‘default’ orders cells in the
order they are defined in. This is left to right, top to bottom when looking at a puzzle. The
second ordering, named ‘fail-first’, orders cells by the number of their pencil values, in
increasing order.

Each search function takes a KillerSudoku object and a timeout value as input, and either
outputs True if a solution was found, False if search exhausted and did not find a solution, or
‘timed_out’ if the timeout value was reached before search could finish execution.

4.2.3.3 MiniZinc solve implementation

MiniZinc models are implemented using the MiniZinc language. To find a solution to a model,
the MiniZinc code is either written to a .mzn file and executed by the MiniZinc program or
executed in the MiniZinc IDE. MiniZinc can be integrated directly into Python using the
‘MiniZinc Python’ library. Firstly a MiniZinc Model object is initialised and then the code
implementing the model is added to it using the add_string() method. This code is exactly
the same code that is used for modelling the problem in .mzn files and the MiniZinc IDE.
Fortunately Standard Sudoku is modelled in the document ‘A MiniZinc Tutorial’ provided by
MiniZinc [15, p .30]. The additional constraints for Killer Sudoku are added to this model. A
constraint is required for each cage that specifies the cage cells and the cage clue. A method of
KillerSudoku generate_minizinc_constraints() returns all the cage constraints in MiniZinc
code. This code is added to the model. An ‘instance’ object is created from the Model object
by specifying a constraint solver, which in this case is Gecode. A call to solve() on this object
attempts to solve the model and returns a result.

4.2.4 Testing

A puzzle was tested for completion by a method of KillerSudoku solved(). The method
returned True if the puzzle was solved, and False if it was not. This method was used to make
sure that the propagators were correct. It was also used to make sure that when search solve or
MiniZinc solve indicated a solution had been found, the solution was valid. Unit tests are
developed for the propagators of Sudoku. These tests helped ensure the correctness of the
propagators.

4.2.5 Obtaining and processing puzzle data

Daily Killer Sudoku does not offer a way of downloading Killer Sudoku puzzles in a computer
readable format. A tool was built to pull puzzle data from the website and convert it into a
.csv file. Each puzzle on Daily Killer Sudoku has its own page with URL
’https://www.dailykillersudoku.com/puzzle/<PUZZLE ID>’. Through inspection of the
website code, it was discovered that a browser renders the puzzle using data in the

CHAPTER 4. DESIGN AND IMPLEMENTATION 26

‘window.DKS.puzzle’ JavaScript object. The data is not stored in HTML. The tool uses
Selenium to access this data. Selenium is a webdriver that is mainly used for automated
testing. The tool uses Selenium to open the URL for a specified puzzle in Firefox in headless
mode, meaning the browser window is not visible. A JavaScript function is then executed that
pulls relevant data from the ‘window.DKS.puzzle’ object. This data includes the puzzle
difficulty, and the co-ordinates and clues for every cage. The data is then converted into .csv
format and output to a file, which we call the the ‘puzzle file’. For example, if a puzzle has a
cage with cells at co-ordinates (0,2) and (0,3) and a clue of 5, a line "0|2,0|3",5 would be
present in the puzzle file. The puzzle file is named ‘dks_<PUZZLE ID>.csv’.

4.2.6 Workflow

A single execution of the solver is named a ‘solving run’. A solving run firstly loads a Killer
Sudoku puzzle, then executes different types of solve on the puzzle (rule solve, search solve and
MiniZinc solve). The types of solve executed and the options used when executing each solve
are determined by the ‘solving configuration’. The solving configuration contains options such
as the Killer Sudoku puzzle to be solved, whether to use rule solve and the timeout for a search
strategy. The full configuration specification can be found in appendix B. Results are collected
during the solving run, such as the run time of different solve types. All results collected can be
found in appendix C.

Figure 4.2 shows the workflow of a solving run. Each time a type of solve is executed, it is run
with the options specified in the configuration. For example, when the search solve is executed
it will be run with the search technique and the search timeout specified in the configuration.
A key point of note is that rule solve cannot be executed after any other type of solve. It is
either the first type of solve executed by the solver or it is not executed at all. Another key
point is that MiniZinc solve and search solve cannot follow one another. Only one of these solve
types can be executed on each solving run.

A SolvingRun class implements a solving run. A SolvingRun object is initialised by specifying
a solving configuration as a dictionary. The dictionary is saved to the objects ‘config’ field.
During SolvingRun’s execution results are collected in a field ‘results’, which is also a dictionary.
SolvingRun has methods to call the 3 types of solve. The class contains a method load_ks()

that takes as input the name of a puzzle file. The method creates a Cage for every line in the
file, and then initialises a KillerSudoku object with these cages. The KillerSudoku object is
then saved to the ‘config’ dictionary. The class has methods to call the three types of solve.

