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This paper describes a computer system for understanding English. The 
system answers questions, executes commands, and accepts information in 
an interactive English dialog. 

It is based on the belief that in modeling language understanding, we 
must deal in an integrated way with all of the aspects of language- 
syntax, semantics, and inference. The system contains a parser, a recognition 
grammar of English, programs for semantic analysis, and a general problem 
solving system. We assume that a computer cannot deal reasonably with 
language unless it can understand the subject it is discussing. Therefore, the 
program is given a detailed model of a particular domain. In addition, the 
system has a simple model of its own mentality. It can remember and 
discuss its plans and actions as well as carrying them out. It enters into a 
dialog with a person, responding to English sentences with actions and 
English replies, asking for clarification when its heuristic programs can- 
not understand a sentence through the use of syntactic, semantic, con- 
textual, and physical knowledge. Knowledge in the system is represented 
in the form of procedures, rather than tables of rules or lists of patterns. By 
developing special procedural representations for syntax, semantics, and 
inference, we gain flexibility and power. Since each piece of knowledge can 
be a procedure, it can call directly on any other piece of knowledge in the 
system. 

1. OVERVIEW OF THE LANGUAGE UNDERSTANDING PROGRAM 

1.1. Introduction 

When a person sees or hears a sentence, he makes full use of his 
knowledge and intelligence to understand it. This includes not only 
grammar, but also his knowledge about words, the context of the sen- 
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tence, and most important, his understanding of the subject matter. To 
model this language understanding process in a computer, we need a 
program which combines grammar, semantics, and reasoning in an 
intimate way, concentrating on their interaction. 

This paper explores one way of representing knowledge in a flexible 
and usable form. Knowledge is expressed as procedures written in 
special languages designed for syntax, semantics, and reasoning. These 
languages have the control structure of a programming language, with 
the statements of the language explicitly controlling the process. The 
steps the system takes in understanding a sentence can be determined 
directly by special knowledge about a word, a syntactic construction, 
or a particular fact about the world. 

We feel that the best way to experiment with complex models of 
language is to write a computer program which can actually understand 
language within some domain, For our experiment, we pretend we are 
talking to a simple robot, with a hand and an eye and the ability to 
manipulate toy blocks on a table. The robot responds by carrying out 
commands (in a simulated scene on a display screen attached to the 
computer), typing out answers to questions, and accepting information 
to use in reasoning later on. 

We had three main goals in writing such a program. The first is the 
practical desire to have a usable language-understanding system. Even 
though we used the robot as our test area, the language programs do not 
depend on any special subject matter, and they have been adapted to 
other uses. 

The second goal is gaining a better understanding of what language 
is and how it is put together. To write a program we need to make all 
of our knowledge about language explicit, and we have to be concerned 
with the entire language process, not just one area such as syntax. This 
provides a rigorous test for linguistic theories, and leads us into making 
new theories to fill the places where the old ones are lacking. 

More generally, we want to understand what intelligence is and how 
it can be put into computers. Language is one of the most complex and 
unique of human activities, and understanding its structure may lead 
to a better theory of how our minds work. The techniques needed to 
write a language-understanding program may be useful in other areas of 
intelligence which involve integrating large amounts of knowledge into 
a flexible system. 

The organization of this paper is as follows. Section 1 conveys a general 
idea of what the various components of the system do, and how they 
function together. It also provides a detailed sample dialog, as an ex- 
tended example of the functioning of the system in a limited domain. 
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Within Section 1, different subsections cover the parts of the system, 

For example Section 1.4 introduces the syntactic theory employed in 
the model. It presents Systemic Grammar, a theory developed by Halli- 
day ( 1967, 1970), which emphasizes the limited and highly structured 
sets of choices made in producing a syntactic structure, abstracting the 
features that are important for conveying meaning. These choices are 
represented in the grammar by the presence of syntactic features attached 
to all levels of syntactic structures. These features are chosen in accord- 
ance with a set of system networks, explicitly describing their logical 
interdependence. 

Section 1.4 also describes a new parsing system, designed for use with 
systemic grammar in this program, The parser is an interpreter which 
accepts recognition grammars written in a procedural form. The formal- 
ism is a language called PROGRAMMAR, which has as its primitive 
operations those processes relevant to parsing natural language, such as 
building a syntactic structure tree, and creating and using feature lists 
describing its substructures. 

Section 1.5 describes the basis for representing meaning in our system, 
and discusses the importance of a comprehensive representation of mean- 
ing for a model of language use. A formalism is developed for concepts 
within a language user’s model of the world, representing objects, events, 
and relationships. 

Section 1.6 presents that aspect which we have called “semantics”, the 
detailed analysis of linguistic structures to extract an expression of their 
meaning. A system is developed to work in conjunction with the parser, 
a dictionary, and the problem-solving programs. It includes not only those 
aspects of meaning within a sentence, but also the effects of context. The 
system is organized around a set of specialized programs designed to 
analyze particular semantic structures, such as clauses and noun groups. 
Both the semantic knowledge and the definitions of individual words 
are in the form of programs. This section also describes the use of se- 
mantic markers to filter out possible interpretations, and discusses why 
they provide only a small part of a full semantic theory. 

Section 2 compares the system with other work on semantics, inference, 
and syntactic parsing. It describes the differences in strategies, tactics, 
approaches, and achievements for a number of computer models of 
language understanding. 

Section 3 presents an outline of a grammar of English. It is based on 
Halliday’s theory of systemic grammar, but the details have been adapted 
to use within a recognition grammar as a part of an integrated intelligent 
system. It is unique in presenting a coherent outline of the way English 
is structured, rather than concentrating on describing particular linguistic 
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phenomena in detail. It is not intended as a definitive grammar, but 
rather an example of the way that a systemic analysis can be used in 
various areas of syntax. 

System networks are presented for all of the basic structures, and 
examples are given to illustrate the syntactic features they contain. These 
networks are distinct from the actual recognition grammar used in 
parsing. They serve as a framework within which the detailed programs 
are written. 

Section 4 is an introduction to LISP, the computer language in which 
the system is written. It is designed for readers who have no previous 
knowledge of LISP, but who are interested in a full understanding of 
sections describing the model in detail. It does not attempt to explain 
LISP fully, but concentrates on those notations and conventions which 
are used heavily in the examples presented in this paper. No knowledge 
of LISP is called for in sections previous to Section 4. 

Section 5 describes PROGRAMMAR, the language created for express- 
ing the details of grammar within this system. It is contrasted with 
other representations of syntax for computers, and examples are given 
of simple grammars written as PROGRAMMAR programs. This section 
provides a manual of PROGRAMMAR instructions and operation, and 
gives examples of its use in particular parts of the grammar, such as 
conjunction. 

Section 6 describes our use of the PLANNER language (Hewitt, 
1971) in representing and manipulating complex meanings. PLANNER 
is a language for representing problem-solving procedures, which is 
more general than a specific problem-solving system, such as the General 
Problem Solver (Newell and Simon, 1963). It performs a variety of 
“bookkeeping” functions which allow the user to include his own 
heuristics and strategies for a particular subject domain. 

Since no published basic introduction to PLANNER is available, we 
present a description of its operation and formalism. This is done in the 
context of simple examples illustrating its use within our system for 
answering questions and creating plans of action to carry out commands. 

Section 7 gives the detailed model of the world used in our problem 
domain. It describes the basic concepts needed to represent the world 
of toy blocks, and shows how they are represented in our formalism. It 
illustrates the operation of the PLANNER programs which represent 
the system’s knowledge of actions. It is included to provide a concrete 
example of the notion of “meaning” described in the more theoretical 
sections. 

Section 8 presents the semantic analysis of English which we developed 
for this system. It is in the form of procedures which work with the 
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parser to produce structures representing the meaning of sentences ia our 
1 ogical formalism. Its novelty lies in its approach to semantics as a 
practical problem of relating words and syntactic structures to a com- 
prehensive logical formalism within a specific problem-solving system. 
As with the syntax, our emphasis is on outlining an overall system in 
which we can represent the range of semantic problems, rather than 
concentrating on one particular area. The section includes the basic 
analysis of the way meaning is conveyed by each syntactic unit, a dis- 
cussion of the different types of context, an analysis of appropriate 
responses to different types of questions and commands, and consider- 
ation of illustrative specific problems, such as conjunction and time 
relationships. 

1.2. implementation of the System 

The language-understanding problem is written in LISP to run under 
the PDP-10 ITS time-sharing system at the Artificial Intelligence Labo- 
ratory at MIT. The program is organized as indicated in Fig. 1. (Arrows 
indicate that one part of the program calls another directly.) 

AY”““‘-----_ 
/‘~~‘ilNTlCSq+--,NSWy 

DICTIONARY PROGRAMMAR SEMANTIC 

\ik 

MOVER 
FEATURES 

4 
PLANNER DATA 

FIG. 1. Organization of the System. 

1. MONITOR is a small LISP program which calls the basic parts 
of the system. The system is organized so that most of the communication 
between components is done directly, and the monitor is called only at 
the beginning and end of the understanding process. 

2. INPUT is a LISP program which accepts typed input in normal 
English orthography and punctuation, looks up words in the dictionary, 
performs morphemic analysis (e.g., realizing that “running” is the “ing” 
form of the word “run”, and modifying the dictionary definition ac- 
cordingly), and returns a string of words, together with their definitions. 
This is the input with which the grammar works. 

3. The GRAMMAR is the main coordinator of the language under- 
standing process. It consists of a few large programs written in PRO- 
GRAMMAR to handle the basic units of the English language (such as 
clauses, noun groups, prepositional groups, etc.). There are two PRO- 
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GRAMMAR compilers, one which compiles into LISP, which is run 
interpretively for easy debugging, and another which makes use of the 
LISP compiler to produce assembly code for efficiency. 

4. SEMANTICS is a collection of LISP programs which work in co- 
ordination with the GRAMMAR to interpret sentences. In general there 
are a few semantics programs corresponding to each basic unit in the 
grammar, each performing one phase of the analysis for that unit. These 
semantics programs call PLANNER to make use of deduction in inter- 
preting sentences. 

5. ANSWER is another collection of LISP programs which control 
the responses of the system, and take care of remembering the discourse 
for future reference. It contains a number of heuristic programs for 
producing answers which take the discourse into account, both in decid- 
ing on an answer and in figuring out how to express it in fluent English. 

6. PROGRAMMAR is a parsing system which interprets grammars 
written in the form of programs. It has mechanisms for building a parsing 
tree, and a number of special functions for exploring and manipulating 
this tree in the GRAMMAR programs. It is written in LISP. 

7. The DICTIONARY actually consists of two parts. The first is a 
set of syntactic features associated with each word used by the GRAM- 
MAR. The second is a semantic definition for each word, written in a 
language which is interpreted by the SEMANTICS programs. There are 
special facilities for irregular forms (like “geese” or “slept”), and only 
the definitions of root words are kept, since INPUT can analyze a variety 
of endings. The definitions are actually kept on the LISP property list 
of the word, and dictionary lookup is handled automatically by LISP. 

8. The system has a network of SEMANTIC FEATURES, kept on 
property lists and used for an initial phase of semantic analysis. The 
features subdivide the world of objects and actions into simple categories, 
and the semantic interpreter uses these categories to make some of its 
choices between alternative definitions for a word (for example “in” 
would mean “contained in” when applied to a hollow object like a box, 
but would mean “part of” when applied to a conglomerate like a stack, as 
in “the red block in the tall stack”). 

9. BLOCKS is a collection of PLANNER theorems which contain 
the system’s knowledge about the properties of the particular physical 
world it deals with. Also included is knowledge about achieving goals 
in this world and making deductions about it. It is a very simple model, 
designed less as a realistic simulation of a robot than to give the system 
a world to talk about. 

10. MOVER is a set of display routines which simulate the robot’s 
world on the DEC 340 graphic display attached to the PDP-10 computer. 
It displays the scene indicated by the DATA currently in memory, and 
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any action called for is displayed in real time, so the human can get 
visual feedback from his commands to the robot. The input sentences 
and responses are also displayed. 

11. PLANNER is the deductive system used by the program at all 
stages of the analysis, both to direct the parsing process and to deduce 
facts about the BLOCKS world. The system uses Micro-Planner, ( SUSS- 

man et al., 1970) an abbreviated version of Carl Hewitt’s original 
PLANNER language (Hewitt, 1971). It is written in LISP. 

12. The DATA component consists of facts about the current scene 
in the form of PLANNER assertions describing the objects, their sizes, 
shapes, colors, and locations. The system assumes it has some sort of 
robot “eye”, and a system for analyzing visual data, so all of this infor- 
mation is initially known and does not have to be entered in English. 

Implementation details. When operating with a 200 word vocabulary 
and a fairly complex scene, the program occupies approximately 8OK 
of core. This includes the LISP interpreter, all of the programs, dictionary 
entries, and data, and enough free storage to remember a sequence of 
actions and to handle complex sentences and deductions. Figure 2 shows 

a detailed description of memory usage. 
When running compiled, the system is fast enough to carry on a real- 

Interpreters 
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Knowledge 
of English 

22.5 

Knowledge 
of Subject 

16.5 

Data for 
Scene 

2.5 

Total 
67.6 

Parser 

PROGRAMMAR 
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GRAMMAR 
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5.5 
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DICTIONARY DICTIONARY BLOCKS 
1.7 6.0 8.8 

14.8 21.2 15.6 16.0 

Assertions Display 
1.3 1.2 

LISP 
and 

Display 
14.8 

Storage Allocation for Language Understanding Program 
in Thousands of PDP-10 words 

Note: Approximately 12 thousand additional words of free storage are necessary for 
a dialog like the one described in Section 1.3. As the length of dialog or complexity 
of the actions is increased, more free storage is needed. 

FIG. 2. Memory requirements. 
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time discourse. Each sentence takes from 5 to 20 set to analyze and 
respond to, and the display is designed to move at the speed of a real 
arm. 

1.3. Sample Dialog 

This section contains a sample of a dialog with the language-under- 
standing system. It carries out actions and answers questions about a 
simple scene containing a table, hand, and box, and several bIocks and 
pyramids. The boldface lines in lower case were typed in by a person, 
and the upper case lines are the computer’s response. Other lines are 
comments describing some of the features being exhibited. 

The dialog was carried out in real time with the response of the “robot” 
displayed on a CRT screen, Figures are included to show the state of the 
scene at various points, beginning with Fig. 3. 

1. pick up a big red block. 
OK. 

The system answers “OK” when it carries out a command. In order to 
pick up the red block, it had to clear it off by finding a space for the 
green one and moving the green one away. 

FIG. 3. “Pick np a big red block.” 
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2. grasp the pyramid. 

I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN. 
There are three pyramids in the scene, so the program does nothing. 

3. find a block which is taller than the one you are holding and put it 
into the box. 

The system has to figure out what is meant by “one” and “it,” as well 
as using deduction to decide which block it is holding. 

BY “IT”, I ASSUME YOU MEAN THE BLOCK WHICH IS 
TALLER THAN THE ONE I AlM HOLDING. 

Printed out to keep us informed. 
OK. 

The hand has to set down the red block to pick up the taller blue one. 
Figure 4 shows the result of the system’s manipulations so far. 

4. what does the box contain? 
THE BLUE PYRAMID AND THE BLUE BLOCK. 

5. what is the pyramid supported by? 
Earlier the system responded to “the pyramid” by saying “I don’t 

T 

FIG. 4. “Find a block which is bigger than the one you are holding and put it 
into the box. 
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understand which pyramid you mean.” Now, it assumes that we mean 
the one just mentioned. 

THE BOX. 

6. how many blocks are not in the box? 

Negatives such as ‘hot” and ‘no” are handled whether they appear 
in clauses or noun groups (such as “no boxes”). 

FOUR OF THEM. 

7. is at least one of them narrower than the one which I told you to 
pick up? 

The phrase “at least one of them” must be analyzed to refer back to 
the previous question, and “the one which . . .” must also refer to blocks. 
Noun groups can have complicated numbers such as “at least one”, 
“more than three”, exactly seven”, etc. The memory of past events is used 
to deduce which block is “the one which I told you to pick up”, Notice 
the complicated syntactic structure in which “the one” is actually the 
object of a clause embedded two levels deeper. 

YES, THE RED CUBE. 

8. is it supported? 

Passives can be used without a “by . . .” phrase. 
YES, BY THE TABLE. 

9. can the table pick up blocks? 
NO. 

The semantic rules make this a nonsensical question which therefore 
must be false. 

10. can a pyramid be supported by a block? 
YES. 

The deductive system finds an actual example, so it knows this is 
possible. 

11. can a pyramid support a pyramid? 
I DON’T KNOW. 

The question makes sense, but there is no example in the scene, SO 

there is no easy way to tell without being able to examine the robot’s 
programs. 

12. stack up two pyramids. 

I CAN’T. 
The robot tries and fails. 
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13. the blue pyramid is mine. 

I UNDERSTAND. 
This data is added to the data base. 

14. I own blocks which are not red, hut I don’t own anything which 
supports a pyramid. 
I UNDERSTAND. 

Two new theorems are created for proving things about “owning”. 

15. do I own the box? 
NO. 

The box supports whatever it contains, including a pyramid. 

16. do I own anything in the box? 
YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE 
PYRAMID. 

17. will you please stack up both of the red blocks and either a green 
cube or a pyramid? 