4.2.7 Operating the solver

The solver is run by executing ‘python Killer_Sudoku_Solver/bin/ks_solve.py’, with a
command line argument. Figure 4.3 shows the screen displayed by running with argument
--help. Option -s runs the solver in mode 1. The purpose of this mode is to run a one off
solve for a particular puzzle and receive visual feedback of the solvers status and performance.
Console output when running the solver in this mode is shown in figure 4.4. The solver prompts
the user for the name of the puzzle to be solved and configuration options on the command

CHAPTER 4. DESIGN AND IMPLEMENTATION 27

Figure 4.2: Workflow of the solver

CHAPTER 4. DESIGN AND IMPLEMENTATION 28

Figure 4.3: Solver help screen

Figure 4.4: Output when running the solver in its first mode

CHAPTER 4. DESIGN AND IMPLEMENTATION 29

line. The name of downloaded puzzles can be shown by running the solver with option -l.
Once these are given solving begins. If rule solve is executed during the solving run the state of
the puzzle is shown after rule solve finishes. If another solve is executed, the state of the puzzle
is shown again after that solve finishes. After the final solve finishes, the program outputs the
final state of the puzzle, execution times for each solve type and the total solve time.

Running the solver with option -m runs the solver in its second mode. Multiple solving
configurations are created and run. Results are output to a .csv file. Processing the data in the
.csv files allows the solver’s performance to be analysed when running different solving
configurations. To use the solver in this mode a settings file must be supplied after the -m

argument. A sample settings file exists in ‘python Killer_Sudoku_Solver/bin/’ called
‘settings.py’. The command python ks_solve.py -m settings.py runs the solver in mode 2
with this settings file. The settings file is processed and multiple SolvingRun objects are
created. The settings file contains all the options required for a solving run, but lists of values
are given for each option rather than single values. A configuration is created for every
combination of values. For example, if in the settings file ks_name was set to [‘dks_14422’,
‘dks_19830’], next_strategy was set to [‘backtrack’, ‘backjump’] and every other option was
set to a list containing only a single value, 4 configurations would be created, with ks_name and
next_strategy set to the following in each configuration:

• ks_name: ‘dks_14422’, next_strategy: ‘backtrack’

• ks_name: ‘dks_14422’, next_strategy: ‘backjump’

• ks_name: ‘dks_19830’, next_strategy: ‘backtrack’

• ks_name: ‘dks_19830’, next_strategy: ‘backjump’

The created configurations are filtered of redundant configurations. For example, for the
following settings 4 configurations would be created:

next_strategy: ["backtrack", "minizinc"]
search_timeout: [3000, 5000]

One of these configurations would set next_strategy to "minizinc" with search_timeout set
to 3000, and another would set next_strategy to "minizinc" with search_timeout set to
5000. However, search_timeout is an irrelevant option as the next strategy is not a search
strategy. These two configurations instruct the solver to execute in exactly the same way, so
one of them is redundant and is removed. Once all redundant configurations have been
removed, a SolvingRun object is created for every configuration, added to a queue and then
executed in turn.

After every solving run has finished execution the solver outputs the results to a .csv file. Each
line in the csv file is the combined configuration and result for a solving run. By default, the
data produced by every solving run will be output to one file. However, an option in the
settings file allows a separate file to be produced for each puzzle. Each file is timestamped with

CHAPTER 4. DESIGN AND IMPLEMENTATION 30

the date and time. The results output are the same as those output by the solver when run in
its command line mode. The output files are placed in
‘Killer_Sudoku_Solver/killer_sudoku_solver/data/results’.

The solver comes pre-loaded with some puzzles. If the user wishes to download more they can
run the puzzle downloading tool by running the solver with option -d. The user is prompted
for puzzle IDS separated by commas. The tool will download the corresponding puzzles from
Daily Killer Sudoku. Daily Killer Sudoku also publishes ‘greater-than’ Killer Sudoku puzzles.
These puzzles are not compatible with the solver, and will not be downloaded. The names of
the new puzzle files that the tool has generated are shown in the console.

Chapter 5

Analysis

The solver offers a huge number of solving possibilities. Analysis was limited to a few key
aspects:

• Performance of rule solve against the Gecode solver

• Performance of search methods

• Performance of MiniZinc solve when running find_pseudo_cages() propagator
beforehand

• Performance of forward checking with different variable orderings

Experiments were designed that ran range of solving configurations and compared the results.
The solving configurations were setup by creating a settings file for each experiment and
running the solver in mode 2. Analysis could then be performed by processing the data in the
output .csv file. For each experiment a script was created to process the data. The settings file,
the results file and processing script for each experiment can be found in the repository. For
each experiment the location of the files within the repository is given. All puzzles used in the
experiments come pre-downloaded with the solver.

Note that all the results files except the results file for the ‘Performance of rule solve against
the Gecode solver’ experiment are missing the result gecode_solve_time. All experiments
except this one were run on a build that did not calculate this result. Other than not
calculating this result, the builds were the same.

Experiments were all run on a desktop PC with the following specification:

• OS: Linux Mint 18.1 Cinnamon 64-bit

• CPU: Intel Core i5-3570k @3.4Ghz

• GPU: Palit GeForce Nvidia GTX 660 Ti 2GB

• RAM: 8GB DDR3 1333MHz

5.0.1 Performance of rule solve against the Gecode solver

Settings file: ‘settings_and_results/exp_1/exp_1_settings.py’
Results file: ‘settings_and_results/exp_1/exp_1_results.csv’
Processing script: ‘settings_and_results/exp_1/exp_1_process.py’

As MiniZinc solve solves using the Gecode solver, solving configurations using MiniZinc solve
allow for analysis on the performance of the Gecode solver. All puzzles in this experiment have

31

CHAPTER 5. ANALYSIS 32

a maximum difficulty of 7, as rule solve alone is unable to solve the vast majority of puzzles
with difficulty higher than 7. The settings file sets up 17 solving configurations for each of the
100 puzzles specified. 16 of these configurations run rule solve only, and differ by the values set
for options rule_solve_max_blocks and rule_solve_max_cells. Lets label these
configurations as type ‘A’ configurations. The remaining configuration runs MiniZinc solve
only. Lets label this configuration as type ‘B’. For a given puzzle, if a type A configuration runs
in less time than the type B configuration, then rule solve outperforms MiniZinc solve for that
puzzle. For type A configurations, the run time was taken as the value of rule_solve_time.
For type B configurations the run time was taken as the value of gecode_solve_time.
minizinc_solve_time was not used as it includes the time taken to model the current puzzle.
In this case we want to compare the propagation schemes of rule solve and the Gecode solver,
so the time taken to model the problem should not be accounted for in the run time. Rule
solve was able to solve 83 of the 100 puzzles. Of these 83 puzzles, a type A configuration
outperformed the type B configuration on 64 puzzles. Therefore, rule solve outperformed the
Gecode solver on 64 of the 100 puzzles.

Section 4.1.2 describes the motivation for developing rule solve, explaining that propagators
developed for human techniques can outperform stronger general purpose propagators. This
result supports this reasoning. Rule solve was able to outperform the Gecode solver, which
implements stronger general purpose propagators, for the majority of the tested puzzles. Of
course, rule solve was only able to outperform the Gecode solver on puzzles that could be
completed with rule solve only. If the goal was to minimise run time but guarantee finding a
solution, the Gecode solver is clearly the best choice of solver, as it will always find a solution
no matter how high the puzzle difficulty. However, if rule solve was further developed to
implement propagators for more advanced human techniques, the choice between the two types
of solve may not be so simple.

5.0.2 Performance of search methods

Settings file: ‘settings_and_results/exp_2/exp_2c_settings.py’
Results file: ‘settings_and_results/exp_2/exp_2c_results.csv’
Processing script: ‘settings_and_results/exp_2/exp_2c_process.py’

The performance of the 3 implemented search methods (backtrack, backjump and forward
checking) was analysed by comparing the run times of each method when solving different
puzzles in a range of states. A puzzle’s state is determined by its RDVs. Therefore a range of
RDVs must be used to obtain a puzzle in a range of states. This is achieved by setting the
option rule_solve_end_condition to ‘rdv’ and rule_solve_min_rdvs to a range of values.
Each search method is then run on the resulting puzzle states. For a given search method, it is
expected that the higher the number of RDVs, the higher the run time of search. This is
because RDVs are inversely proportional to the amount of constraint propagation performed,
and we know from section 3.3.3 that the more constraint propagation performed, the larger the
increase in efficiency of search.

CHAPTER 5. ANALYSIS 33

Each search algorithm was tested on 100 puzzles in 3 different states. The 3 different states
were obtained by setting the minimum number of RDVs to 150, 250 and 350. A timeout was
set at 10 seconds. When solving the puzzles with 150 RDVs backtrack was the best algorithm,
outperforming backjump and forward checking on 55 puzzles. 10 puzzles could not be solved by
any algorithm within the time limit. When solving the puzzles with 250 RDVs forward
checking was the best algorithm, outperforming backtrack and backjump on 57 puzzles. 10
puzzles could not be solved by any algorithm within the time limit. When solving the puzzles
with 350 RDVs forward checking was again the best algorithm, outperforming backtrack and
backjump on 60 puzzles. 13 puzzles could not be solved by any algorithm within the time limit.
These results show that for puzzles with 150 RDVs backtrack is the best algorithm, and for
puzzles with 250 and 350 RDVs forward checking is the best algorithm. It is very likely that
forward checking is the best algorithm for puzzles with 250 and more RDVs, but these results
are not enough to categorically prove it.

This can be shown further by observing the running time of each algorithm on specific puzzles
in a higher number of states. This can be achieved by setting a larger range of minimum RDVs
at smaller intervals. Plots in figure 5.1 were generated by this method. These are the settings
and results files for each plot:

Daily Killer Sudoku puzzle with ID 15893:
Settings file: ‘settings_and_results/exp_2/exp_2a_settings.py’
Results file: ‘settings_and_results/exp_2/exp_2a_results.csv’
Processing script: ‘settings_and_results/exp_2/exp_2a_process.py’

Daily Killer Sudoku puzzle with ID 8229:
Settings file: ‘settings_and_results/exp_2/exp_2b_settings.py’
Results file: ‘settings_and_results/exp_2/exp_2b_results.csv’
Processing script: ‘settings_and_results/exp_2/exp_2b_process.py’

(a) Daily Killer Sudoku with puzzle ID 15893 (b) Daily Killer Sudoku with puzzle ID 8229

Figure 5.1: Performance of search algorithms on two different puzzles

CHAPTER 5. ANALYSIS 34

In plot a the running time of each algorithm is similar up to around 280 RDVs. As the RDVs
increases past 280 the running time of each algorithm begins to diverge. At 500 RDVs the run
time for backtrack, backjump and forward checking is around 11500ms, 7000ms and 2000ms
respectively. In plot b the running time of each algorithm begins to diverge at around 300
RDVs. The relative increase in the run time of forward checking is so small compared to the
increase of backtrack and backjump’s run time that it doesn’t appear to increase at all.