OK. 
LogicaI connectives such as “and” “or ” “either” etc. are handled in both 

the grammar and semantics. A command is executed even if it looks like 
a question. The command is carried out by the following series of steps: 
It puts a green cube on the large red block (note that it chooses the 
green cube with nothing on it), then removes the small pyramid from 
the little red cube, so that it can use that cube to complete the stack as 
specified, resulting in the situation of Fig. 5. 

18. which cube is sitting on the table? 

THE LARGE GREEN ONE WHICH SUPPORTS THE RED 
PYRAMID. 

Ordinarily the system would be satisfied with calling this “a big green 
cube”, but since we asked ‘<which cube” it has to be more specific in 
naming it. The use of substitute nouns (such as “one”) and pronouns 
in answers makes the discourse more natural. 

19. is there a large block behind a pyramid? 
YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN 
CUBE AND THE BLUE ONE. 

20. put a small one onto the green cube which supports a pyramid, 
“A smal1 one” must contrast with the earlier phrase “a large block”, 

so this means “a small block”. 
OK. 
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FIG. 5. “Will you please stack up both of the red blocks and either a green cube 
or a pyramid?” 

21. put the littlest pyramid on top of it, 
Words like “littlest” are not in the dictionary but are interpreted from 

the root forms like “little”. 

OK. 

22. how many things are on top of green cubes? 
I’M NOT SURE WHAT YOU MEAN BY “ON TOP OF” IN THE 
PHRASE “ON TOP OF GREEN CUBES’. 
DO YOU MEAN: 
l-DIRECTLY ON THE SURFACE 
2-ANYWHERE ON TOP OF? 

When there are several interpretations and none is clearly better, the 
system has to ask the user for more information. The paraphrases were 
included with the dictionary definition of “on”, and the request for more 
information occurs automatically when the heuristics for resolving 
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ambiguities aren’t sufficient. A request like this can also occur when the 
meaning of a pronoun such as “it” or “they” is unclear. 

2 
THREE OF THEM. 

23. had you touched any pyramid before you put the green one on the 
little cube? 
YES, THE GREEN ONE 

The system deduces from its memory what event is being referred to, 
and can relate other events to it in time. The analysis includes complex 
tenses of verb groups, and there are special facilities for keeping track 
of the various forms of irregular verbs like “have”. 

24. when did you pick it up? 

WHILE I WAS STACKING UP THE RED CUBE, A LARGE 
RED BLOCK ,4ND A LARGE GREEN CUBE. 

A time is described by naming the main goal which was being worked 
on. 

25. why? 
The system remembers immediately previous sentences to understand 

questions like this and the following ones. 

TO GET RID OF IT. 
By keeping track of selected parts of the original subgoal tree, the 

system has some understanding of its own motives. 

26. why did you do that? 

TO CLEAN OFF THE RED CUBE. 
“That” refers to the action mentioned in the answer. 

27. why did you clear off that cube? 
Here, “that” means the one just referred to. 

TO PUT IT ON A LARGE GREEN CUBE. 

28. why did you do that? 
TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND 
A LARGE GREEN CUBE. 

29. why did you do that? 
BECAUSE YOU ASKED ME TO. 

It remembers what it did, not how the request was worded. 

30. how did you do it? 
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“It” refers to the action mentioned in the last question, rather than the 
answer. 

BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN 
LETTING GO OF IT; THEN PUTTING A LARGE GREEN CUBE 
ON IT; THEN LETTING GO OF THAT CUBE; THEN PUTTING 
THE RED CUBE ON THAT CUBE; THEN LETTING GO OF 
THAT CUBE. 

This is a description of the top-level subgoals used to achieve the goal. 

31. bow many objects did you touch while you were doing it? 

Time references can refer to a time span, using words like “while”. 
FOUR OF THEM. 

32. what did the red cube support before you started to clean it off? 
THE GREEN PYRAMID. 

By remembering what has been moved, it is possible to deduce things 
about earlier states of the scene. We can use complex nestings of clauses 
like “before you started to clean it off”. 

33. there were five blocks to the left of the box then. 
“Then” must refer to the time mentioned in the last sentence. 

NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE 
GREEN CUBES AND A LARGE RED BLOCK. 

Earlier in the dialog, new information about “owning” was accepted 
at face value. But the system knows that it has complete information 
about the basic properties of objects, including location. It checks any 
statements about location or other such properties to see whether it 
agrees or disagrees. 

34. put the blue pyramid on the block in the box. 
This is syntactically ambiguous, but is understood without ambiguity 

since the parsing corresponding to “put the blue pyramid which is on the 
block in the box.” does not make sense in the current scene, while “put 
the blue pyramid on the block which is in the box” does. 

OK. 

35. is there anything which is bigger than every pyramid but is not as 
wide as the thing that supports it? 

The system understands quantifiers such as “every”, “any”, “some”, etc., 
and structures such as “bigger than”, “as wide as”, etc. Here “it” refers 
to a noun group within the same sentence but two levels up in the 
parsing tree. 

YES, THE BLUE BLOCK. 
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36. does a steeple 
SORRY, I DON’T KNOW THE WORD “STEEPLE”. 

The system interrupts immediately when it sees a word it can’t figure 
out. 

37. a “steeple” is a stack which contains two green cubes and a pyramid. 
The quote marks indicate that we are defining a new word. 

I UNDERSTAND. 

38. are there any steeples now? 

NO. 
The new definition is used as a description to recognize steeples. 

39. build one. 

OK. 
The description given in the definition is enough to deduce a plan for 

building new objects as well as recognizing them. The word “one” means 
“a steeple”, and the plan is carried out. First, one of the large green 
cubes is cleared off by removing the red cube and two pyramids. Then 
the two green cubes and the tall red pyramid are stacked up to fit the 
description. 

40. call the biggest block “superblock”. 

OK. 
We can also give objects names. 

41. have you picked up superblock since we began? 
YES. 

42. why did YOU drop it? 
BY “IT”, I ASSUME YOU MEAN THE SUPERBLOCK. 
I CAN’T EXPLAIN A NONEXISTENT EVENT. 

There is no record in memory of any block being dropped. 

43. is there anything to the right of the red pyramid? 
YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE 
PYRAMID AND THE BLOCK NAMED SUPERBLOCK. 

Once an object has a name, the name is used to help identify it in 
responses. 

44. thank you. 
YOU’RE WELCOME! 

Idioms can be defined without modifying the grammar. 
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1.4 Syntax 

1.4.1 Syntax and Meaning 

The decision to consider syntax as a proper study devoid of semantics 
is a basic tenet of many recent linguistic theories. Language is viewed 
as a way of organizing strings of abstract symboIs, and competence is 
explained in terms of symbol-manipulating rules. At one level this has 
been remarkably successful. Rules have been formulated which describe 
in great detail how most sentences are put together. But with the pos- 
sible exception of current work in generative semantics, such theories 
have been unable to provide any but the most rudimentary and un- 
satisfactory accounts of semantics. 

The problem is not that current theories are finding wrong answers 
to the questions they ask; it is that they are asking the wrong questions. 
What is needed is an approach which can deal meaningfully with the 
question “How is language organized to convey meaning?” rather than 
“How are syntactic structures organized when viewed in isolation?“. 

Syntax helps the speaker to convey meaning beyond the meanings of 
individual words. The structure of a sentence can be viewed as the result 
of a series of syntactic choices made in generating it. The speaker en- 
codes meaning by choosing to build the sentence with certain syntactic 
features, chosen from a limited set. The problem of the hearer is to 
recognize the presence of those features and use them in interpreting 
the meaning of the utterance. 

Our system is based on a theory called Systemic Grammar (HalIiday, 
1967, 1970) in which these choices of features are primary. This theory 
recognizes that meaning is of prime importance to the way language is 
structured. Instead of placing emphasis on a “deep structure” tree, it 
deals with “system networks” describing the way different features inter- 
act and depend on each other. The primary emphasis is on analyzing 
the limited and highly structured sets of choices which are made in 
producing a sentence or constituent. The exact way in which these choices 
are “realized” in the final form is a necessary but secondary part of the 
theory. 

We will begin by describing some of the basic concepts of systemic 
grammar, and then compare it to better known analyses. The first is the 
notion of syntactic units in analyzing the constituent structure of a 
sentence (the way it is built up out of smaller parts). If we look at other 
forms of grammar, we see that syntactic structure is usually represented 
as a binary tree, with many levels of branching and few branches at any 
node. The tree is not organized into “groupings” of phrases which are 
used for conveying different parts of the meaning. For example, the 
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sentence “The three big red dogs ate a raw steak.” would be parsed with 
something%ke the first tree in Fig. 6. 

Systemic grammar pays more attention to the way language is 
organized into units, each of which has a special role in conveying mean- 
ing. In English we can distinguish three basic ranks of units, the 
CLAUSE, the GROUP, and the WORD. There are several types of 
groups: NOUN GROUP ( NG), VERB GROUP (VG), PREPOSITION 
GROUP (PREPG), and ADJECTIVE GROUP (ADJG). In a systemic 
grammar, the same sentence might be viewed as having the second 
structure in Fig. 6. 

In this analysis, the WORD is the basic buiIding block. There are 
word classes like “adjective”, “noun”, “ verb”, and each word is an integral 
unit-it is not chopped into hypothetical bits (like analyzing “dogs” as 
being composed of “dog” and “-s” or “dog” and “plural”). Instead we 
view each word as exhibiting features. The word “dogs” is the same 
basic vocabulary item as “dog”, but has the feature “plural” instead of 
“singular”. The words “took’, “take”, “taken”, “taking”, etc., are all the 
same basic word, but with differing features such as “past participle” 
( EN), “infinitive” ( INF), “-ing” (ING), etc. When discussing features, 
we will use several notational conventions. Any word appearing in upper- 

DET NPI VB 
/\ I /“‘\ 

the NUM 

three 

I I 
red NOUN 

I 
dogs 

I 
steak 

Tree I 

Tree 2 

FIG. 6. Parsing Trees. 
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case letters is the actual symbol used to represent a feature in our gram- 
mar and semantic programs. A feature name enclosed in quotes is an 
English version which is more informative. 

The next unit above the WORD is the GROUP, of which there are 
four types mentioned above. Each one has a particular function in 
conveying meaning. Noun groups (NG) describe objects, verb groups 
(VG) carry complex messages about the time and modal (logical) status 
of an event or relationship, preposition groups (PREPG) describe simple 
relationships, while adjective groups (ADJG) convey other kinds of 
relationships and descriptions of objects. These semantic functions are 
described in more detail in Section 8. 

Each GROUP can have “slots” for the words of which it is composed. 
For example, a NG has slots for “determiner” (DET), “numbers” 
( NUM ), “adjectives” ( ADJ ), “classifiers” ( CLASF), and a NOUN. Each 
group can also exhibit features, just as a word can. A NG can be 
“singular” (NS) or “plural” (NPL), “definite” (DEF) as in “the three 
dogs” or “indefinite” (INDEF) as in “a steak”, and so forth. A VG can 
be “negative” (NEG) or not, can be MODAL ( as in “could have seen”), 
and can have a complex tense. 

Finally, the top rank is the CLAUSE. We speak of clauses rather than 
sentences since the sentence is more a unit of discourse and semantics 
than a separate syntactic structure. It is either a single clause or a series 
of clauses joined together in a simple structure such as “A and B 
and . . . “. We study these conjoining structures separately since they 
occur at all ranks, and there is no real need to have a separate syntactic 
unit for sentence. 

The clause is the most complex and diverse unit of the language, and 
is used to express relationships and events, involving time, place, manner 
and many other aspects of meaning. It can be a QUESTION, a DECLAR- 
ATIVE, or an IMPERATIVE; it can be “passive” (PASV) or “active” 
(ACTV); it can be a YES-NO question or a WH- question (like 
“Why . . .?” or “Which . . .?” ) . 

Looking at our sample parsing tree, Tree 2 in Fig. 6, we see that the 
clauses are made up of groups, which are in turn made up of words. 
However few sentences have this simple three-layer structure. Groups 
often contain other groups (for example, “the call of the wild” is a NG, 
which contains the PREPG “of the wild” which in turn contains the NG 
“the wild”). Clauses can be parts of other clauses (as in “Join the Navy 
to see the world.“), and can be used as parts of groups in many different 
ways (for example, in the NC “the man who came to dinner” or the 
PREPG “by leaving the country”.) This phenomenon is called rankshift, 
and is one of the basic principles of systemic grammar. 
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If the units can appear anywhere in the tree, what is the advantage 
of grouping constituents into “units” instead of having a detailed struc- 
ture like the one shown in our first parsing tree? The answer is in the 
systems of syntactic features each type of unit can exhibit. For example, 
we might note that all sentences must be either IMPERATIVE, DE- 
CLARATIVE, or a QUESTION, and that in the last case they must 
choose as well between being a YES-NO question or a WH- question 
containing a word such as “why” or “which”. Each unit has associated 
with it a set of such features, which are of primary significance in 
conveying meaning. These are not unrelated observations we can make 
about a unit. They are related by a definite logical structure. The choice 
between YES-NO and WH- is meaningless unless the clause is a 
QUESTION, but if it is a QUESTION, the choice must be made. 
Similarly, the choice between QUESTION, IMPERATIVE. and DE- 
CLARATIVE is mandatory for a MAJOR clause (one which could stand 
alone as a sentence), but is not possible for a “secondary” ( SEC ) 
clause, such as “the country which possesses the bomb.” The choice 
between PASV ( as in “the ball was attended by John”, ) and ACTV (as 
in “John attended the ball.“) is on a totally different dimension, since it 
can be made regardless of which of these other features are present. 

We can represent these logical relationships graphically using a few 
simple conventions. A set of mutually exclusive features (such as 
QUESTION, DECLARATIVE, and IMPERATIVE) is called a system, 
and is represented by connecting the features with a vertical bar: 

QUESTION 

DECLARATIVE 

IMPERATIVE 

The vertical order is not important, since a system is a set of unordered 
features among which we will choose one. Each system has an elztry 
condition which must be satisfied in order for the choice to be meaning- 
ful. This entry condition can be an arbitrary boolean condition on the 
presence of other features. The simplest case (and most common) is the 
presence of a single other feature. For example, the system just depicted 
has the feature MAJOR as its entry condition, since only MAJOR clauses 
make the choice between DECLARATIVE, IMPERATIVE, and 
QUESTION. 

This simple entry condition is represented by a horizontal line, with 
the condition on the left of the system being entered. We can diagram 
some of our CLAUSE features as: 
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DECLARATIVE 

CLAUSE 
IMPERATIVE 

---I 

YES-NO 
QUESTION 

WH- 

Often there are independent systems of choices sharing the same entry 
condition. For example, the choice between SEC and MAJOR and the 
choice between PASV and ACTV both depend directly on the presence 
of CLAUSE. This type of relationship will be indicated by a bracket 
in place of a vertical bar. 

/---I 
MAJOR-. . . 

CLAUSE 

If we want to assign a name to a system (to talk about it), we can 
put the name above the line leading into it: 

VOICE PASV 

---i ACTV 

We can look at these notations as representing the logical operations 
of “or” and “and”, and we can use them to represent more complex entry 
conditions. If the choice between the features C and D depends on the 
presence of either A or B, we draw: 

and if the entry condition for the “C-D” system is the presence of both 
A and B, we write: 

---I 

C 

D 

Finally, we can allow “unmarked” features, in cases where the choice 
is between the presence or absence of something of interest. We might 
have a system like: 

NEGATIVITY (NEGATIVE 

l--- 

in which the feature “nonnegative” is not given a name, but is assumed 
unless the feature NEGATIVE is present. 

In addition we can study the different functions a syntactic “unit” can 



UNDERSTANDING NATURAL LANGUAGE 21 

have as a part of a larger unit. In “Nobody wants to be alone.“, the 
clause “to be alone” has the function of OBJECT in the sentence, while 
the noun group “nobody” is the SUBJECT. We can note that a transitive 
clause must have units to fill the functions of SUBJECT and OBJECT, 
or that a WH- question has to have some constituent which has the role 
of “question element” (like “why” in “Why did he go?” or “which dog” 
in “Which dog stole the show?“). 

In most current theories, these features and functions are implicit in 
the syntactic rules. There is no explicit mention of them, but the rules 
are designed in such a way that every sentence will in fact be one of 
the three types listed above, and every WH- question will in fact have 
a question element. The difficulty is that there is no attempt in the 
grammar to distinguish significant features such as these from the many 
other features we could note about a sentence, and which are also 
implied by the rules. 

If we look at the “deep structure” of a sentence, again the features 
and functions are implicit. The fact that it is a YES-NO question is 
indicated by a question marker hanging from a particular place in the 
tree, and the fact that a component is the object or subject is determined 
from its exact relation to the branches around it. The problem isn’t that 
there is no way to find these features in a parsing, but that most theories 
don’t bother to ask “Which features of a syntactic structure are important 
to conveying meaning, and which are just a by-product of the symbol 
manipulations needed to produce the right word order.” 

The work of relating the set of features to the actual surface structure 
in Systemic Grammar is done by realization rules. These carry out much 
of the work which would be done by transformations in transformational 
grammar (TG). In TG, the sentences “Sally saw the squirrel.“, “The 
squirrel was seen by Sally.“, and “Did Sally see the squirrel?” would be 
derived from almost identical deep structures, and the difference in final 
form is produced by transformations. In systemic grammar, these would 
be analyzed as having most of their features in common, but differing 
in one particular choice, such as PASSIVE 0s. ACTIVE, or DECLAB- 
ATIVE VS. QUESTION. The realization rules would then describe the 
exact word order used to signal these features. 