As forward checking performs better than backtrack and backjump for higher numbers of
RDVs, it shows that for high numbers of RDVs the added cost of enforcing arc consistency is
lower than the cost saved by identifying dead-ends sooner. For lower numbers of RDVs the
opposite is true.

5.0.3 Performance of MiniZinc solve when running find_pseudo_cages() prop-
agator beforehand

Settings file: ‘settings_and_results/exp_3/exp_3_settings.py’
Results file: ‘settings_and_results/exp_3/exp_3_results.csv’
Processing script: ‘settings_and_results/exp_3/exp_3_process.py’

As described in section 4.2.3.3 the method generate_minizinc_constraints models the
loaded puzzle in the MiniZinc language. Without calling find_pseudo_cages(), only the
constraints imposed by the original cages of the puzzle are modelled. After calling
find_pseudo_cages() the constraint imposed by each pseudo cage can also be added to the
model. Each pseudo cage can be modelled by an additional sum constraint. An additional
alldifferent constraint can also be added to the model for a pseudo cage if the cage’s cells
share a house. MiniZinc solve can benefit from these additional constraints.

An experiment was setup to analyse the extent of this benefit. 100 random puzzles were
downloaded from Daily Killer Sudoku. Two types of solving configurations were run on each
puzzle: One that ran find_pseudo_cages() before MiniZinc solve, and one that ran MiniZinc
solve only. Lets label them type ‘C’ and type ‘D’ respectively. find_pseudo_cages() has two
parameters, houses_block_count and max_cells_in_cage. Each can be set with the
configuration options minizinc_max_blocks and minizinc_max_cells. For this experiment
the run time was taken as the value of total_solve_time. Therefore the execution of
find_pseudo_cages() and modelling the current puzzle are accounted for in the run time. For
82 of the 100 puzzles the lowest run time was achieved by a solving configuration of type C. For
69 of these configurations, the run time was decreased by between 0.1% and 50% compared to
the type D configuration. The largest decrease in run time was from 22884ms to 162ms, a
decrease of 99.3%. This was when solving puzzle with ID 17301.

The 82 type C configurations that achieved the lowest run time on a puzzle did not have the
same values set for minizinc_max_blocks and minizinc_max_cells. The optimal parameters
for minizinc_max_blocks and minizinc_max_cells changed from puzzle to puzzle. Therefore,
without knowing the optimal values of these parameters, it is better to execute a type B solve.

CHAPTER 5. ANALYSIS 35

The fact that MiniZinc solve alone can be beaten by running find_pseudo_cages() before
MiniZinc solve is interesting nonetheless. Further analysis could be performed to determine the
optimal values for these parameters.

These results highlight the importance of understanding the structure of a problem. By
studying Killer Sudoku puzzles, humans have developed techniques to exploit the puzzles
structure. When a person attempts a Killer Sudoku puzzle, they know that applying the ‘45
rule’ to create pseudo cages is a useful technique. Whilst modelling a Killer Sudoku puzzle with
a collection of alldifferent and sum constraints is perfectly sufficient for a constraint solver
to find a solution, these constraints alone do not allow a constraint solver to exploit the puzzles
structure. As the ‘45 rule’ technique is problem specific, a constraint solver is very unlikely to
have a dedicated propagator for it. It is not within the scope of this project to understand the
propagation scheme of Gecode. However, it is safe to say by looking at these results that
Gecode’s propagation scheme can be improved with the addition of the find_pseudo_cages()

propagator.

5.0.4 Performance of forward checking with different variable orderings

Settings file: ‘settings_and_results/exp_4/exp_4_settings.py’
Results file: ‘settings_and_results/exp_4/exp_4_results.csv’
Processing script: ‘settings_and_results/exp_4/exp_4_process.py’

The performance of different variable orderings were measured in a similar way to the
performance of different search algorithms. Puzzles of different states were obtained by setting
minimum RDVs to 150, 250 and 350. A forward checking search was then run twice on each
puzzle state, once with default variable ordering and once with fail-first variable ordering. A
timeout was set for 10 seconds. When solving the puzzles with 150 RDVs the default cell
ordering was the best ordering, outperforming fail-first ordering on 62 puzzles. 10 puzzles could
not be solved by any algorithm within the time limit. When solving the puzzles with 250 RDVs
default cell ordering was again the best ordering, outperforming fail-first ordering on 59 puzzles.
10 puzzles could not be solved by any algorithm within the time limit. When solving the
puzzles with 250 RDVs default cell ordering was again the best ordering, outperforming fail-first
ordering on 57 puzzles. 11 puzzles could not be solved by any algorithm within the time limit.

These results show that the default variable ordering is better than the fail-first ordering for
puzzles with 150, 250 and 350 RDVs. It is likely that the default variable ordering is better for
puzzles with RDVs between 150-350, but these results are not enough to categorically prove it.
This is a bit surprising at first, as we know from section 3.3.2 that the heuristic implemented
for fail-first performs well for randomly generated problems. Section 3.3.2 mentions another
heuristic for realising the fail-first principle is to choose the next variable as the one which has
the most constraints with assigned variables. As the default ordering orders cells row by row
and all cells in a row are constrained against each other, the default ordering for cells in the
puzzle is actually quite close to the ordering that would be created by this other heuristic.
There is also an overhead when ordering with fail-first caused by having to reorder the cells

CHAPTER 5. ANALYSIS 36

after every assignment. These two facts makes this result less surprising.

Chapter 6

Conclusion

6.1 Summary

The aim of this project was to express Killer Sudoku as a CSP and evaluate the performance of
different constraint satisfaction methods for solving it. This has been achieved to some extent.
We have introduced the area of constraint satisfaction, allowing Killer Sudoku to be modelled as
a CSP. A solver motivated by the introduced theory was built. The solver implements a range
of constraint satisfaction methods, and allows comparisons of their performance to be made.

The introduction of constraint satisfaction begins with formally defining a CSP, which is key to
understanding constraint satisfaction methods. Constraint propagation was introduced, giving
an overview of the most common techniques. These include enforcing local consistencies and
rules iteration. Global constraints were also introduced, with an explanation of their
importance not only in modelling but solving too. 3 common search techniques, backtrack,
backjump and forward checking were introduced. A brief background of constraint solvers was
given.

Understanding the theory behind constraint satisfaction methods was key when designing the
solver. We have firstly expressed Killer Sudoku as a CSP. We went on to design the three
different solve types, rule solve, search solve and MiniZinc solve. We set out to design the rule
solve as a problem specific constraint solver, involving the implementation of propagators to
achieve constraint propagation. We showed that implementing propagators for human
techniques is important in increasing efficiency. We explained how event directed scheduling
could be implemented by creating two event types, one for changes to a cell’s pencil values and
one for changes to a cell’s solid value.

The solver was written in Python due to the language’s flexibility. The solver opted for an
object-oriented design so Standard Sudoku and Killer Sudoku could be modelled easily. 5
propagators are successfully implemented. 3 as methods of Standard Sudoku and 2 as methods
of Killer Sudoku. The 3 search methods backtrack, backjump are implemented as standalone
functions. MiniZinc solve is implemented by encoding the constraints of a specific Killer
Sudoku in the MiniZinc language, and solved using the the MiniZinc Python library. A tool
was successfully implemented to download puzzles from Daily Killer Sudoku in a computer
readable format. This improved testing and analysis significantly, as hard-coding a puzzle is a
very time consuming task.

We have explained that a solving configuration is used to determine the solver’s behaviour.
The solver can be operated in two different modes. The first mode builds a single solving
configuration by taking input from the console. The state of the puzzle and solving times are

37

CHAPTER 6. CONCLUSION 38

printed to the console after solving has finished. The second mode builds multiple solving
configurations from a given settings file, executes each configuration and outputs the results to
.csv file. Processing the results in the .csv file allows analysis of the performance of the solver.

Analysis of the solver’s performance highlighted a few key points. Backtrack was found to be
the best search algorithm for puzzles with 150 RDVs, and forward checking was found to be the
best algorithm for puzzles with 250 and 350 RDVs. For puzzles that rule solve could solve, rule
solve outperformed MiniZinc solve. This enforced the importance in developing propagators for
human techniques. Executing the find_pseudo_cages propagator before running MiniZinc
solve was found to outperform MiniZinc when run on its own in some cases. This showed that
the find_pseudo_cages propagator improved the propagation scheme of the Gecode solver,
and showed the importance of understanding a problem’s structure.

6.2 Future work

Whilst this project has explored solving Killer Sudoku as a CSP, a lot of areas touched on
could be further developed.

There are some key improvements that can be made to the solver. The first is to improve the
rule solver by implementing more human techniques. Analysis showed the importance of
developing propagators implementing human techniques. This could be proven further by
developing more of them. Ideally, propagators could be implemented for every known
technique. This is a huge task however. The more difficult human techniques require a lot skill
to develop and test. Although the development of more propagators is likely to improve the
propagation scheme of the solver, the time complexity of propagators increases as the difficulty
of the human technique implemented increases. Therefore execution of these additional
propagators may have a negative impact on running time.

The solver could implement more sophisticated propagator scheduling. For example,
propagators could be prioritised once they are queued, so that propagators with the highest
priority are executed ahead of lower priority propagators. The current event based scheduling
could also be improved. For example, a new event could be implemented that is triggered when
the count of a cell’s pencil values is equal to 2. Naked pairs would then subscribe to events of
this type only, as naked pairs can only perform filtering when there are at least 2 cell’s with
exactly 2 pencil values.

Further search methods could be developed, such as Maintais Arc Consistency (MAC), which is
a hybrid algorithm [5, p .89]. Forward checking was proven to be the best search algorithm of
the 3 implemented for 250 and 350 RDVs. It would be interesting to compare forward checking
against another hybrid algorithm.

CHAPTER 6. CONCLUSION 39

6.3 Legal, Social, Ethical and Professional issues

6.3.1 Legal issues

Two very minor legal issues arose during the project. The first was the inclusion of MiniZinc
code from the MiniZinc documentation that models Standard Sudoku. This was appropriately
referenced in the report and in the code. The second issue was obtaining puzzle data. All
puzzle data was downloaded from Daily Killer Sudoku. Daily Killer Sudoku is free to access, so
appropriate referencing addresses this issue also.