1.4.2 Parsing 

In implementing a systemic grammar for a computer program for 
understanding language, we are concerned with the process of recog- 
nition rather than that of generation. We do not begin with choices of 
features and try to produce a sentence. Instead we are faced with a 
string of letters, and the job is to recognize the patterns and features in 
it. We need the inverse of realization rules-interpretation rules which 
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look at a pattern, identify its structure, and recognize its relevant 
features. 

The parsing system for our program is an interpreter for PROGRAM- 
MAR, a language for writing grammars. It is basically a top-down left- 
to-right parser, but it modifies these properties when it is advantageous 
to do SO. By writing in a language designed for specifying grammars, 
we can express the regularities of language in a straightforward way, 
as simply as with traditional syntax rule forms. The primitives of the 
language are those operations which have particular relevance to natural 
language and its parsing. 

A program for parsing language is as much a “generative” description 
of the language as is a set of rules for producing sentences. The meaning 
of “generative” in Chomsky’s original sense (Chomsky, 1957, 1965) is 
that the grammar should associate a structural description to each permis- 
sible sentence in the language. A parsing program does just that. 

By making the formalism for specifying grammars a programming 
language, we enable the grammar to use special tools to handle complex 
constructions and irregular forms. For example, we can set up programs 
to define certain words, like “and”, and “or”, as “demons”, which cause 
an interrupt in the parsing process whenever they are encountered in 
the normal left-to-right order, in order to run a special program for con- 
joined structures. Idioms can also be handled using this “interrupt” 
concept. In fact, the process can be interrupted at any point in the 
sentence, and any other computations (either semantic or syntactic) 
can be performed before going on. These may themselves do bits of 
parsing, or they may change the course the basic program will take after 
they are done. When we see the sentence “He gave the boy plants to 
water.” we don’t get tangled up in an interpretation which would be 
parallel to “He gave the house plants to charity.” The phrase “boy 
plants” doesn’t make sense like “house plants” or “boy scouts”, so we 
reject any parsing which would use it. This ability to integrate semantics 
with syntax is particularly important in handling discourse, where the 
interpretation of a sentence containing such things as pronouns may 
depend in complex ways on the preceding discourse and knowledge 
of the subject matter. 

1.4.3 Ambiguity and Understanding 

Readers familiar with parsing systems may by now have wondered 
about the problem of ambiguity. A PROGRAMMAR program tries to 
fmd a possible parsing for a sentence, and as soon as it succeeds, it 
returns its answer. This is not a defect of the system, but an active part 
of the concept of language for which it was designed. The language 
process is not segmented into the operation of a parser, followed by the 
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operation of a semantic interpreter. Rather, the process is unified, with 
the results of semantic interpretation being used to guide the parsing. 
The last statement in a program for parsing a noun group may be a 
call to a noun-group semantic interpreter. If it is impossible to interpret 
the phrase semantically at the time it is found, the parsing is immediately 
redirected. 

The way of treating ambiguity is not through listing all possible inter- 
pretations of a sentence, but in being intelligent in looking for the first 
one, and being even more intelligent in looking for the next one if that 
fails. There is no automatic backup mechanism in PROGRAMMAR, 
because blind automatic backup is tremendously inefficient. A good 
PROGRAMMAR program will check itself when a failure occurs, and 
based on the structures it has seen and the reasons for the failure, it will 
decide specifically what should be tried next. PROGRAMMAR contains 
primitives for passing along reasons for failure and for performing the 
specific backup steps necessary. 

As a concrete example, we might have the sentence “I rode down the 
street in a car.” At a certain point in the parsing, the NG program may 
come up with the constituent “the street in a car.” Before going on, the 
semantic analyzer will reject the phrase “in a car” as a possible modifier 
of “street”, and the program will attach it instead as a modifier of the 
action represented by the sentence. Since the semantic programs are 
part of a general deductive system with a definite world-model, the 
semantic evaluation which guides parsing can include both general 
knowledge (cars don’t contain streets) and specific knowledge (for 
example, Melvin owns a red car). Humans take advantage of this sort 
of knowledge in their understanding of language, and it has been pointed 
out by a number of linguists and computer scientists that good computer 
handling of language will not be possible unless computers can do so as 
well. 

Few sentences seem ambiguous to humans when first read. They are 
guided by an understanding of what is said to pick a single parsing and 
a very few different meanings. By using this same knowledge to guide 
its parsing, a computer understanding system can take advantage of 
the same technique to parse meaningful sentences quickly and efficiently. 

1.5. Basic Approach to Meaning 

1.5.1 Representing Knowledge 

We can describe the process of understanding language as a con- 
version from a string of sounds or letters to an internal representation 
of “meaning”. In order to do this, a language-understanding system must 
have some formal way to express its knowledge of a subject, and must 
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be able to represent the “meaning” of a sentence in this formalism. The 
formalism must be structured so the system can use its knowledge in 
conjunction with a problem-solving system to make deductions, accept 
new information, answer questions, and interpret commands. 

In our system, the PLANNER language is used as a basis for problem 
solving, and meaning is represented in PLANNER expressions. This 
section describes the basis for representing meaning, while Section 1.6 
shows how more complex information can be represented and used by 
PLANNER. 

First we must decide what kinds of things are to be represented in the 
formalism. As a beginning, we would like to be able to represent “ob- 
jects”, “properties,” and “relations.” Using a simple prefix notation, we 
can represent such facts as “Boise is a city.” and “Noah was the father 
of Jafeth.” as: 

(CITY BOISE) (FATHER-OF NOAH JAFETH) 
Here, BOISE, NOAH, and JAFETH are specific objects, CITY is a 

property which objects can have, and FATHER-OF is a relation. It is 
a practical convenience to list properties and relations first, even though 
this may not follow the natural English order. Notice that properties are 
in fact special types of relations which deal with only one object. 
Properties and relations will be dealt with in identical ways throughout 
the system. In fact, it is not at all obvious which concepts should be con- 
sidered properties and which relations. For example, “DeGaulle is old.” 
might be expressed as (OLD DEGAULLE) where OLD is a property 
of objects or as (AGE DEGAULLE OLD), where AGE is a relation 
between an object and its age. In the second expression, OLD appears 
in the position of an object, even though it can hardly be construed as 
a particular object like BOISE or DEGAULLE. This suggests that we 
might like to let properties or relations themselves have properties and 
enter into other relations. This has a deep logical consequence which 
will be discussed in later sections. 

In order to avoid confusion, we will need some conventions about 
notation. Most objects and relationships do not have simple English 
names, and those that do often share their names with a range of other 
meanings. The house on the comer by the market doesn’t have a proper 
name like Jafeth, even though it is just as much a unique object. For 
the internal use of the system, we will give it a unique name by stringing 
together a descriptive word and an arbitrary number, then prefixing the 
result with a colon to remind us it is an object. The house mentioned 
above might be called :HOUSE374. Properties and relations must also 
go under an assumed name, since (FLAT X) might mean very different 
things depending on whether X is a tire or a musical note. We can do 
the same thing (using a different punctuation mark, # ) to represent 
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these two meanings as #FLAT1 and #FLAT2. When the meaning 
intended is clear, we will omit the numbers, but leave the punctuation 
marks to remind us that it is a property or relation rather than a specific 
object. Thus, our facts listed above should be written: 

( #CITY :BOISE) ( #FATHER-OF :NOAH : JAFETH), 
(#OLD :DEGAULLE) or (#AGE :DEGAULLE #OLD). 
We are letting properties serve in a dual function, We can use them 

to say things about objects [as in “The sky is blue.“-( #BLUE :SKY)] 
or we can say things about them as if they were objects [as in “Blue is 
a color.“-( #COLOR #BLUE) 1. W e want to extend this even further, 
and allow entire relationships to enter into other relationships. (We 
distinguish between “relation”, the abstract symbol such as #FATHER- 
OF, and “relationship”, a particular instance such as (#FATHER-OF 
:NOAH : JAFETH) ), I n accord with our earlier convention about nam- 
ing things, we can give the relationship a name, so that we can treat it 
like an object and say ( #KNOW :I :REL76) where :REL76 is a name 
for a particular relationship like ( #FATHER-OF :NOAH : JAFETH). 
We can keep straight which name goes with which relationship by 
putting the name directly into the relationship. Our example then be- 
comes ( #FATHER-OF :NOAH : JAFETH :REL76). There is no special 
reason to put the name last, except that it makes indexing and reading 
the statements easier. We can tell that :REL76 is the name of this 
relation, and not a participant since FATHER-OF relates only two 
objects. Similarly, it has to be a participant in the relationship (#KNOW 
:I :REL76) since #KNOW needs two arguments. 

We now have a system which can be used to describe more compli- 
cated facts. “Harry slept on the porch after he gave Alice the jewels.” 
would become a set of assertions: 

(#SLEEP :HARRY :RELl) (#LOCATION :RELl :PORCH) 
(#GIVE :HARRY :ALICE :JEWELS :RELB) 

( #AFTER :RELl :RELB) 
This example points out several facts about the notation. The number 

of participants in a relationship depends on the particular relation, and 
can vary from 0 to any number. It is fixed for any particular relationship. 
We do not need to give every relationship a name-it is present only if 
we want to be able to refer to that relationship elsewhere. This will often 
be done for events, which are a type of relationship with special prop- 
erties ( such as time and place of occurrence). 

1.5.2 General Considerations 

Before going on, let us stop and ask what we are doing, In the preced- 
ing paragraphs, we have developed a notation for representing certain 
kinds of meaning. In doing so we have glibly passed over such issues as 
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what it means to be an “object” or a “property”, and what logical status 
a symbol such as #BLUE or #CITY should have. We will not attempt 
to give a philosophical answer to these questions, but instead take a more 
pragmatic approach to meaning. 

Language is a process of communication between people, and is 
inextricably enmeshed in the knowledge that those people have about 
the world. That knowledge is not a neat collection of definitions and 
axioms, complete, concise and consistent. Rather it is a collection of 
concepts designed to manipulate ideas. It is in fact incomplete, highly 
redundant, and often inconsistent, There is no self-contained set of 
“primitives” from which everything else can be defined. Definitions are 
circular, with the meaning of each concept depending on the other 
concepts. 

This might seem like a meaningless change-saying that the meaning 
of words is represented by the equally mysterious meanings of “concepts” 
which exist in the speaker’s and hearer’s minds, but which are open to 
neither immediate introspection nor experiment. However, there is a 
major difference. The structure of concepts which is postulated can be 
manipulated by inference processes within the computer. The “internal 
representation” of a sentence is something which the system can obey, 
answer, or add to its knowledge. It can relate a sentence to other con- 
cepts, draw conclusions from it, or store it in a way which makes it use- 
able in further deductions and analysis. 

This can be compared to the use of “forces” in physics. We have no 
way of directly observing a force like gravity, but by postulating its 
existence, we can write equations describing it, and relate these 
equations to the physical events involved. Similarly, the “concept” rep- 
resentation of meaning is not intended as a direct picture of something 
which exists in a person’s mind. It is a fiction that gives us a way to make 
sense of data, and to predict actual behavior. 

The justification for our particular use of concepts in this system is 
that it is thereby enabled to engage in dialogs that simulate in many ways 
the behavior of a human language user. For a wider field of discourse, 
the conceptual structure would have to be expanded in its details, and 
perhaps in some aspects of its overall organization. The main point is 
that we can in fact gain a better understanding of language use by 
postulating these fictitious concepts and structures, and analyzing the 
ways in which they interact with language. 

We would like to consider some concepts as “atomic”. These are taken 
to have their own meaning rather than being just combinations of other 
more basic concepts. A property or relation is atomic not because of 
some special logical status, but because it serves a useful purpose in 
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relation to the other concepts in the speaker’s model of the world. For 
example, the concept #OLD is surely not primitive, since it can be 
defined in terms of #AGE and number. However, as an atomic property 
it wilI often appear in knowIedge about people, the way they look, the 
way they act, etc. Indeed, we could omit it and always express some- 
thing like “having an age greater than 30”, but our model of the world 
will be simpler and more useful if we have the concept #OLD available 
instead. 

There is no sharp line dividing atomic concepts from nonatomic ones. 
In general, such distinctions will depend on the needs of the particular 
language community. For most purposes it would be absurd to have 
separate atomic concepts for such things as #CITY-OF-POPULATION- 
23,485 or #PERSON-WEIGHING-BETWEEN-17%AND-181. But it 
might in fact be useful to distinguish between #BIG-CITY, #TOWN, 
and #VILLAGE, or between #FAT, and #THIN, since our model 
may often use these distinctions. 

If our “atomic” concepts are not logically primitive, what status do 
they have? What is their “meaning” ? How are they defined? The answer 
is again relative to the world-model of the speaker. Facts cannot be 
cIassified as “those which define a concept” and “those which describe 
it.” Ask someone to define #PERSON or ,# JUSTICE, and he will come 
up with a formula or slogan. #JUSTICE is defined in his world-model 
by a series of examples, experiences, and specific cases. The model is 
circular, with the meaning of any concept depending on the entire knowl- 
edge of the speaker, not just the kind which would be included in a 
dictionary. There must be a close similarity between the models held 
by the speaker and listener, or there could be no communication, If my 
concept of #DEMOCRACY and yours do not coincide, we may have 
great difficulty understanding each other’s political viewpoints. Fortu- 
nately, on simpler things such as #BLUE, #DOG, and #AFTER, there 
is a pretty good chance that the models will be practically identical. In 
fact, for simple concepts, we can choose a few primary facts about the 
concept and use them as a “definition”, which corresponds to the tra- 
ditional dictionary. 

Returning to our notation, we see that it is intentionally general, so 
that our system can deal with concepts as people do. In English we can 
treat events and relationships as objects, as in “The war destroyed 
Johnson’s rapport with the people.” Within our representation of mean- 
ing me can similarly treat an event such as #WAR or a relationship of 
#RAPPORT in the same way we treat objects. We do not draw a sharp 
philosophical distinction between “specific objects”, “properties”, relation- 
ships”, “events”, etc. 
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1.6 Semantics 

1.6.1 What is Semantics? 

There has never been a clear definition of what the field of “semantics” 
should cover, but attempts to program computers to understand natural 
language have clarified what a semantic theory has to do, and how it 
must connect with the syntactic and logical aspects of language. In 
practical terms, we need a transducer that can work with a syntactic 
analyzer, and produce data which is acceptable to a logical deductive 
system. Given a syntactic parser with a grammar of English, and a 
deductive system with a base of knowledge about particular subjects, the 
role of semantics is to fill the gap between them. 

The semantic theory must describe relationships at three different 
levels. First, it must define the meanings of words. We pointed out in 
Section 1.5 that the full meaning of a word or concept cannot be defined 
in a simple dictionary entry, but involves its relationship to an entire 
vocabulary and structure of concepts. However, we can talk about the 
formal description attached to a word which allows it to be integrated 
into the system. In what follows, we use the word “meaning” in this more 
limited sense, describing those aspects attached to a word as its dictionary 
definition. 

The formalism for definitions should not depend on the details of the 
semantic programs, but should allow users to add to the vocabulary in 
a simple and natural way. It should also handle the quirks and idio- 
syncracies of meaning, not just well-behaved standard words. 

The next level relates the meanings of groups of words in syntactic 
structures. We need an analysis of the ways in which English structures 
convey meaning, and the roles the words and syntactic features play. 

Finally, a sentence in natural language is never interpreted in isolation. 
A semantic theory must describe how the meaning of a sentence depends 
on its context. It must deal both with the linguistic setting (the context 
within the discourse) and the real-world setting (the interaction with 
knowledge of nonlinguistic facts. ) 

1.6.2 The Semantic System 

With these goals in mind, let us consider how to implement such a 
semantic system. Section 1.5 discussed the person’s “model of the world’ 
which is organized around “objects” having “properties” and entering into 
“relationships.” In later sections, we will show how these are combined 
to form more complicated logical expressions, using PLANNER. Looking 
at the properties of English syntax, we see that these basic elements of the 
“world model” are just what English is good at conveying. 
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For describing objects, there is the NOUN GROUP. It contains a 
noun, which indicates the kind of object; adjectives and classifiers, which 
describe further properties of the object; and a complex system of 
quantifiers and determiners describing its logical status-whether it is 
a particular object, (“the sun”), a class of objects (“people”), a particular 
set of objects (“John’s lizards”), an unspecified set containing a 
specified number of objects (“three bananas”), etc. 

For describing relationships and events, there are the CLAUSE, PRE- 
POSITION GROUP, and ADJECTIVE GROUP. The CLAUSE is 
especially suited for dealing with relationships having a particular time 
reference, working in coordination with the VERB GROUP, which 
functions to convey information about time and modality. Clauses can 
also be used to represent an event or relationship as an object (as in 
“His going pleased me.“), or to modify a particular object within a 
NOUN GROUP (in “the man who broke the bunk”) + The PREPG is a 
way of expressing relationships which do not need as much flexibility 
in including modifiers such as time, place, and manner (such as “the 
man in the blue uest”). The ADJG . 1s used in some constructions to 
describe properties and some special kinds of relationships of objects 
(such as “Her gift was bigger than a breadbox.“) 

The semantic system is built around a group of about a dozen programs 
which are experts at looking at these particular syntactic structures. They 
look at both the structures and the meanings of the words to build up 
PLANNER expressions which will be used in answering questions and 
making deductions. Since the parser uses systemic grammar, the semantic 
programs can look directly for syntactic features such as PASSIVE, 
PLURAL, or QUESTION to make decisions about the meaninz of the 
sentence or phrase. 

Since each of these semantic specialists can work separately, there is 
no need to wait for a complete parsing before beginning semantic 
analysis. The NOUN GROUP specialist can be called as soon as a NOUN 
GROUP has been parsed, to see whether it makes sense before the 
parser goes on. In fact, the task can be broken up, and a preliminary 
NOUN GROUP specialist can be called in the middle of parsing (for 
example, after finding the noun and adjectives, but before looking for 
modifying clauses or prepositional phrases) to see whether it is worth 
continuing, or whether the supposed combination of adjectives and noun 
is nonsensical. Any semantic program has full power to use the deductive 
system, and can even call the grammar to do a special bit of parsing 
before going on with the semantic analysis, For this reason it is very hard 
to classify the semantic analysis as “top-down” or “bottom-up”. In general 
each structure is analyzed as it is parsed, which is a bottom-up approach. 
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However whenever there is a reason to delay analysis until some of the 
larger structure has been analyzed, the semantic specialist programs can 
work in this top-down manner. 

1.6.3 Words 

A semantic system needs to deal with two different kinds of words. 
Some words, like “that” or “than”, in “He knew that they were madder 
than hornets,” would be difficult to define except in terms of their 
function in the sentence structure. They signal certain syntactic struc- 
tures and features, and have no other meaning. The distinction between 
these “function words” and the “content words” which make up the bulk 
of our vocabuIary is not sharp, since many words serve a combination 
of purposes (for example, numbers are basically “function words”, but 
each one has its unique meaning). Nonetheless, it is reasonable to 
require that the definitions of content words like “snake” or “walk” 
should not presume detailed knowledge of the syntax of the language. 
In defining the word “mighty”, we should not have to worry about 
whether it appears in “The sword is mighty,” or “the mightiest warrior”, 
or “a man mightier than a locomotive.” We should be able to say 
“mighty” means having the property represented conceptually as 
#MIGHT, and let the semantic system do the rest. The definition of 
each word is a LISP program to be run at an appropriate time in the 
semantic analysis. For simple cases, there are standard functions with 
a special format for usual types of definitions. Complex cases may 
involve special operations on the semantic structure being built, which 
may depend on the context. This flexibility is important in many places. 
For example, the word “one” when used as a noun (as in “the green 
one”) refers back to previously mentioned nouns. It could not be defined 
by a simple format, as could “block” or “dog”, since access to the previous 
discourse is needed to determine what is really being referred to. In 
our system, the definitions of such words are compatible with the 
definitions of all other nouns-the semantic specialists don’t have to 
distinguish among them. When the NC specialist is ready to use the 
definition of the noun, it calls it as a program. In the usual case, this 
program sets up a standard data structure. In the case of “one”, it calls 
a heuristic program for understanding back-references, and its effect on 
the meaning will depend on the discourse. Similarly, the verb “be” is 
called like any other verb by the semantic specialist, but its definition is a 
complex program describing its different uses. 

The use of procedures to represent meanings of words gives a flexibility 
which allows these exceptional words to be handled as well as the more 
ordinary forms. At the same time, it provides a strict test for the rep- 
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resentation of the meaning of a word, since the procedures can actually 
be run in an integrated language-understanding system. 

1.6.4 Ambiguity 

A semantic theory must account for multiple meanings of words, 
phrases, and sentences, explaining not only how multiple interpretations 
can occur, but also how the hearer picks a single meaning. Words may 
have several “senses”, producing multiple possible interpretations of 
phrases and sentences involving them, Sometimes a sentence may also be 
described with several different syntactic structures, leading to semantic 
ambiguities. Finally, some ambiguities result from the semantic analysis. 
The sentence “A man sitting in this room fired the fatal shot.” will be 
ambiguous even if we agree on a single meaning for each word, and a 
surface structure for the sentence. It could mean “a man who is sitting 
in this room”, or “who was sitting in this room”. This could be treated as 
a syntactic ambiguity in the deep structure, but in our analysis it is 
instead treated as a semantic ambiguity involving the time reference. 

In describing the parser it was pointed out that we do not carry for- 
ward simultaneous parsings of a sentence. We try to find the “best” 
parsing, and try other paths only if we run into trouble, In semantics 
we take the other approach. If a word has two meanings, then two 
semantic descriptions are built simultaneously, and used to form two 
separate phrase interpretations. 

We can immediately see a problem here. There is dire danger of a 
combinatorial explosion. If words A, B, C, and D each have three mean- 
ings, then a sentence containing all of them may have 3 X 3 x 3 X 3, or 
81 interpretations. The possibilities for a long sentence are astronomical. 

Of course a person does not build up such a tremendous list. As he 
hears a sentence, he filters out all but the most reasonable interpretations. 
We know that a “ball” can be either a spherical toy or a dancing party, 
and that “green” can mean either the color green, or unripe, or in- 
experienced. But when we see “the green ball”, we do not get befuddled 
with six interpretations, we know that only one makes sense. The use of 
“green” for “unripe” applies only to fruit, the use as “inexperienced” 
applies only to people, and the color only to physical objects. The mean- 
ing of “ball” as a party fits none of these categories, and the meaning as 
a “spherical toy” fits only the last one. We can subdivide the world into 
rough classes such as “animate”, “inanimate”, “physical”, “abstract”, 
“event”, “human”, etc. and can use this classification scheme to filter 
out meaningless combinations of interpretations. 

Some semantic theories (Katz & Fodor, 1964) are based almost 
completely on this idea. We would like to use it for what it is-not a 
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complete representation of meaning, but a rough classification which 
eliminates fruitless semantic interpretations. Our system has the ability 
to use these “semantic markers” to cut down the number of semantic 
interpretations of any phrase or sentence. 

A second method used to reduce the number of different semantic 
interpretations is to do the interpretation continuously. We do not pile 
up all possible interpretations of each piece of the sentence, then try to 
make logical sense of them together at the end. As each phrase is 
completed, it is understood. If we come across a phrase like “the color- 
ful ball” in context, we do not keep the two different possible inter- 
pretations in mind until the utterance is finished. We immediately look in 
our memory to see which interpretation is meaningful in the current 
context of discourse, and use only that meaning in the larger semantic 
analysis of the sentence. Since our system allows the grammar, semantics 
and deduction to be easily intermixed, it is possible to do this kind of 
continuous interpretation. 

Finally we must deal with cases where we cannot eliminate all but one 
meaning as “senseless”. There will be sentences where more than one 
meaning makes sense, and there must be some way to choose the correct 
one in a given context. In Section 1.6.5, we discuss the use of the overall 
discourse context in determining the plausibility of a particular inter- 
pretation. 

1.6.5 Discourse 

We have discussed why a semantic system should deal with the effect 
of “setting” on the meaning of a sentence. A semantic theory can account 
for three different types of context. 

First, there is the local discourse context, which covers the discourse 
immediately preceding the sentence, and is important to semantic 
mechanisms like pronoun reference, If we ask the question “Did you put 
it on a green one?" or “Why?” or “How many of them were there then?“, 
we assume that it will be possible to fill in the missing information from 
the immediate discourse. There are a number of special mechanisms 
for using this kind of information, and they form part of a semantic 
theory. 

Second, there is an overall discourse context. A hearer will interpret 
the sentence “The group didn’t have an identity.” differently depending 
on whether he is discussing mathematics or sociology. There must be a 
systematic way to account for this effect of general subject matter on 
understanding. In addition to the effects of general subject on choosing 
between meanings of a word, there is an effect of the context of particular 
things being discussed. If we are talking about Argentina, and say “The 
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government is corrupt.“, then it is clear that we mean “the government 
of Argentina”. If we say “Pick up the pyramid.“, and there are three 
pyramids on the table, it will not be clear which one is meant. But if this 
immediately follows the statement “There is a block and a pyramid in the 
box.“, then the reference is to the pyramid in the box. This would have 
been clear even if there had been severa sentences between these two. 
Therefore this is a different problem than the local discourse of pronoun 
reference. A semantic theory must deal with all of these different forms 
of overall discourse context. 

Finally, there is a context of knowledge about the world, and the way 
that knowledge affects our understanding of language. If we say “The 
city comlcilmen refused the demonstrators a permit because they feared 
vio!ence.“, the pronoun “they” will have a different interpretation than 
if we said “The city councilmen refused the demonstrators a permit 
because they advocated revolution.” We understand this because of our 
sophisticated knowledge of councilmen, demonstrators, and politics-no 
set of syntactic or semantic rules could interpret this pronoun reference 
without using knowledge of the world. Of course a semantic theory does 
not include a theory of political power groups, but it must explain the 
ways in which this kind of knowledge can interact with linguistic knowl- 
edge in interpreting a sentence. 

Knowledge of the world may affect not only such things as the inter- 
pretation of pronouns, but may alter the parsing of the syntactic struc- 
tures as well. If we see the sentence “He hit the car with a rock.” the 
structure will be parsed differently from “He hit the car with a dented 
fender.“, since we know that cars have fenders, but not rocks. 

In our system, most of this discourse knowledge is called on by the 
semantic specialists, and by particular words such as “one”, “it”, “then”, 
“there”, etc. We have concentrated particularly on Iocal discourse con- 
text, and the ways in which English carries information from one sentence 
to the next. A number of special pieces of information are kept, such as 
the time, place, and objects mentioned in the previous sentence. This 
information is referenced by specIa1 structures and words like pronouns, 
“then”, and “there”. The meaning of the entire previous sentence can be 
referred to in order to answer a question like “Why did you do that?” 
or just “Why?“. 

1.6.6 Goals of a Semuntic Theory 

For Katz and Fodor (1964), the goals of a semantic theory are mainly 
to account for “the number and content of the readings of a sentence, 
detecting semantic anomalies, and deciding upon paraphrase relations 
between sentences.” For us, these are not pr:mary goals, but by-products 
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of the analysis made possible by a more complete semantic theory. A 
phrase is a semantic anomaly if the system produces no possible inter- 
pretations for it. Two sentences are paraphrases if they produce the same 
representation in the internal formalism for meaning, and the “number 
and content” of the readings of a sentence are the immediate result of 
its semantic analysis. Which of these will happen depends on the entire 
range of ways in which language communicates meaning, not on a 
restricted subset such as the logical relations of markers. Once we have 
a conceptual representation for meaning, solutions to problems such as 
these are secondary by-products of the basic analysis which relates a 
sentence to the representation of its meaning, In addition, we are not 
restricted to dealing with those aspects of meaning which are “indepen- 
dent of setting.” We can talk about sentences being anomalies or para- 
phrases in a given context, as well as without regard to context, since 
the theory can include a systematic analysis of the interaction of context 
with understanding. 

2. COMPARISON WITH PREVIOUS PROGRAMS 

2.1 Language Understanding Systems 

In Section 1 we discussed ways of representing information and mean- 
ing within a language-comprehending system. In order to compare our 
ideas with those in previous systems, we will establish a broad classi- 
fication of the field. Of course, no set of pigeon-holes can completely 
characterize the differences between programs, but they can give us 
some viewpoints from which to analyze different people’s work, and can 
help us see past the superficial differences. In Section 2.1 we will deal 
only with the ways that programs represent and use their knowledge 
of the subject matter they discuss. We will distinguish four basic types 
of systems called “special format”, “text based”, “limited logic”, and 
“general deductive”. 

2.1.1 Special Format Systems 

Most of the early language-understanding programs were of the special 
format type. Such systems usually use two special formats designed for 
their particular subject matter-one for representing the knowledge they 
keep stored away, and the other for the meaning of the English input. 
Some examples are: BASEBALL (Green et al., 1963), which stored 
tables of baseball results and interpreted questions as “specification 
lists” requesting data from those tables; SAD SAM (Lindsay, 1963), 
which interpreted sentences as simple relationship facts about people, 
and stored these in a network structure; STUDENT (Bobrow, 1968), 
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which interpreted sentences as linear equations and could store other 
linear equations and manipulate them to solve algebra problems; and 
ELIZA ( Weizenbaum, 1966)) whose internal knowledge is a set of 
sentence rearrangements and key words, and which sees input as a simple 
string of words. 

These programs all make the assumption that the only relevant in- 
formation in a sentence is that which fits their particular format. Although 
they may have very sophisticated mechanisms for using this information 
(as in CARPS (Charniak, 1969), which can solve word problems in 
calculus ) , they are each built for a special purpose, and do not handle 
information with the flexibility which would allow them to be adapted 
to other uses. Nevertheless, their restricted domain often allows them 
to use special purpose heuristics which achieve impressive results with 
a minimum of concern for the complexities of language. 

2.1.2 Text Based System 

Some researchers were not satisfied with the limitations inherent in 
the special-format approach. They wanted systems which were not 
limited by their construction to a particular specialized field. Instead 
they used English text, with all of its generality and diversity, as a basis 
for storing information. In these “text based” systems, a body of text is 
stored directly, under some sort of indexing scheme. An English sentence 
input to the understander is interpreted as a request to retrieve a relevant 
sentence or group of sentences from the text. Various ingenious methods 
were used to find possibly relevant sentences and decide which were 
most likely to satisfy the request. 

PROTOSYNTHEX I (S immons et al., 1966) had an index specifying all 
the places where each “content word” was found in the text. It tried to 
find the sentences which had the most words in common with the request 
(using a special weighting formula), then did some syntactic analysis to 
see whether the words in common were in the right syntactic relationship 
to each other. Semantic Memory (Quillian, 1968) stored a slightly 
processed version of English dictionary definitions in which multiple- 
meaning words were eliminated by having humans indicate the correct 
interpretation. It then used an associative indexing scheme which en- 
abled the system to follow a chain of index references. An input request 
was in the form of two words instead of a sentence. The response was the 
shortest chain which connected them through the associative index (e.g., 
if there is a definition containing the words A and B and one containing 
B and C, a request to relate A and C will return both sentences), 

Even with complex indexing schemes, the text based approach has a 
basic problem. It can only spout back specific sentences which have been 
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stored away, and can not answer any question which demands that some- 
thing be deduced from more than one piece of information. In addition, 
its responses often depend on the exact way the text and questions are 
stated in English, rather than dealing with the underlying meaning. 

2.1.3 Limited Logic Systems 

The “limited logic” approach attempted to correct these faults of text 
based systems, and has been used for most of the more recent language- 
understanding programs. First, some sort of more formal notation is 
substituted for the actual English sentences in the base of stored know- 
ledge. This notation may take many different forms, such as “descr;ption 
lists” ( Raphael, 1968), “kernels” ( Simmons, 1966), “concept-relation- 
concept triples” (Simmons et al., 1966)) “data nodes” ( Quillian, 1969 ) , 
“rings” ( Thompson, 1966)) “relational operators” ( Tharp, 1969), etc. 
Each of these forms is designated for efficient use in a particular system, 
but at heart they are all doing the same thing-providing a notation for 
simple assertions of the sort described in Section 1.5. It is relatively un- 
important which special form is chosen. All of the different methods can 
provide a uniform formalism which frees simple information from being 
tied down to a specific way of expressing it in English. Once this is 
done, a system must have a way of translating from the English input 
sentences into this internal assertion format, and the greatest bulk of 
the effort in language-understanding systems has been this “semantic 
analysis”, which was discussed at length in Section 1.6. For now we are 
more interested in what can be done with the assertions once they have 
been put into the desired form. 

Some systems ( Quillian, 1969; Tharp, 1969), remain close to text 
based systems, only partially breaking down the initial text input. The 
text is processed by some sort of dependency analysis and left in a net- 
work form, either emphasizing semantic relationships or remaining 
closer to the syntactic dependency analysis. What is common to these 
systems is that they do not attempt to answer questions from the stored 
information. As with text based systems, they try to answer by giving 
back bits of information directly from the data base. They may have 
ways to decide what parts of the data are relevant to a request, but 
they do not try to break the question down and answer it by logical 
inference. Because of this, they suffer the same deficiencies as text based 
systems. They have a mass of information stored away, but little way 
to use it except to print it back out. 

Most of the systems which have been developed recently fit more 
comfortably under the classification “limited logic”. In addition to their 
data base of assertions (whatever they are called), they have some 
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mechanism for accepting more complex information, and using it to 
deduce the answers to more complex questions. By “complex information” 
we mean the type of knowledge containing logical quantifiers and 
relationships (such as “Every canary is either yellow or purple,” or “If A 
is a part of B and B is a part of C, then A is a part of C.“), as well as 
knowledge of heuristics and procedures relevant to the subject matter. 
By “complex questions”, we mean questions which are not answerable 
by giving out one of the data base assertions, but demand some logical 
inference to produce an answer. 

One of the earliest limited logic programs was SIR (Raphael, 1968), 
which could answer questions using simple logical relations (like the 
“part” example in the previous paragraph). The complex information 
was not expressed as data, but was built directly into the SIR operating 
program. This meant that the types of complex information it could use 
were highly limited, and could not be easily changed or expanded. The 
complex questions it could answer were similar to those in many later 
limited logic systems, consisting of four basic types. The simplest is a 
question which translates into a single assertion to be verified or falsified 
(e.g., “Is John a bagel?“). The second is an assertion in which one part 
is left undetermined (e.g., “Who is a bagel?“) and the system responds 
by “filling in the blank”. The third type is an extension of this, which 
asks for all possible blank-fillers ( e.g., “Name all bagels.“), and the fourth 
adds counting to this listing facility to answer count questions (e.g., “How 
many bagels are there?“). SIR had special logic for answering “how 
many” questions, using information like “A hand has five fingers.“, and 
in a similar way each limited logic system had special built-in mechanisms 
to answer certain types of questions. 