6.3.2 Social issues

Expressing Killer Sudoku as a CSP and solving it with different constraint methods has no
social implications.

6.3.3 Ethical issues

No ethical issues arose during the project. However, it is possible that the results found could
improve unethical applications that use constraint satisfaction methods. As the results
discovered by this project are not groundbreaking this is very unlikely.

6.3.4 Professional issues

Only one person developed this project, so no professional issues concerning client and
shareholder interaction arose. The work of others is correctly referenced. Testing was
performed to make sure results obtained were accurate.

6.4 Self Assessment

This project has taught me the importance of performing background research before
development. Understanding the human methods for solving Killer Sudoku and the theory of
constraints satisfaction methods was key to implementing the solver.

The solver is a complex and sophisticated tool. Development drew heavily on my software
development skills learned throughout university and my placement year. The solver is able to
output meaningful data that allows the comparison of constraint satisfaction methods. I think
the fact that the propagation scheme developed for rule solve was able to outperform the
propagation scheme used by the Gecode solver is impressive. In early stages of development I
did not believe this would be possible, as the run time for rule solve was enormous compared to
the run time of rule solve in the current build of the solver. Unfortunately due to time
constraints rule solve could not be developed further.

This project has also taught me the importance of following a methodology closely. By
following the agile methodology I was able to build the solver incrementally. This allowed early
integration of the different solve types, allowing early comparisons of solve types to be made. I
have learnt however not to neglect unit tests. The method/propagator find_pseudo_cages()

CHAPTER 6. CONCLUSION 40

required a significant amount of development time. The method calls several other methods.
Developing unit tests for each of these called methods would have reduced the amount of time
required to develop find_pseudo_cages().

References

[1] Roman Barták, Miguel Salido, and Francesca Rossi. New trends in constraint satisfaction,
planning, and scheduling: A survey. Knowledge Eng. Review, 25:249–279, 09 2010.

[2] Wikipedia. Sudoku. [Online]. 2019. [Accessed 17 December 2019]. Available at:
https://en.wikipedia.org/wiki/Sudoku.

[3] Jyoti1, Tarun Dalal. Constraint satisfaction problem: A case study. International Journal
of Computer Science and Mobile Computing, 4(5):33–38, 2015.

[4] I. Miguel and Q. Shen. Solution techniques for constraint satisfaction problems:
Foundations. Artificial Intelligence Review, 15(4):243–267, 2001-06.

[5] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming.
Elsevier Science Inc., USA, 2006.

[6] Nikos Samaras and Kostas Stergiou. Binary encodings of non-binary constraint satisfaction
problems: Algorithms and experimental results. CoRR, abs/1109.5714, 09 2011.

[7] Guido Tack. Constraint Propagation Models, Techniques, Implementation. 2009.

[8] Mathematical Programming Glossary. Global constraint. [Online]. No date stated.
[Accessed 5 May 2020]. Available at:
https://glossary.informs.org/ver2/mpgwiki/index.php?title=Global_constraint.

[9] Willem-Jan van Hoeve. The alldifferent Constraint: A Survey. CoRR, cs.PL/0105015, 05
2001.

[10] Jean-Charles Régin. Global Constraints: A Survey, pages 63–134. 11 2010.

[11] Barbara M. Smith. A Tutorial on Constraint Programming. 1995.

[12] Roman Barták. CONSTRAINT PROPAGATION AND BACKTRACKING-BASED
SEARCH. [Online]. 2005. [Accessed 8 May 2020] Available at:
https://ktiml.mff.cuni.cz/~bartak/downloads/CPschool05notes.pdf.

[13] Dimitris Vrakas and I. Vlahavas. Artificial intelligence for advanced problem solving
techniques. 01 2008.

[14] Roman Barták. Value and Variable Ordering. [Online]. 1998. [Accessed 5 May 2020].
Available at: https://ktiml.mff.cuni.cz/~bartak/constraints/ordering.html.

[15] Kim Marriott and Peter J. Stuckey. A MiniZinc Tutorial. [Online]. No date stated.
[Accessed 6 May 2020]. Available at:
https://www.minizinc.org/tutorial/minizinc-tute.pdf.

[16] MiniZinc. MiniZinc Python. [Online]. 2019. [Accessed 5 May 2020]. Available at:
https://minizinc-python.readthedocs.io/.

41

https://en.wikipedia.org/wiki/Sudoku
https://glossary.informs.org/ver2/mpgwiki/index.php?title=Global_constraint
https://ktiml.mff.cuni.cz/~bartak/downloads/CPschool05notes.pdf
https://ktiml.mff.cuni.cz/~bartak/constraints/ordering.html
https://www.minizinc.org/tutorial/minizinc-tute.pdf
https://minizinc-python.readthedocs.io/

REFERENCES 42

[17] Wikipedia. A typical Sudoku puzzle ... [Online]. 2020. [Accessed 8 May 2020]. Available at:
https://en.wikipedia.org/wiki/Sudoku.

[18] Daily Killer Sudoku. Puzzle 349. [Online]. 2009. [Accessed 5 May 2020]. Available at:
https://www.dailykillersudoku.com/puzzle/349.

[19] Wikipedia. Killer sudoku. [Online]. 2019. [Accessed 10 December 2019]. Available at:
https://en.wikipedia.org/wiki/Killer_sudoku.