The DEACON system (Thompson, 1968), had special “verb tables” 
to handle time questions, and a bottom-up analysis method which allowed 
questions to be nested. For example, the question “Who is the com- 
mander of the batallion at Fort Fubar?” was handled by first internally 
answering the question “WJhat batallion is at Fort Fubar?” The answer 
was then substituted directly into the original question to make it “Who 
is the commander of the 69th batallion?“, which the system then an- 
swered. PROTOSYNTHEX II (Simmons, 1966) had special logic for 
taking advantage of the transitivity of “is” (e.g., “A boy is a person.“, “A 
person is an animal.“, therefore “A . . .“). PROTOSYNTHEX 111 (Sim- 
mons et nk, 1968) and SAMENLAQ II (Shapiro, 1969) bootstrapped their 
way out of first-order logic by allowing simple assertions about relation- 
ships (e.g., “North-of is the converse of South-of.“). CONVERSE 
(Kellogg, 1968) converted questions into a “query language” which al- 
lowed the form of the question to be more complex but used simple table 
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lookup for finding the answers. Weizenbaum (1967) used the ELIZA 
system as a basis for limited logic programs and used them as a frame- 
work for discussing the relevance of context. 

All of the limited logic systems are basically similar, in that complex 
information is not part of the data, but is built into the system programs. 
Those systems which could add to their initial data base by accepting 
English sentences could accept only simple assertions as input. The 
questions could not involve complex quantified relationships (e.g., “Is 
there a country which is smaller than every U. S. State?“). 

2.1.4 General Deductive Systems 

The problems of limited logic systems were recognized very early (see 
Raphael ( 1968) p. QO), and people looked for a more general approach 
to storing and using complex information. If the knowledge could be 
expressed in some standard mathematical notation (such as the predicate 
calculus), then all of the work logicians have done on theorem proving 
could be utilized to make a theoretically efficient deductive system. By 
expressing a question as a theorem to be proved, the theorem prover 
could actually deduce the information needed to answer any question 
which could be expressed in the formalism. Complex information not 
easily useable in limited logic systems could be neatly expressed in the 
predicate calculus, and a body of work already existed on computer 
theorem proving. This led to the “general deductive” approach to lan- 
guage-understanding programs. 

The early programs used logical systems less powerful than the full 
predicate calculus (Bar-Hillel, 1964; Coles, 1968; Darlington, 1964), but 
the big boost to theorem proving research was the development of the 
Robinson resolution algorithm (Robinson, 1965)) a very simple “complete 
uniform proof procedure” for the first-order predicate calculus. This 
meant that it became easy to write an automatic theorem proving 
program with two important characteristics. First, the procedure is 
“uniform”-we need not (and in fact, cannot) tell it how to go about 
proving things in a way suited to particular subject matter. It has its 
own fixed procedure for building proofs, and we can only change the 
sets of logical statements (or “axioms”) for it to work on. Second, it 
guarantees that if any proof is possible using the rules of predicate 
calculus, the procedure will eventually find it (even though it may take 
a very long time). These are very pretty properties for an abstract 
deductive system, but the price is a low level of practicality. We would 
like to argue that in fact they have led to the worst deficiencies of the 
theorem-proving question-answerers, and that a very different approach 
is called for. 
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The “uniform procedure” approach was adopted by a number of 
systems (see discussion in Green, 1968, 1969) as an alternative to the 
kind of specialized limited logic discussed in the previous section. It was 
felt that there must be a way to present compIex information as data 
rather than embedding it into the inner workings of the language-under- 
standing system. There are many benefits in having a uniform notation 
for representing problems and knowledge in a way which does not 
depend on the quirks of the particular program which will interpret 
them. It enables a user to describe a body of knowledge to the computer 
in a “neutral” way without knowing the details of the question-answer- 
ing system, and guarantees that the system will be applicable to any 
subject, rather than being specialized to handle only one. 

Predicate calculus seemed to be a good uniform notation, but in fact 
it has a serious deficiency. By putting complex information into a 
“neutral” logical formula, these systems ignored the fact that an impor- 
tant part of a person’s knowledge concerns how to go about figuring 
things out. Our heads don’t contain neat sets of logical axioms from which 
we can deduce everything through a “proof procedure”. Instead we have 
a large set of heuristics and procedures for solving problems at different 
levels of generality. In ignoring this type of knowledge, programs run 
into tremendous problems of efficiency. As soon as a “uniform procedure” 
theorem prover gets a large set of axioms (even well below the number 
needed for really understanding language), it becomes bogged down in 
searching for a proof, since there is no easy way to guide its search 
according to the subject matter. In addition, a proof which takes many 
steps (even if they are in a sequence which can be easily predicted by 
the nature of the theorem) may take impossibly long since it is very 
difficult to describe the correct proving procedure to the system. 

It is possible to write theorems in clever ways to implicitly guide the 
deduction process, and a recent paper (Green, 1969) describes some of 
the problems and techniques for “programming” in first-order logic. Since 
first-order logic is a declarative rather than imperative language, specify- 
ing how to do something takes a good deal of work, 

It might be possible to add strategy information to a predicate calculus 
theorem prover, but with current systems such as QA3 (Green, 1968), 
to change strategies “the user must know about set-of-support and other 
program parameters such as level bound and term-depth bound. To 
radically change the strategy, the user presently has to know the LISP 
language and musf be able to modify certain strategy sections of t& 
program” (Green, 1969, p. 236). I n newer programs such as QA4, there 
will be a special strategy language to go along with the theorem proving 
mechanisms. It will be interesting to see how close these new strategy 
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languages are to PLANNER, and whether there is any advantage to be 
gained by putting them in a hybrid with a resolution-based system. 

2.1.5 Procedural Deductive Systems 

The problem with the limited logic systems wasn’t that they expressed 
their complex information in the form of programs or procedures. The 
problem was that in these systems, new subject matter required new 
subprograms, and 

“ . . . each change in a subprogram may affect more of the other subprograms. The 
structure grows more awkward and difficult to generalize . . . Finally the system may 
become too unwieldy for further experimentation.” 

(Raphael, 1968, p. 91). 
What was needed were new programming techniques capable of using 

procedural information, but at the same time expressing this information 
in ways which did not depend on the peculiarities and special structure 
of a particular program or subject of discussion. 

A system which partially fits this description is Woods’ ( 1968). It 
uses a quantificational query language for expressing questions, then 
assumes that there are “semantic primitives” in the form of LISP sub- 
routines which decide such predicates as (CONNECT FLIGHT-23 
BOSTON CHICAGO) and which evaluate functions such as “number 
of stops ” “owner”, etc. It differs from limited logic systems in that the , 
entire system is designed without reference to the way the particular 
“primitive” functions operate on the data base. Note, however, that the 
information which the system was designed to handle (the Official Air- 
line Guide) is particularly amenable to simple table-lookup routines. 
Were less structured information involved, these primitive routines might 
run into the same problems of intercomlectedness described by Raphael. 

PLANNER (Hewitt, 1969,U371) is a goal-oriented procedural language 
designed to deal with these problems. It handles simple assertions 
efficiently, and it can include any complex information that can be 
expressed in the predicate calculus. More important, complex information 
is expressed as procedures, and these may include knowledge of how 
best to go about attempting a proof. The language is “goal-oriented”, in 
that we need not be concerned about the details of interaction among 
procedures. For example, theorems which may at some point ask whether 
an object is sturdy need not specify the program that assesses sturdiness. 
Instead they may say something like “Try to find an assertion that X is 
sturdy, or prove it using anything you can.” If we know of special 
procedures likely to give a quick answer, we can specify that these be 
tried first. If at some point we add a new procedure for evaluating 
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sturdiness, we do not need to find out which theorems use it. We need 
only add it to the data base, and the system will automatically try it, 
along with any others, whenever any theorem calls for such a test. 

The ability to add new theorems without relating them to other 
theorems is the advantage of a “uniform” notation. In fact PLANNER 
is a uniform notation for expressing procedural knowledge just as 
predicate calculus is a notation for a more limited range of information. 
The added advantage is its flexible control structure. If we know that 
a particular proof will fail unless one of a specified set of theorems 
succeeds, we can write PLANNER procedures in such a way that only 
theorems from that set will be used in attempting a proof. Furthermore, 
if we wish to try theorems in a particular order, that order may be 
specified, either directly, or depending upon arbitrarily complex calcu- 
lations which take place when the subgoal is set up. 

Notice that this control structure makes it very difficult to specify the 
abstract logical properties of PLANNER, such as consistency and 
completeness. It is not easy to fit it into traditional ways of proving 
things about logical systems. It is worth pointing out here that complete- 
ness may in fact be a bad property. It means that if the theorem-prover 
is given something to prove which is in fact false, it will exhaust every 
possible way of trying to prove it. By forsaking completeness, we allow 
ourselves to use good sense in deciding when to give up. 

In a truly uniform system, the theorem prover is forced to “rediscover 
the world” every time it answers a question. Every goal forces it to start 
from scratch, looking at all of the theorems in the data base. At best it 
may use nonspecific heuristics to limit its selections. PLANNER can 
operate in this “blindman” mode, but it should have to do this only 
rarely-when discovering something that was not known or understood 
when the basic theorems were written. The rest of the time it can go 
about proving things it knows how to do, without having to piece to- 
gether a proof from scratch each time. 

2.2 Comparison with Other Parsers 

2.2.1 Older Parsers 

When work first began on analyzing natural language with computers, 
no theories of syntax existed which were explicit enough to be used. 
The early machine-translator designers were forced to develop their 
own linguistics as they worked, and they produced rough and ready 
versions. The parsers were collections of “packaging routines”, “inserted 
structure passes”, “labeling subroutines”, etc. (Garvin, 1965) which 
evolved gradually as the grammars were expanded to handle more and 
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more complex sentences. They had the same difficulties as any program 
designed in this way-as they became more complex it became harder 
and harder to understand the interactions within them. 

When the machine-translation effort failed, it seemed clear that it 
had been premature to try handling all of English without a better 
background of linguistic theory and an understanding of the mathe- 
matical properties of grammars. Computer programs for natural language 
took two separate paths. The first was to ignore traditional syntax 
entirely, and to use some sort of more general pattern matching process 
to get information out of sentences. Systems such as STUDENT (Bob- 
row, 1968)) SIR (Raphael, 1968), ELIZA ( Weizenbaum, 1966), and 
Semantic Memory (Quillian, 1968) made no attempt to do a complete 
syntactic analysis of the inputs. They either limited the user to a small 
set of fixed input forms or limited their understanding to those things 
they could get while ignoring syntax. 

The other approach was to take a simplified subset of English which 
could be handled by a well-understood form of grammar, such as one 
of the variations of context-free grammars. There has been much interest- 
ing research on the properties of abstract languages and the algorithms 
needed to parse them. Using this theory, a series of parsing algorithms 
and representations were developed. For a summary of the computer 
parsers designed before 1966, see Bobrow ( 1967). A more recent develop- 
ment is Earley’s context-free parser (1966), which operates in a time 
proportional to the cube of the length of a sentence. 

The problem faced by all context-free parsers (including the mammoth 
Harvard Syntactic Analyzer (Kuno, 1965) ) is that they cannot handle 
the full complexity of natural language. The intrinsic theoretical 
deficiencies of such parsers are discussed by Chomsky ( 1957). In ad- 
dition, many aspects of language which in principle can be handled by 
such systems, in fact can be dealt with only at the cost of introducing 
gross inefficiencies and unnecessary complexities. 

In an effort to go beyond the limitations of context-free parsers, some 
parsers (Petrick, 1965; Zwicky, 1965) have attempted to make use of 
Chomsky’s transformational grammar. These parsers try to “unwind” the 
transformations to reproduce the deep structure of a sentence, which 
can then be parsed by a context-free “base component”. It soon became 
apparent that this was a very difficult task. Although transformational 
grammar is theoretically a “neutral” description of language, it is in fact 
highly biased toward the process of generating sentences rather than 
interpreting them. Adapting generation rules to use in interpretation is 
relatively easy for a context-free grammar, but extremely difficult for 
transformational grammars. Woods (1969) discusses the problems of 
“combinatorial explosion” inherent in the inverse transformational 
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process. Present transformational parsers can only handle small subsets 
of English in an inefficient way. 

2.2.2 Augmented Transition Networks 

In the past few years, three related parsing systems have been devel- 
oped to deal with the full complexity of natural language. The first was 
by Thorne, Bratley, and Dewar (Thorne, 1968 and 1969), and the more 
recent ones are by Bobrow and Fraser (1969) and Woods ( 1969). The 
three programs operate in very similar ways, and since Woods’ is the 
most advanced and best documented, we will use it for comparison. In 
his paper Woods compares his system with the other two. 

The basic idea of these parsers is the “augmented transition network”. 
The parser is seen as a transition network much like a finite-state 
recognizer used for regular languages in automata theory. 

The first extension is in allowing the networks to make recursive calls 
to other networks (or to themselves). The condition for following a 
particular state transition is not limited to examining a single input 
symbol. The condition on the arc can be something like “NP” where NP 
is the name of an initial state of another network. This recursively called 
NP network then examines the input and operates as a recognizer. If it 
ever reaches an accepting state, it stops, and parsing continues from the 
end of the NP arc in the original network. These “recursive transition 
networks” have the power of a context-free grammar, and the correspond- 
ence between a network and its equivalent grammar is quite simple 
and direct. 

To parse the full range of natural language, we need a critical addition. 
Instead of using “recursive transition networks” these parsers use “aug- 
mented transition networks”, which can “make changes in the contents 
of a set of registers associated with the network, and whose transitions 
can be conditional on the contents of those registers” (Woods, 1969). 
This is done by “adding to each arc of the transition network an arbitrary 
condition which must be satisfied in order for the arc to be followed, 
and a set of structure building actions to be executed if the arc is 
followed.” 

Augmented transition networks have the power of Turing machines, 
since they have changeable registers and can transfer control depending 
on the state of those registers. Clearly they can handle any type of gram- 
mar which could possibly be parsed by any machine. The advantage of 
augmented transition networks is that their operation appears to be 
closer to the actual operations humans use in understanding language. 
Thus they give a natural and understandable representation for 
grammars. 
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2.2.3 Networks and Programs 

How do such parsers compare with PROGRAMMAR? In fact, gram- 
mars described as networks and grammars described as programs are 
just two different ways of talking about doing exactly the same thing. 
Picture a flowchart for a PROGRAMMAR grammar (see Section 5), in 
which calls to the function PARSE are drawn on the arcs rather than at 
the nodes. Every arc then is either a request to accept the next word in 
the input (when the argument of PARSE is a word class), or a recursive 
call to one of the grammar programs. At each node (i.e., segment of 
program between conditionals and PARSE calls) we have “a set of 
arbitrary structure building actions.” Our flowchart is just like an 
augmented transition network. 

Now picture how Woods’ networks are fed to the computer. He uses 
a notation (Woods, 1969, p. 17) which looks very much like a LISP- 
embedded computer language, such as PROGRAMMAR or PLANNER. 
In fact, the networks could be translated almost directly into PLANNER 
programs (PLANNER rather than LISP or PROGRAMMAR because 
of the automatic backup features-see the discussion in Section 6). 

It is an interesting lesson in computer science to look at Woods’ dis- 
cussion of the advantages of networks, and “translate” them into the 
advantages of programs. For example, he talks about efficiency of 
representation. “A major advantage of the transition network model is 
. . . the ability to merge the common parts of many context free rules.” 
Looking at grammars as programs, we can call this “sharing subroutines”. 
He says (p. 42) 

“The augmented transition network, through its use of flags, allows for the merg- 
ing of similar parts of the network by recording information in registers and inter- 
rogating it . . , and to merge states whose transitions are similar except for conditions 
on the contents of the registers.” 

This is the use of subroutines with arguments. In addition, the net- 
works can ( p. 44 ) 

capture the regularities of the language . . . whenever there arc two essentially 
identical parts of the grammar which differ only in that the finite control part of the 
machine is remembering some piece of information . . . it is sufficient to explicitly 
store the distinguishing piece of information in a register and use only a single copy 
of the subgraph. 

This is clearly the use of subroutines with a parameter. 
Similarly we can go through the arguments about efficiency, the ease 

of mixing semantics with syntax, the ability to include operations which 
are “natural” to the task of natural language analysis, etc. All of them 
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apply identically whether we are looking at “transition networks” or 
“programs”. 

What about Woods’ claims that augmented transition networks retain 
the perspicuity (ease of reading and understanding by humans) of 
simpler grammar forms. He says (p. 38) that transformational grammars 
have the problem that 

the effect of a given rule is intimately bound up with its interrelation to other 
rules . . . it may require an extremely complex analysis to determine the effect and 
purpose. 

This is true, but it would also be true for any grammar complex enough 
to handle all of natural language. The simple examples of transition net- 
works are indeed easy to read (as are simple examples of most gram- 
mars), but in a network for a complete language, the purpose of a given 
state would be intimately bound up with its interrelation to other states, 
and the same problems of complexity arise. The network representation 
would be no more or less perspicuous than the flow chart for a program. 