[20] Wikipedia. Glossary of Sudoku. [Online]. 2020. [Accessed 5 May 2020]. Available at:
https://en.wikipedia.org/wiki/Glossary_of_Sudoku.

[21] Conceptis Ltd. Scanning in one direction A. [Online]. No date stated. [Accessed 5 May
2020]. Available at: https://www.conceptispuzzles.com/picture/27/1186.gif.

[22] learn-sudoku.com. naked_pair2. [Online]. 2008. [Accessed 5 May 2020]. Available at:
https://www.learn-sudoku.com/images/naked_pair2.gif.

[23] learn-sudoku.com. Advanced Techniques. [Online] 2008. [Accessed 5 May 2020]. Available
at: https://www.learn-sudoku.com/advanced-techniques.html.

[24] Daily Killer Sudoku. Strategies. [Online]. 2020. [Accessed 5 May 2020]. Available at:
https://www.dailykillersudoku.com/strategies.

[25] https://www.sudokuwiki.org/. Innies and Outies. [Online]. 2008. [Accessed 7 May 2020].
Available at: https://www.sudokuwiki.org/Innies_And_Outies.

[26] Daily Killer Sudoku. Puzzle 20044. [Online]. 2020. [Accessed 5 May 2020]. Available at:
https://www.dailykillersudoku.com/puzzle/20044.

[27] Conceptis Ltd. Conceptis Sudoku difficulty levels explained. [Online]. 2006. [Accessed 5
May 2020] Available at:
https://www.conceptispuzzles.com/index.aspx?uri=info/article/2.

[28] Daily Killer Sudoku. Rules. [Online]. No date stated. [Accessed 5 May 2020]. Available at:
https://www.dailykillersudoku.com/.

[29] Helmut Simonis. Sudoku as a Constraint Problem. 2005.

[30] Basileios Anastasatos. Propagation Algorithms for the Alldifferent Constraint. 05 2020.

[31] Jet Brains. Pycharm. [Online]. 2020. [Accessed 8 May 2020.] Available at
https://www.jetbrains.com/pycharm/.

[32] MiniZinc. MiniZinc. https://www.minizinc.org/.

[33] Mozilla. Firefox. https://www.mozilla.org/en-GB/firefox/.

[34] Mozila. geckodriver. https://github.com/mozilla/geckodriver.

[35] Jean-Paul Calderone. Filesystem structure of a Python project. [Online]. 2007. [Accessed 6
May 2020] http:
//as.ynchrono.us/2007/12/filesystem-structure-of-python-project_21.html.

https://en.wikipedia.org/wiki/Sudoku
https://www.dailykillersudoku.com/puzzle/349
https://en.wikipedia.org/wiki/Killer_sudoku
https://en.wikipedia.org/wiki/Glossary_of_Sudoku
https://www.conceptispuzzles.com/picture/27/1186.gif
https://www.learn-sudoku.com/images/naked_pair2.gif
https://www.learn-sudoku.com/advanced-techniques.html
https://www.dailykillersudoku.com/strategies
https://www.sudokuwiki.org/Innies_And_Outies
https://www.dailykillersudoku.com/puzzle/20044
https://www.conceptispuzzles.com/index.aspx?uri=info/article/2
https://www.dailykillersudoku.com/
https://www.jetbrains.com/pycharm/
https://www.minizinc.org/
https://www.mozilla.org/en-GB/firefox/
https://github.com/mozilla/geckodriver
http://as.ynchrono.us/2007/12/filesystem-structure-of-python-project_21.html
http://as.ynchrono.us/2007/12/filesystem-structure-of-python-project_21.html

Appendices

43

Appendix A

External resources

The only external resource used for this project is the model of Standard Sudoku in the
MiniZinc language. This can be found in the document ‘A MiniZinc Tutorial’ [15, p .30]. This
code is used in the method minizinc_solve() in file
Killer_Sudoku_Solver/killer_sudoku_solver/core/SolvingRun.py.

44

Appendix B

Solving configuration specification

The below options are required when specifying a solving configuration. For each option, the
possible options are given, then a description of how the option adjusts the solving run.

output_option: ‘one_file’ or ‘file_per_puzzle’. If set to ‘one_file’ all data from all solving
runs will be output to one file. If set to ‘file_per_puzzle’ the data for each puzzle will be
output to separate files.

ks_name: The name of the killer sudoku instance to be solved, for example ‘dks_14422’. Do
not include ‘.csv’.

use_rule_solve: True or False. If set to True rule solve is used. If set to False it is not.

rule_solve_end_condition: ‘rdv’, ‘t’, ‘none’. Determines when rule solve should stop
execution. If set to ‘rdv’, rule solve will stop when the remaining domain values count falls
below a certain number. This number is specified by setting option rule_solve_min_rdv. If
set to ‘t’ rule solve will stop after a certain number of milliseconds have elapsed. The number
of milliseconds is set in option rule_solve_timeout.

rule_solve_min_rdv. Integer 0-729. Only applicable if rule_solve_end_condition is set to
‘rdv’. Once the remaining domain values count falls below this number, rule solve will
terminate.

rule_solve_timeout: Integer. Only applicable if rule_solve_end_condition is set to ‘t’.
The number set for this option is the maximum time in milliseconds that rule solve can execute
for before terminating and returning status ‘timed_out’.

rule_solve_max_blocks: Integer 1-4. Sets ‘max_blocks’ parameter for elim_cages()
propagator.

rule_solve_max_cells: Integer. Sets ‘max_cells_in_cage’ parameter for elim_cages()
propagator.

next_strategy: ‘backtrack’, ‘backjump’, ‘fc’, ‘minizinc’. The solve strategy to use after rule
solving. ‘fc’ stands for forward checking.

search_timeout: Integer. The maximum time in milliseconds a search strategy (backtrack,
backjump or forward checking) can execute for before terminating and returning status
‘timed_out’.

45

APPENDIX B. SOLVING CONFIGURATION SPECIFICATION 46

cell_order_option: ‘d’ or ‘f’. Only applicable if next_strategy is set to ‘fc’. Sets the
variable ordering. Variable ordering is described in section 3.2.2. Options are ‘d’ for default
and ‘f’ for fail-first.

minizinc_gen_pseudos: True or False. If set to True, the find_pseudo_cages() propagator
will run before MiniZinc solve. If set to False the propagator will not be run. However, this
option is only applicable if use_rule_solve is False, as if rule solve is executed pseudo cages
will already have been found.

minizinc_max_blocks: Integer 1-4. Only applicable if minizinc_gen_pseudos set to True.
find_pseudo_cages() run before MiniZinc solve will find pseudo cages with house blocks of
size 1 to the value set. For example, if set to 3 then pseudo cages will be found using house
blocks of size of 1, 2 and 3.

minizinc_max_cells: Integer. Only applicable if minizinc_gen_pseudos set to True. Sets
‘max_cells_in_cage’ parameter of find_pseudo_cages() that is run before MiniZinc solve.

Appendix C

Results output

The below values are saved to SolvingRun’s dictionary ‘result’. The values are output to the
console if running the solver in mode 1. These values are combined with the configuration
options and output to a .csv file if running the solver in mode 2. For each result, the possible
values are given, then a description of the meaning of each value.

rule_solve_status: True, False, ‘timed_out’, ‘min_rdv_reached’. If True, rule solve
succeeded in solving the puzzle. If False, rule solve’s propagators reached a mutual fixed point
but the puzzle was not solved. If ‘timed_out’, rule solve exceeded the timeout specified in the
solving configuration.

rule_solve_rdvs: Integer. The remaining domain values after rule solver execution ended.

rule_solve_time: Integer. The time elapsed in milliseconds by rule solve.

search_solve_status: True, False, ‘timed_out’. If True, search solve solved the puzzle. If
False, the search algorithm finished execution without finding a solution. If ‘timed_out’, search
solve exceeded the timeout specified in the solving configuration.

search_solve_time: Integer. The time elapsed in milliseconds by search solve.

minizinc_solve_status: True or False. If True, MiniZinc solve solved the puzzle. If False,
MiniZinc failed to solve the puzzle.

minizinc_solve_time: Integer. The time elapsed in milliseconds by MiniZinc solve. This
includes modelling of the current puzzle, creation of the MiniZinc instance and the call to
solve() on the MiniZinc instance.

gecode_solve_time: Integer. The time elapsed in milliseconds of solve() called on a
MiniZinc instance.

total_solve_time: Integer. The time elapsed by all solve types.

47

Appendix D

Software Repository

The repository can be found at the following URL:

https://gitlab.com/sc16hd/sc16hd_project

48

https://gitlab.com/sc16hd/sc16hd_project

	Introduction
	Overview
	Project aims and objectives
	Deliverables

	Project methodology
	Initial plan
	Risk mitigation

	Background Research
	What is a constraint satisfaction problem?
	Formal definition

	Constraint propagation
	Enforcing local consistency conditions
	Node consistency
	Arc consistency
	Higher level consistencies

	Rules iteration
	Propagator scheduling

	Global Constraints

	Search
	Search algorithms
	Generate and test
	Backtrack
	Backjump
	Forward checking

	Variable ordering
	Run time

	Constraint Programming Systems
	MiniZinc

	Killer Sudoku
	What is a Killer Sudoku?
	Human solving techniques
	Standard Sudoku techniques

	Killer Sudoku
	The `45 rule'
	Cage elimination

	Puzzle difficulty
	Daily Killer Sudoku

	Design and implementation
	Design
	Expressing Killer Sudoku as a CSP
	Motivation for rule solve
	Choosing human techniques to implement as propagators
	Propagator scheduling

	Search solve design
	MiniZinc solve design

	Implementation
	Technology
	Code structure
	Implementation of rule solve, search solve and MiniZinc solve
	Rule solve implementation
	Search solve implementation
	MiniZinc solve implementation

	Testing
	Obtaining and processing puzzle data
	Workflow
	Operating the solver

	Analysis
	Performance of rule solve against the Gecode solver
	Performance of search methods
	Performance of MiniZinc solve when running find_pseudo_cages() propagator beforehand
	Performance of forward checking with different variable orderings

	Conclusion
	Summary
	Future work
	Legal, Social, Ethical and Professional issues
	Legal issues
	Social issues
	Ethical issues
	Professional issues

	Self Assessment

	References
	Appendices
	External resources
	Solving configuration specification
	Results output
	Software Repository