Though the basic principles are much the same in Woods’ system and 
the present one, the systems do differ, The difference is not in the 
theoretical power of the parser, but in the types of analysis being carried 
out. 

The most important difference is the theory of grammar being used. 
All of the network systems are based on transformational grammar. They 
try to reproduce the “deep structure” of a sentence while doing surface 
structure recognition. This is done by using special commands to 
explicity build and rearrange the deep structures as the parsing proceeds. 
PROGRAMMAR is oriented towards systemic grammar, with its 
identification of significant features in the constituents being parsed. It 
therefore emphasizes the ability to examine the features of constituents 
anywhere on the parsing tree, and to manipulate the feature descriptions 
of nodes. 

A second difference is in the implementation of special additions to 
the basic parser. For example in section 1.4 we noted how words like 
“and” could be defined to act as “demons” which interrupt the parsing 
whenever they are encountered, and start a special program for interpret- 
ing conjoined structures. This has many uses, both in the standard parts 
of the grammar (such as “and”) and in handling idioms and unusual 
structures. If we think in network terms, this is like having a separate 
arc marked “and” leading from every node in the network, Such a feature 
could probably be added to the network formulation, but it seems much 
more natural to think in terms of programs and interrupts. 

A third difference is the backup mechanism. The network approach 
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assumes some form of nondeterminism. If there are several arcs leaving 
a node, there must be some way to try following all of them, Either we 
have to carry forward simultaneous interpretations, or keep track of 
our choices in such a way that the network can automatically revise its 
choice if the original choice does not lead to an accepting state. This 
could be done in the program approach by using a language such as 
PLANNER with its automatic backup mechanisms. But as we indicated 
in section 1.4, it is not obvious that automatic backup is desirable in 
handling natural language. There are advantages instead in an intelligent 
parser which can understand the reasons for its failure at a certain point, 
and can guide itself accordingly instead of backing up blindly. This is 
important both theoretically and also as a matter of practical efficiency. 
Woods is also concerned with ways to modify networks to avoid un- 
necessary and wasteful backup by “making the network more deter- 
ministic.” (p. 45). It might be interesting to explore a compromise 
solution in which automatic backup facilities existed, but couId be turned 
on and off. We could give PROGRAMMAR special commands that 
would cause it to remember the state of the parsing so that later the 
grammar could ask to back up to that state and try something else. This 
is an interesting area for further work on PROGRAMMAR. 

It is difficult to compare the performance of different parsers since 
there is no standard grammar or set of test sentences. Bobrow and Woods 
have not published the results of any experiments with a larger grammar, 
but Thorne has published two papers (1968, 1969) with a number of 
sample parsings. Our parsing system, with its current grammar of English, 
and a specially prepared vocabulary, has successfully parsed all of these 
examples. They take from 1 to 5 sec. apiece, and some samples of more 
complicated parsings achieved by the system are included in Appendix 
B. For this use of the parser without semantic knowledge, it is necessary 
to artificially avoid those false paths which should normally be eliminated 
by semantic criteria. This is done by listing only those syntactic classes 
of a word whch are relevant to its use in the particular sentence being 
parsed. 

3. A GRAMMAR FOR ENGLISH 

This section presents an outline of the detailed syntax of English used 
by the system. This description has no pretense of being a full grammar 
of English, or of being accurate in every detail.” It is presented to il- 

*The grammar as described here is a rough version, guided by the desire to get 
an entire system in operation, rather than a need for exact detail. It evolved through 
the course of the research, and has not gone through the polishing phase which would 
remove the irregularities of its development. Many of the specific details are in- 
sufficient, and possibly wrong. It is intended foremost as a demonstration of an 
approach to syntax. 
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lustrate the type of grammar which can be designed within the frame- 
work of the syntactic theories described in Section 1.4. In writing a 
grammar, we felt it important not to produce ad hoc rules suited only 
to a tiny domain. The grammar presented is in fact substantially more 
general than required for the world of toy blocks. Many aspects of 
English are included in the parsing programs, but are not handled in 
the semantic parts of the system, including various aspects of tense, 
modality, quantifiers, and conjunction. There are still whole areas of 
syntax which we have not dealt with, particularly those which are used 
to convey the reaction, mood. and emphasis of a speaker. 

The system networks and examples presented here are not a complete 
specification of the grammar, but are the basis for the detailed recognition 
program. The actual PROGRAMMAR programs are available on 
request. 

There is no available comprehensive presentation of English syntax 
based on systemic grammar. The analysis here may disagree in many 
ways with fragments of English systemic grammar presented elsewhere, 
or with existing unpublished versions. Some differences are simply 
notational, others are intentional simplifications, and some represent 
theoretical differences (for example, our analysis of the transitivity system 
puts much of the structure into the semantic rather than the syntactic 
rules, while Halliday’s ( 1967) is more purely syntactic), 

3.1 The CLAUSE 

The structure exhibiting the greatest variety in English is the CLAUSE. 
It can express relationships and events involving time, place, manner, 
and other modifiers. Its structure indicates what parts of the sentence 
the speaker wants to emphasize, and can express various kinds of focus 
of attention and emotion. It determines the purpose of an utterance- 
whether it is a question, command, or statement-and is the basic unit 
which can stand alone. Other units can occur by themselves when their 
purpose is understood, as in answer to a question, but the clause is 
the primary unit of discourse. 

The CLAUSE has several main ingredients and a number of optional 
ones. Except for special types of incomplete clauses, there is always a 
verb group, containing the verb, which indicates the basic event or 
relationship being expressed by the CLAUSE. Almost every CLAUSE 
contains a subject, except for IMPERATIVE (in which the semantic 
subject is understood to be the person being addressed), and embedded 
clauses in which the subject lies somewhere else in the syntactic struc- 
ture. In addition to the subject, a CLAUSE may have various kinds of 
objects, which will be explained in detail later. It can take many types 
of modifiers (CLAUSES, GROUPS, and WORDS) which indicate time, 
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place, manner, causality, and a variety of other aspects of meaning. One 
part of the CLAUSE system network is shown in Fig. 7. 

Beginning at the top of the network, we see a choice between MAJOR 
(a clause which could stand alone as a sentence) and “secondary” 
(SEC). A MAJOR clause is either an IMPERATIVE (a command), a 
DECLARATIVE, or a QUESTION. Questions are either YES-NO- 
answerable by “yes” or ‘ho”, as in: 

(sl ) Did you like the show? 
or WH- (involving a question element like “when,” “where,” “which,” 
“how,” etc. ) . 

The choice of the WH- feature leads into a whole network of further 
choices, which are shared by QUESTION and two kinds of secondary 
clauses we will discuss later. In order to share the network, we have 
used a simple notational trick-Certain symbols contain a “*“; when 

(IMPERATIVE 

I [BOUND 

SEC 

/ 

-I DANGLING 
PREP* 

--- 

4DJ*JSHORT 
I--- 

4DVMEAS* 

i 

SUEJ’ 
SUB* 

SUBJT* 

OBJl* 

OBJ’ 

NG* 1 

OBJZ* 

LOBJ* 

TRANS 2 TO* 

COMP* 
--i 

MEAS* 

_-- 
SUBING 

ING 
--- 

TO 
-I 

SUET0 

--- 
RSNG THAT 

-_- 
ITSUBJ 

SUBJ -I--- 
/OBJl 

OBJ2 

LOBJ 

TIME* 

DOWN* 

--- IPREPOBJ 

RELDEL 

UPREL 

FIG. 7. Network l-CLAUSE. 



UNDERSTANDING NATURAL LANGUAGE 49 

they are being applied to a question, we replace the “*” with “Q”, while 
when they are applied to relative clauses, we use “REL.” For example, 
the feature “PREP*” in the network will be referred to as PREPQ when 
we find it in a question, but PREPREL when it is in a relative clause. 
This complex of features is basically the choice of what element of the 
sentence is being questioned. English allows us to use almost any part 
of a clause as a request for information. For example, in a PREPQ, a 
prepositional group in the clause is used, as in: 

(~2) With what did you erase it? 
We more commonly find the preposition in a DANGLING position, as 
in: 

(~3) What did you erase it with? 
We can tell by tracing back through Network 1 that sentence s3 has the 
features PREPQ, DANGLING, WH- , QUESTION, and MAJOR. 

We can use a special question adverb to ask questions of time, place, 
and manner, as in: 

(~4) Why did the chicken cross the road? 
(~5) When were you born? 
(se) HOW will you tell her the news? 
(~7) Where has my little dog gone? 
These are all marked by the feature ADJQ (adjunct question), In 

discourse they can also appear in a short form (SHORT) in which the 
entire utterance is a single word, as in: 

(~8) Why? 
We can use the word “how” in connection with a measure adverb (like 
“fast”) to ask an ADVMEASQ, like: 

(~9) HOW fast can he run the mile? 
The most flexible type of WH- question uses an entire noun group as 

the question element, using a special pronoun (like “what” or “who”) 
or a determiner (like “which,” or “how many”) to indicate that it is 
the question element. These clauses have the feature NGQ, and they 
can be further divided according to the function of the NG in the clause, 
It can have any of the possible NG functions (these will be described 
more formally with regard to the next network). For example, it can be 
the subject, giving a SUBJQ, like: 

(~10) Which hand holds the M and M’s? 
It can be the subject of a THERE clause (see below), giving us a 
SUBJTQ: 

(~11) HOW many Puerto Ricans are there in Boston? 
A complement is the second half of an “is” clause, like: 
(~12) Her hair is red. 

and it can be used to form a COMPQ: 
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(~13) What color was her hair? 
or with a “measure” in a MEASQ: 

(~14) How deep is the ocean? 
The noun group can be an object, leading to the feature OBJQ, as in: 
(~15) What do you want? or 
(~16) Who did you give the book? 
These are both OBJlQ, since the first has only one object (“what”), 

and the second questions the first, rather than the second object (“who’, 
instead of “the book”). We use the ordering of the DECLARATIVE 
form “You gave me the book”. If this were reversed, we would have 
an OBJZQ, like: 

(~17) What did you give him? 
If we use the word “to” to express the first object with a two object 

verb like “give,” we can get a TRANS2TOQ, like: 
(~18) To whom did you give the book? or 
(s19) Who did you give the book to? 
Sometimes a NG can be used to indicate the time in a clause, giving 

us a TIMEQ: 
(~20) What day will the iceman come? 
In a more complex style, we can embed the question element within 

an embedded clause, such as: 
(~21) Which car did your brother say that he was expecting us to 

tell Jane to buy? 
The NC “which car” is the question element, but is in fact the object 

of the clause “Jane to buy . . .,” which is embedded several layers deep. 
This kind of NGQ is called DOWNQ. The role of the question element 
in the embedded cIause can include any of those which we have been 
describing. For example it could be the object of a preposition, as in: 

(~22) What state did you say Lincoln was born in? 
Looking at the network for the features of secondary clauses, we see 

three main types-ADJUNCT, “Rank-Shifted Qualifier” ( RSQ ), and 
“Rank-Shifted to act as a Noun Group” (RSNG). ADJUNCT clauses are 
used as modifiers to other clauses, giving time references, causal relation- 
ships, and other similar information. We can use a BOUND clause con- 
taining a “binder” such as “before,” “while,” “because,” “if,” “so,” “un- 
less,” etc., as in: 

(&I?) While Nero fiddled, Rome burned. 
(~24) If it rains, stay home. 
(~25) Is the sky blue because it is cold? 
To express manner and purpose, we use a TO clause or an ING 

clause: 
(~26) He died to save us from OUT sims. 



UNDERSTANDING NATURAL LANGUAGE 51 

(~27) The bridge was built using primitive tools. 
The RSQ clause is a constituent of a NG, following the noun in the 

“qualifier” position (see Section 3.3 for a description of the positions in 
a NG). It is one of the most commonly used secondary clauses, and can 
be of four different types. Three of them are classified by the form of 
the verb group within the clause-TO, ING, and EN (where we use 
“EN” to represent a past participle, such as “broken”) : 

(~28) the man to see about a job 
(s29) the piece holding the door on 
(~30) a face weathered by sun and wind 
Notice that the noun being modified can have various roles in the 

clause. In examples 28 and 29, “piece” is the subject of “hold”, while 
“man” is the object of “see”. We could have said: 

(~31) the man to do the job 
in which “man” is the subject of “do”. Our semantic analysis sorts out 
these possibilities in determining the meaning of a secondary clause. 

The fourth type of RSQ clause is related to WH- questions, and is 
called a WHRS. It uses a wh- element like “which” or “what”, or a 
word like “that” to relate the clause to the noun it is modifying. The 
different ways it can use this “relating” element are very similar to the 
different possibilities for a question element in a WH- question, and 
in fact the two share part of the network. Here we use the letters REL 
to indicate we are talking about a relative clause, so the feature PREP” 
in Network 1 becomes PREPREL. In sentences (~2) through (s22), we 
illustrated the different types of WH- questions. We can show parallel 
sentences for WHRS RSQ clauses. The following list shows some ex- 
amples and the relevant feature names: 

(~32) the thing with which you erased it PREPREL 
(~33) the thing that you erased it with PREPREL DANGLING 
(~34) the reason why the chicken crossed the road AD JREL 
(~35) the day when you were born AD JREL 
(~36) the way we will tell her the news AD JREL 
(~37) the place my little dog has gone AD JREL 
(~38) the reason why ADJREL SHORTREL 
(s39) the hand #which rocks the cradle SUB JREL 
(~40) the number of Puerto Ricans there are in Boston SUB JTREL 
(~41) the color her hair was last week COMPREL 
(~42) the depth the ocean will be MEASREL 
(~43) the information that you want OBJlREL 
(~44) the man you gave the book OBJlREL 
(~45) the book which you gave him OB JZREL 
(~46) the man to whom you gave the book TRANS2TOREL 
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(~47) the man you gave the book to TRANSBTOREL 
(~48) the day the iceman came TIMEREL 
(s49) the car your brother said he was expecting us to tell Jane to buy 

DOWNREL 
(~50) the state you said Lincoln was born in DOWNREL 
Notice that in sentences 36, 37, 40, 41, 42, 44, 47, 48, 49, and 50, there 

is no relative word like “which” or “that.” These could just as well all 
have been put in, but English gives us the option of omitting them. 
When they are absent, the CLAUSE is marked with the feature 
RELDEL. 

Returning to our network, we see that there is one other type of basic 
clause, the RSNG. This is a clause which is rank-shifted to serve as a 
NG. It can function as a part of another clause, a preposition group, or 
an adjective group. There are four basic types. The first two are TO and 
ING, as in: 

(~51) I like to fly. TO 
(62) Building houses is hard work. ING 
(~53) He got it by saving coupons. ING 

Notice that in ~51, the RSNG clause is the object (OBJl), in ~52 it is 
the subject (SUBJ), and in ~53 it is the object of a preposition 
(PREPOBJ). W e can have a separate subject within the TO and ING 
clauses, giving us the features SUBTO and SUBING: 

(~54) I wanted Ruth to lead the revolution. SUBTO 
(~55) They liked John’s leading it. SUBING 

The SUBING form takes its subject in the possessive. 
In addition to ING and TO, we have the REPORT CLAUSE, which 

has the structure of an entire sentence, and is used as a participant in 
a relation about things like hearing, knowing, and saying: 

( ~56) She heard that the other team had won. 
(~57) That she wasn’t there surprised us. 
(~58) I knew he could do it. 
The word “that” is used in ~56 and ~57 to mark the beginning of the 

REPORT CLAUSE, so they are assigned the feature THAT. The absence 
of “that” is left unmarked. 

If the subject of clause is in turn a RSNG clause, we may have trouble 
understanding it: 

(s59) That anyone who knew the combination could have opened the 
lock was obvious. 

There is a special mechanism for rearranging the sentence by using the 
word “it”, so that the complicated subject comes last: 

(~60) It was obvious that anyone who knew the combination could 
have opened the lock. 
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In this case, we say that the RSNG clause is serving as an ITSUBJ. TO 
and ING clauses can do the same: 

(~61) It will be fun to see them again. 
(~62) It was dangerous going up without a parachute. 
The final type of RSNG is the WHRS, which is almost identical to the 

WHRS RSQ described above. Rather than go through the details again, 
we will indicate how a few of our RSQ examples (sentences 32 to 
50) can be converted, and will leave the reader to do the rest. 

(~63) I don’t know what he did it with. PREPREL DANGLING 
(~64) Ask him when he was born. ADJREL 
(~65) He told me why. ADJREL SHORTREL 
(~66) It is amazing how many Puetio SUBJTREL 

Ricans there are in Boston. 
(~67) Only her hairdresser knows what 

color her hair ZMLS. 
etc. 

COMPREL 

Let us examine one case more carefully: 
(~68) I knew which car your brother said that he was expecting us to 

to tell Jane to buy. 
Here we have a DOWNREL clause, “which car , . . . buy”, serving 

as the object of the CLAUSE “I knew . . .“. However, this means that 
somewhere below, there must be another clause with a slot into which 
the relative element can fit. In this case, it is the RSNG TO clause “Jane 
to buy”, which is missing its object. This clause then has the feature 
UPREL, which indicates that its missing constituent is somewhere above 
in the structure. More specifically it is OBJlUPREL. 

Once this connection is found, the program might change the pointers 
in the structure to place the relative as the actual OBJl of the embedded 
clause structure. In the current grammar, the pointers are left un- 
touched, and special commands to the moving function “*” are used when 
the object is referenced by the semantic program. 

3.2 Transitivity in the Clause 

In addition to the systems we have already described, there is a 
TRANSITIVITY system for the CLAUSE, which describes the number 
and nature of its basic constituents. We mentioned earlier that a 
CLAUSE had such components as a subject and various objects. The 
transitivity system specifies these exactly. We have adopted a very 
surface-oriented notion of transitivity, in which we note the number 
and basic nature of the objects, but do not deal with their semantic 
roles, such as “range” or “beneficiary”. Halliday’s analysis (1967) is 
somewhat different, as it includes aspects which we prefer to handle 
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as part of the semantic analysis. Our simplified network is shown in 
Fig. 8. 

The first basic division is into clauses with the main verb “be”, and 
those with other verbs. This is done since BE clauses have very different 
possibilities for conveying meaning, and they do not have the full range 
of syntactic choices open to other clauses. BE clauses are divided into 
two types-THERE clauses, like: 

(~69) There was an old woman who lived in a shoe. 
and intensive (INT) BE clauses: 

(~70) War is hell. 
A THERE CLAUSE has only a subject, marked SUBJT, while an INT 
CLAUSE has a subject (SUBJ) and a complement (COMP). The 
complement can be either a NC, as in ~70 or: 

(~71) He was an agent of the FBI. 
or a PREPG: 

(~72) The king was in the counting house. 
or an ADJG: 

(~73) Her strength was fantastic. 
(~74) My daddy is stronger than yours. 
Other clauses are divided according to the number and type of objects 

they have. A CLAUSE with no objects is intransitive (ITRNS) : 
(~75) He is running. 

With one object it is transitive (TRANS) : 
( ~76) He runs a milling machine. 

With two objects TRANS2: 
(~77) I gave my love a cherry. 

THERE 

INT 

ITRNS 

TRANS 

r TRANSZ 

TRANSL 

ITRNSL 

FIG. 8. Network 2--CLAUSE TRANSITIVITY. 
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Some verbs are of a special type which use a location as a second 
object. One example is “put”, as in: 

(~78) Put the block on the table. 
Note that this cannot be considered a TRANS with a modifier, as in: 
(s79) He runs a milling machine in Chicago. 

since the verb “put” demands that the location be given. We cannot 
say “Put the block.” This type of CLAUSE is called TRANSL, and the 
location object is the LOBJ. The LOBJ can be a PREPG as in ~78, or a 
special adverb, such as “there” or “somewhere”, as in: 

(~80) Where did you put it? or 
(~81) Put it there. 

Some intransitive verbs also need a locational object for certain mean- 
ings, such as: 

(s&Z) The block is sitting on the table. 
This is called ITRNSL. 

Finally, there are intensive clauses which are not BE clauses, but 
which have a complement, as in: 

(~83) He felt sick. 
(~84) He made me sick. 

We have not run into these with our simpIe subject matter, and a further 
analysis will be needed to handle them properly. 

Any of the constituents we have been mentioning can be modified or 
deleted when these features interact with the features described in Net- 
work 1. For example in: 

(~85) the block which I told you to put on the table 
the italicized CLAUSE is TRANSL, but its OBJl is missing since it is 
an UPREL. 

English has a way of making up new words by combining a verb and 
a “particle” (PRT), producing a combination like “pick up”, “turn on”, 
“set oII”, or “drop out”. There is a special meaning attached to the pair, 
which may be very different from either word in isolation. Our dictionary 
contains a table of such pairs, and the grammar programs use them. A 
CLAUSE whose verb is a part of PRT pair has the feature PRT. The 
particle can appear either immediately after the word: 

(~86) He threw away the plan. 
or in a displaced position (marked by the feature DPRT) : 

(~87) He threw the plans away. 
Regardless of whether there is a PRT or not, we have the choice 

between the features passive (PASV) and active (ACTV), ACTV places 
the semantic subject first: 

(~88) The President started the war. 
while PASV puts the semantic object first: 
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(~89) The war was started by the President. 
If there is a PREPG beginning with “by”, it is interpreted as the 

semantic subject (as in ~89)) and the CLAUSE has the feature AGENT. 
If the CLAUSE is active and its subject is a RSNG CLAUSE, we can 

use the IT form described earlier. This is marked by the feature IT, and 
its subject is marked ITSUBJ, as in sentences 60,61, and 62. 

3.3 Noun Groups 

The best way to explain the syntax of the NOUN GROUP is to look 
at the “slot and filler” analysis, which describes the different components 
it can have. Some types of NG, such as those with pronouns and proper 
nouns, will not have this same construction, and they will be explained 
separately later. 

We will diagram the typical NC structure, using a “*” to indicate that 
the same element can occur more than once. Most of these “slots” are 
optional, and may or may not be filled in any particular NG. The meanings 
of the different symbols are explained below. 

FIG. 9. Noun Group Structure. 

The most important ingredient is the NOUN, which is almost always 
present (if it isn’t, the NG is incomplete (INCOM) ). It gives the basic 
information about the object or objects being referred to by the NG. 
Immediately preceding the NOUN, there are an arbitrary number of 
“classifiers” (CLASF). Examples of CLASF are: 

(s90) plant life 
(~91) {water meter cover adjustment screw 

Notice that the same class of words can serve as CLASF and NOUN- 
in fact Ha&day uses one word class (called NOUN), and distinguishes 
between the functions of “head” and “classifier”. We have separated 
the two because our dictionary gives the meaning of words according to 
their word class, and nouns often have a special meaning when used 
as a CLASF. 

Preceding the classifiers we have adjectives (ADJ), such as “big 
beautiful soft red. . .” We can distinguish adjectives from classifiers by 
the fact that adjectives can be used as the complement of a BE CLAUSE, 
but classifiers cannot. We can say “red hair”, or “horse hair”, or “That 
hair is red.“, but we cannot say “That hair is horse.“, since “horse” is a 
CLASF, not an ADJ. Adjectives can also take on the comparative 
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( COMPAR) and superlative (SUP) forms (“red, redder, and reddest”), 
while classifiers cannot (“horse, horser, and horsest”?). 

Immediately following the NOUN we can have various qualifiers ( Q ), 
which can be a PREPG: 

(s92) the man in the moon 
or an ADJG: 
(s93) a night darker than doom 
or a CLAUSE RSQ: 
(s94) the woman ,d~o conducts the orchestra 

We have already discussed the many types of RSQ clauses. In later 
sections we will discuss the PREPG and ADJG types which can occur as 
qualifiers. 

Finally, the first few elements in the NG work together to give its 
logical description-whether it refers to a single object, a class of objects, 
a group of objects, etc. The determiner (DET) is the normal start for a 
NC, and can be a word such as “a”, or “that”, or a possessive. It is fol- 
lowed by an “ordinal” (ORD). There is an infinite sequence of number 
ordinals (“first, second, third . . .“) and a few others such as “last” and 
“next”. These can be recognized since they are the only words that can 
appear between a DET like “the” and a number, as in: 

(s95) the next three days 
Finally there is a number ( NUM ). It can either be a simple integer 

like “one”, “two”, etc. or a more complex construction such as “at least 
three”, or “more than a thousand”. It is possible for a NG to have all of 
its slots filled, as in: 

DET ORD NUM ADJ ADJ CLASF CLASF NOUN 
the first three old rerl city fire hydrants 

Q( PREPG) Q ( CLAUSE) 
without covers you can find 

It is also possible to have combinations of almost any subset. With these 
basic components in mind, let us look at the system network for NG in 
Fig. 10. 

First we can look at the major types of NG. A NG made up of a pro- 
noun is called a PRONG. It can be either a question, like “who” or 
“what”, or a nonquestion (the unmarked case) like “I”, “them”, “it”, etc. 
The feature TPRONG marks a NG whose head is a special TPRON, like 
“something”, “everything”, “anything”, etc. These enter into a peculiar 
construction containing only the head and qualifiers, and in which an 
adjective can follow the head, as in: 

(s96) anything green which is bigger than the moon 
The feature PROPNG marks an NG made up of proper nouns, such 

as “Oklahoma”, or “The Union of Soviet Socialist Republics.” 
These three special classes of NG do not have the structure described 
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QUESl 
/ PRONG 

NG 

I IDET 
-l 

-I POSES 

NUMD i-L 

FIG. 10. Network 3-NG. 

OF 

--- 

INCOM 

--- 

above. The PRONG is a single pronoun. the PROPNG is a string of 
proper nouns, and the TPRONG has its own special syntax. The rest of 
the noun groups are the unmarked (normal) type. They could be classi- 
fied according to exactly which constituents are present, but in doing 
so we must be aware of our basic goals in systemic grammar. We could 
note whether or not a NG contained a CLASF or not, but this would 
be of minor significance. On the other hand, we do note, for example, 
whether it has a DET, and what type of DET it has, since this is of key 
importance in the meaning of the NC and the way it relates to other 
units. We distinguish between those with a determiner (marked DET) 
and those without one (NDET), as in: 

(s97) Cats adore fish. NDET 
(s98) The cat adored a fish. DET 
The DET can be definite (like “the” or “that”), indefinite (like “a” or 

“an”), or a quantifier ( QNTFR) (like “some”, “every”, or “no”), The 
definite determiners can be either demonstrative (“‘this”, “that”, etc.) or 
the word “the” (the unmarked case), or a possessive NG. The NG “the 
farmer’s son” has the NG “the farmer” as its determiner, and has the 
feature POSES to indicate this. 

An INDEF NG can have a number as a determiner, such as: 
(s99) fiue gold rings 
(~100) at least a dozen eggs 
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in which case it has the feature NUMD, or it can use an INDEF 
determiner, such as “a”. In either case it has the choice of being a 
question. The question form of a NUMD is “how many”, while for 
other cases it is “which” or “what”. 

Finally, an NC can be determined by a quantifier ( QNTFR) . Although 
quantifiers could be subclassified along various lines, we do so in the 
semantics rather than the syntax. The only classifications used syntacti- 
cally are between singular and plural (see below), and between negative 
and nonnegative. 

If a NG is either NUMD or QNTFR, it can be of a special type marked 
OF, like: 

(~101) three of the offices 
(~102) all of your dreams 
An OF NG has a determiner, followed by “of”, followed by a definite 

NG. 
A determined NG can also choose to be incomplete, leaving out the 

NOUN, as in 
(~103) Give me three. 
(~104) I want nona 

Notice that there is a correspondence between the cases which can take 
the feature OF, and those which can be INCOM. We cannot say either 
“the of them” or “Give me the.” Possessives are an exception (we can say 
“Give me Juan’s” but not “Juan’s of them”), and are handled separately 
(see below). 

The middle part of Fig. 10 describes the different possible functions 
a NG can serve. In describing the CLAUSE, we described the use of an 
NG as a SUBJ, COMP, and objects (OB]) of various types. In addition, 
it can serve as the object of a PREPG (PREPOBJ), in: 

(~105) the rape of the lock 
If it is the object of “of” in an OF NG, it is called an OFOBJ: 

(~106) none of yoflr tricks 
A NG can also be used to indicate TIME, as in: 

(~107) Yesterday the world ended. 
(~108) The day she left, all work stopped. 
Finally, a NG can be the possessive determiner for another NG. In: 
(slog) the cook$ kettle 

the NG “the cook" has the feature POSS, indicating that it is the deter- 
miner for the NG “the cook's kettle”, which has the feature POSES. 

When a PRONG is used as a POSS, it must use a special possessive 
pronoun, like “my”, “your”, etc. We can use a POSS in an incomplete 
NG, like 

(~110) Show me yours. 
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(~111) John’s is covered with mud. 
There is a special class of pronouns used in these noun groups (labelled 
DEFPOSS), such as “yours”, “mine”, etc. 

Continuing to the last part of Fig. 10, we see features of person 
and number. These are used to match the noun to the verb (if the NG 
is the subject) and the determiner, to avoid combinations like “these 
kangaroo” or “the women wins”. In the case of a PRONG, there are 
special pronouns for first, second, and third person, singular and plural. 
The feature NFS occurs only with the first-person singular pronouns (“I”, 
‘<me”, “my7>, ‘I mine”), and no distinction is made between other persons, 
since they have no effect on the parsing. A singular pronoun or other 
singular NG is marked with the feature NS. The pronoun “you” is always 
treated as if it were plural and no distinction is made between “we”, 
‘cyou”, “they”, or any plural (NPL) NG as far as the grammar is con- 
cerned. Of course there is a semantic difference, which will be considered 
in later sections. 

3.4 Prepositi,on Groups 

The PREPG is a comparatively simple structure used to express a rela- 
tionship. It consists of a preposition followed by an object (PREPOBJ), 
which is either a NG or a RSNG CLAUSE. In some cases, the preposition 
consists of a two or three word combination instead of a single word, 
as in: 

(~112) next to the table 
(~113) on top of the house 

The grammar includes provision for this, and the dictionary lists the 
possible combinations and their meanings. The words in such a combi- 
nation are marked as PREP2. The network for the PREPG is in Fig. 11. 

The PREPG can serve as a constituent of a CLAUSE in several ways. 
It can be a complement: 

! 

COMP 

4 

LOBJ 

ADJUNCT 

AGENT 

1 

QUEST 

RELPREPG 

PREPG UPREL 

UPQUEST 
Q 

OF 

FIG. 11. Network PPREPG. 
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(~114) Is it in the kitchen? 
a locational object ( LOBJ) : 

(~115) Put it on the table. 
an ADJUNCT: 

(~116) He got it by selling his sod. 
or an AGENT: 

(~117) It was bought by the devil. 
If the PREPG is a constituent of a QUESTION CLAUSE, it can be the 
question element by having a QUEST NG as its object: 

(~118) in what city 
(s119) for how many days 
(~120) by whom 

in which case the PREPG is also marked QUEST. A PREPREL CLAUSE 
contains a RELPREPG: 

(~121) the place in which she works 
If the CLAUSE is an UPQUEST or an UPREL, the PREPG can be 

the constituent which is “missing,” the piece which provides the upward 
reference. In this case it is also marked UPREL: 

(~122) the lady I saw you with 
or UPQUEST: 

(~128) Who did you knit it for? 
In these cases, it is also marked SHORT to indicate that the object is 
not explicitly in the PREPG. It can also be short if it is a PREPG in a 
DANGLING PREPQ or PREPREL CLAUSE: 

(~124) what do you keep it in? 
Within a NG, a PREPG serves as a qualifier (Q) : 
(~125) the man in the iron mask 

or as the body of an OF NC: 
(~126) some of the people 

3.5 Adjective Groups 

The ADJG is a specialized unit serving as a complement of an intensive 
clause, as a qualifier (Q) to an NG, or as a CLAUSE ADJUNCT. The 
network is shown in Fig. 12. 

FIG, 12. Network S-ADJG. 
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An ADJG which serves as an ADJUNCT contains an adverb, like 
“fast” in: 

( ~127) He could run faster than an arrow. 
in place of an adjective. The other two types of ADJG use an adjective, 
as in a qualifier: 

(~128) a hotel as bad as the other one 
or a complement: 

(s129) They were blissful. 
The basic forms for an ADJG include THAN: 
(~130) holier than thou 

AS: 
(~131) us quick us a flash 

comparative: 
(~132) This one is bigger. 

or question: 
(~133) How well can he take dictation? 
The network is arranged to show that a qualifier ADJG can be only 

of the first two forms-we cannot say “a man bigger” without using 
“than”, or say “a man big”. In the special case of a TPRON such as 
“anything” as in: 

(~134) anything strange 
the word “strange” is considered an ADJ which is a direct constituent of 
the NC, rather than an ADJG. 

The grammar does not yet account for more complex uses of the word 
“than”. 

3.6 Verb Groups 

The English verb group is designed to convey a complex combination 
of tenses so that an event can relate several time references. For example, 
we might have: 

(~135) By next week you will have been living here for a month. 
This is said to have the tense “present in past in future”. Its basic refer- 
ence is to the future-‘next week”, but it refers back to the past from 
that time, and also indicates that the event is still going on. This type 
of recursive tense structure has been analyzed by Halliday (1966) and 
our grammar adopts a variant of his scheme. 

Essentially the choice is among four tenses, PAST, PRESENT, 
FUTURE, and MODAL. Once a choice between these has been made, 
a second, third, fourth, and even fifth choice can be made recursively. 
The combination of tenses is realized in the syntax by a sequence of 
the auxiliary verbs “be”, “have”, and “going to”, along with the ING, 
EN, and infinitive (INF) forms of the verbs. The restrictions on the 
recursion are: 
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1. PRESENT can occur only at the outer ends of the series (at first 

and/or final choice). 
2. Except in the final two positions, the same tense cannot be selected 
twice consecutively. 
3. Future can occur only once other than in last position. 
4. Modal can be only in final position. 
It is important to distinguish between the position of a word in the 

VG and the position of its tense in the recursive tense feature-the 
direction is reversed. In ~135, “will” is the first word, and “living” the 
last, while the tense is PRESENT in PAST in FUTURE. Some sample 
verb groups and their tenses are shown in Fig. 13. 

The structure of a finite VG (one taking part in this tense system-see 
below for other types) is a sequence of verbs and auxiliaries in which 
the last is the “main verb” (marked MVB and remembered by the 
parser), and the first is either a MODAL, the word “will”, or a “finite” 
verb (one carrying tense and number agreement with the subject). 
Interspersed in the sequence there may be adverbs, or the word “not” 
(or its reduced form “n’t”). The best way to describe the relationship 
between the sequence of verbs and the tense is by giving a %ow chart 
for parsing a VG. This is a good example of the usefulness of representing 
syntax in the form of procedures, as it describes a relatively complex 
system in a clear and succinct way. 

In the flow chart (Fig. 14) the variable T represents the tense, and 
the symbol “*” indicates the addition of a member to the front of a list. 
The ‘<=” indicates replacement in the FORTRAN sense, and the function 
“REMOVE” removes words from the input string. The features used are 

ACTIVE 

took - past 
takes - present 

will take - future 
can take - modal 

has taken - past in present 
was taking - present in past 

was going to have taken - past in future in past 
was going to have been taking - present in past in future in past 

PASSIVE 

is taken - present 
could have been taken - past in modal 

has been going to have been taken - past in future in past in present 

Figure LS-Verb Group Tenses 
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0 ENTER 

FIG. 14. Syntax of VG Tense Structure. 

those described for verbs in Section 3.7. The command (FQ PASV) 
indicates that the entire VG is to be marked with the feature PASV 
(passive voice). The flow chart does not indicate the entire parsing, but 
only that part relevant to determining the tense. 

This system of tenses is operative only for FINITE verb groups. The 
network for the VG in general is shown in Fig. 15. 
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FINITE 

IMPER 
/ 

VG 

FIG. 15. Network 6-VG. 

There are several types of VG which do not enter the normal tense 
system, but which have a specialized form. The IMPER VG is used in 
imperatives: 

(~136) Fire when ready. 
(~137) Don’t drop the baby. 

It consists of a verb in the infinitive form, possibly preceded by the 
auxiliary “do” or its negative form “don’t”. The EN VG is used in EN 
RSQ CLAUSES, like: 

(~138) a man forsaken by his friends 
and consists of a past participle verb. The ING VG is made up of an 
ING verb or the verb “being” followed by an EN verb. It is used in 
various types of ING clauses: 

(s139) Being married is great. 
(~140) the girl sitting near the wall 

Similarly, the TO VG is used in TO clauses. In the case of conjoined 
structures, the “to” may be omitted from the second clause, as in: 

(~141) We wanted to stop the war and end repression. 
Such a VG is marked TODEL. 

We separate those verb groups whose main verb is “be” from the 
others, as they do not undergo the further choice between PASV and 
ACTV. These correspond to the same features for clauses, and are seen 
in the structure by the fact that a PASV VG contains a form of the 
auxiliary “be” followed by the main verb in the EN form, as in: 

(~142) The paper was finished by the deadline. 
(~143) He wanted to he kissed by the bride. 
Finally, any VG can be negative, either by using a negative form of an 

auxiliary like “don’t”, “hasn’t”, or “won’t”, or by including the word 
“not”. 
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3.7 W0rcl.s 

Our grammar uses a number of separate word classes, each of which 
can be divided into subclasses by the features assigned to individual 
words. It was necessary to make arbitrary decisions as to whether a 
distinction between groups of words should be represented by different 
classes or different features within the same class. Actually we could 
have a much more tree-like structure of word classes, in which the ideas 
of classes and features were combined. Since this has not been done, we 
will present a list of the different classes in alphabetical order, and for 
each of them give descriptions of the relevant features. Many words can 
be used in more than one class, and some classes overlap to a large degree 
(such as NOUN and CLASF). In our dictionary, we simply list all of 
the syntactic features the word has for all of the classes to which it can 
belong. When the parser parses a word as a member of a certain class, 
it sorts out those features which are applicable. Figure 16 is a list of the 
word classes and their features. 
ADJ-Adjective is one of the constituents of a NG as well as being the 

main part of an ADJG. This class includes words like “big”, “ready”, 
and “strange”. The only features are superlative (as in “biggest”) and 
comparative ( as in “bigger”). 

ADV-We use the name “adverb” to refer to a whole group of words used 
to modify other words or clauses, words which don’t really fit anywhere 
else. The basic classification depends on what is being modified, and 
has the terms (ADVADV VBAD PREPADV CLAUSEADV). An 
ADVADV is a word like “very” which modifies other adverbs and 
adjectives. A VBAD modifies verbs, and includes the class of words 
ending in “-1~” like “quickly” and “easily”. A PREPADV modifies 
prepositions, as “directly” in “directly above the stove”. A CLAUSE- 
ADV is a constituent of a clause, and can be either TIMW or PLACE. 
A TIMW like “usually”, “never”, “then”, or “often” appears as a 
CLAUSE constituent specifying the time. The PLACE ADV “there” 
can either be an adjunct, as in: 

(~144) There I saw a miracle. 
or an LOBJ, as in: 

(~145) Put it there. 
BINDER-Binders are used to “bind” a secondary clause to a major 

clause, as in: 
(~146) Before you got there, we left. 
(~147) I’ll go if you do. 

We do not assign any other features to binders. 
CLASF-In Section 3.3 we discussed the use of CLASF as a constituent 
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FEATURES 

ADJ COMPAR SUP 

ADV ADVADV LOBJ PLACE PREPADV TIMW TIM2 VBAD 

BINDER 

CLASF 

DEF DEM DET INCOM INDEF NEG NONUM NPL NS OFD 
PART QDET QNTFR 

MASS NOUN NPL NS POSS TIME TIM1 

NPL NS NUM 

NUMD NUMDALONE NUMDAN NUMDAT NUMDAS 

ORD TIMORD 

PLACE PREP NEED2 

PREP2 

POSSDEF NEG NFS NPL NS OBJ POSS PRON PRONREL 
SUBJ QUEST 

NPL NS PRONREL 

NPL NS POSS PROPN 

PRT 

PLACE QADJ 

NEG NPL NS TPRON 

AUX BE DO EN HAVE IMPERF INF ING INGOB INGOB 
INT ITRNS ITRNSL MODAL MVB NEG PAST PRES QUAX 
REPOB REPOBB SUBTOB SUBTOB2 TOOB2 TO2 TRANS 
TRANSL TRANSL2 TRANSB VB VFS VPL VPRT VSPS WILL 

FIG. 16-Word Classes and Applicable Features 

of a NG. The CLASF is often another NOUN, but it appears in a 
position like an adjective, as in “boy scout”. 

DET-Determiners are used as constituents of NGs, as described in 
3.3. They can have a number of different features, as described in the 
network of Fig. 17. 

A DET can be indefinite, like “a” or “an” or the question determiners 
(QDET) “which”, “what”, and “how many”. It can be definite, like 
“the” or the demonstrative determiners “this”, “that”, “those”, and 
“these”. Or it can be a quantifier (QNTFR) like “any”, “every”, “some”, 
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DET 

FIG. 17. Network 7-DET.” ’ 

etc. Quantifiers can have the feature OFD, indicating that they can be 
used in an OF NG like: 

(~148) some of my best friends 
We originally had a separate feature named INCOM indicating whether 
they could be used in an incomplete NG like: 

(s149) Buy some. 
but later analysis showed these features were the same. Not all 
quantifiers are OFD-we cannot say “every of the cats” or “Buy every.” 
Quantifiers can also be negative, like “none” or ‘bo”, or can be 
NONUM, indicating that they cannot be used with a number, such 
as “many” or “none” (we can say “any three cats” or “no three cats”, 
but not “none three” or “many three”). The NG program takes these 
features into account in deciding what NG constituents to look for. It 
also has to find agreement in number between the DET and the 
NOUN. A DET can have the features “singular” (NS), “plural” (NFL), 
or MASS (like “some” or “no”, which can go with MASS nouns like 
“water”). A DET can have more than one of these-“the” has all three, 
while “all” is MASS and NPL, and “a” is just NS. 

NOUN-The main constituent of a NG is its NOUN. It has a feature 
of number, identical to that of the determiners it must match, The 
word “parsnip” is NS, “parsnips” is NPL, and “wheat” is MASS. Some 
nouns may have more than one of these, such as “fish”, which is all 
three since it can be used in “a fish”, “three fish”. or “Fish is my favorite 
food.” In addition, a NOUN can be possessive (POSS ), like “parsnip’s”. 

In order to tell whether a NG is functioning as a time element in a 
CLAUSE, we need to know whether its NOUN can refer to time. We 
therefore have two features-TIME words like “day”, and “month”, as 
in: 

(~150) The next day it started to snow. 
and TIM1 words like “yesterday” and “tomorrow”. This illustrates the 
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interaction between syntax and semantics. A phrase like “the next visit” 
can be used to indicate a time, since a “visit” is an event. The actual 
distinction should be the semantic difference between “event” and 
“nonevent”. 

The grammar could be changed to look at the semantic features 
rather than syntal:tic features of the NOUN in deciding whether it 
could be the head of a TIME NG. 

NUM-The class of numbers is large (uncountably infinite) but not 
very interesting syntactically. For our purposes we only note the 
features NS (for “one”) and NPL (for all the rest). In fact, our system 
does not accept nl mbers in numeric form, and has only been taught 
to count to ten. 

NUMD-In complex number specifications, like “at least three” or 
“more than a million ’ there is a NUMD. The features they can have 
are (NUMDAN NUMDAS NUMDAT NUMDALONE). NUMDAN 
words such as “more” and “fewer” are used with “than”, while 
NUMDAS words such as “few” fit into the frame “as . . . as”, and 
NUMDAT words are preceded by “at”, as in “at least”, and “at most”. 
NUMDALONE indicates that the NUMD can stand alone with the 
number, and includes “exactly” and “approximately”. 

ORD-The class of ordinals includes the ordinal numbers “first”, “second”, 
etc., and a few other words which can fit into the position between a 
determiner and a number, like “next”, “last”, and “only”. Notice that 
superlative adjectives can also fill this slot in the NG. 

PREP-Every PREPG begins with a preposition, either alone, or as part 
of a combination such as “on top of”. In the combination case, the 
words following the initial PREP have the feature PREPB. A PREP 
which cannot appear without a PREP 2 (such as “next” which appears 
in “next to”) is marked NEEDS. 

PRON-Pronouns can be classified along a number of dimensions, and 
we can think of a large multi-dimensional table with most of its 
positions filled. They have number features (NS NPL NFS) (note that 
instead of the more usual division into first, second, and third person, 
singular and plural, we have used a reduced one in which classes with 
the same syntactic behavior are lumped together). They can be pos- 
sessive, such as “your” or “my”, or DEFPOSS, like “yours” or “mine”. 
Some of the personal pronouns distinguish between a subject form 
like “I” and an object form like “me”. There are also special classes like 
demonstrative (“this” and “that”) and PRONREL-the pronouns used 
in relative clauses, such as “who”, “ which”, and “that”. Those which can 
be used as a question element, such as “which” and “who” are marked 
QUEST. 
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PROPN-Proper nouns include single words like “Carol”, or phrases such 
as “The American Legion” which could be parsed, but are interpreted 
as representing a particular object (physical or abstract). A PROPN 
can be NPL or NS, and is assumed to be NS unless defined otherwise. 

PRT-In Section 3.2, we discussed clauses which use a combination of 
a “particle” and a verb, like “pick up” or “knock out”. The second word 
of these is a PRT. 

QADJ--One class of QUESTION CLAUSE uses a QADJ such as 
“where”, “when”, or “how” as its question element. They can also be 
used in. various kinds of relative clauses, as explained in Section 3.1. 

TPRON--There is a small class of words made up of a quantifier and 
the suffix “-thing” which enter into a special type of NG construction 
like “anything green”. This is not an abbreviation for a quantifier fol- 
lowed by a noun, since the hypothetical NG “any block green” would 
have the same structure. 

VB-The verb has the most complex network of features of any word in 
our grammar. They describe its tense, transitivity, number, and use, 
as well as marking special verbs like “be”. The network is in Fig. 18. 
Verbs are divided into auxiliaries and others (unmarked). Auxil- 
iaries are the “helping verbs” which combine with others in complex 
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FIG. 18. Network 8-L%. 
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VG structures. They can have special negative forms, like “can’t”, or 
can appear standing alone at the beginning of a QUESTION, in which 
case they have the function QAUX, as in: 

(~151) WiZZ I ever finish? 
The auxiliaries include “be”, “do”, “have”, “will”, and the modals 
like “could”, “can”, and “must”. Separate features are used for these, as 
they are critical in determining the structure of a VG. An AUX can 
choose from the system of person and number, distinguishing “third- 
person singular” ( VSPS) as in “is”; “plural”, as in “have”; or “first 
singular” (VFS), used only for “am”. 

Nonauxiliary verbs can be VPRT, which combine with a PRT, and 
they have a whole cluster of transitivity features. In Section 3.2 we 
described the different transitivity features of the CLAUSE, and these 
are controlled by the verb. We therefore have the features (TRANS 
ITRNS TRANS2 TRANSL ITRANSL INT). In addition, the verb can 
control what types of RSNG CLAUSE can serve as its various objects. 
The feature names combine the type of CLAUSE (ING TO REPORT 
SUBTO SUBING) with either -0B or -0B2, to get a product set of 
features like SUBTOB and INGOBB. 

For example, the verb “want” has the features TOOB and SUBTOB, 
but not INGOB, REPOB, etc., since “I want to go.” and “I want you to 
go.” are possible, but “I want going.“, “I want that you go.“, etc. are not. 

Finally, all of these kinds of verbs can be in various forms such as 
ING ( “breaking”), EN (“broken”), infinitive (“break”), PAST 
(“broke”), and present (“breaks”). The network does not illustrate all 
of the relations, as some types (like MODAL) do not make all of these 
choices. 

3.8 Conjunction 

One of the most complex parts of English is the system of conjunction. 
This section presents a simplified version which has been implemented 
using the special interrupt feature of PROGRAMMAR (see Section 52.2 
for details). 

The basic concept is that any unit in a sentence can be replaced by a 
COMPOUND unit of the same type, In the sentence: 

(~152) I baked a chocolate cake, three pies, and some hashish brownies. 
the object is a COMPOUND NG with three components. There can be 
a compound ADJ, as in: 

(sl53) a red or yellow flag 
or a phrase can be ambiguous, as in: 

(~154) Muck cats and horses 
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This can be interpreted as having either a COMIQUND NG, composed 
of the noun groups “black cats” and “horses”, or a single NG with a 
COMPOUND NOUN, “cats and horses”. 

The features of a COMPOUND unit are determined by its components 
and by the type of conjunction. The conjunction features are from the 
network in Fig. 19. 

The first choice is the actual conjunction used. The feature BOTH 
indicates a word at the beginning of a COMPOUND structure, as in: 

(~155) both you and your family 
the specific word depends on the conjunction-“both” with “and”, 
“either” with “or,” and “neither” with “nor”. The features BOTH and 
NOR combine in: 

(~156) neither you nor I 
A conjoined structure can be made up of two elements with a con- 

junction (as in the previous three examples), or a LIST connected with 
commas and a conjunction before the last element (as in s152), or it can 
be a list connected with conjunctions (a LISTA), as in: 

(~157) cabbages and kings and sealing wax and things 
Every constituent but the first is marked with the feature COM- 

PONENT. The COMPOUND unit also takes on features from its con- 
stituents. It may have features such as number and tense, relevant to its 
syntactic function. For example, a COMPOUND NG with the feature 
AND must be plural (NPL), while one with the feature OR will have 
the number feature of its initial constituent. 

Finally, there can be “forked” structures like: 
(~158) We dropped the watermelon and ran. 

Notice that this cannot be viewed in the same way, since “dropped the 
watermelon” is not a single constituent of any unit. This sentence is 
viewed as a conjunction of two clauses, sharing the subject “we”. The 
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FIG. 19. Network 9-Conjunction. 
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second clause is marked with the feature SUBJFORK to indicate this. 
Similarly, the subject and verb can be shared, as in: 

(s159) He gave Greg the apple and Gloria the pear. 
The clause “Gloria the pear” is marked as VBFORK and SUBJFORK. 
The only constituents relative to a fork are those necessary for the clause 
structure. In: 

(~160) They easily saw the trouble and cheerfully fixed it. 
the parser does not determine whether the “easily” applies to both 
constituents, but leaves this decision to semantics. This is in keeping with 
our orientation of syntax to surface structure and the belief that much of 
“deep structure” is more the province of the semantic analyzer. 

3.9 Analysis of Word Endings 

This section describes the “spelling rules” used by the program in 
recognizing inflectional endings of words. For spoken language, these 
would be called the “morphophonemic” rules, but since we deal with 
written language, they are “morphographemic.” 

These rules enable a reader to recognize that, for example, “pleasing” 
is a form of “please”, while “beating” is a form of “beat”. There is a 
structure of conventions for doubling consonants, dropping “e”, changing 

“i” to “Y”, etc. when adding endings, and a corresponding set for remov- 
ing them. 

A word like “running” need not have a separate entry in the dictionary, 
since it is a regular inflected form of “run”. The program can use an 
interpretive procedure to discover the underlying form and attach the 
appropriate syntactic features for the inflection. 

In designing a formalism for these rules, it seems most natural to 
express them as a program for interpretation. The flow chart in Fig. 20 
is designed to handle a number of inflectional endings-“-n‘t” for 
negative, “->sI> and “-, >> for possessive, “-s” and its various forms for 
plural nouns and singular third-person verbs, “-ing”, “-ed”, and “-en” verb 
forms, the superlative “-est” and comparative “-er”, and the adverbial 
“-1y”. 

As the flowchart shows, these endings share many aspects of morpho- 
graphemic structure, and the program representation is able to capture 
these generalities as well as detailing those aspects peculiar to each end- 
ing. It is not a complete description, but covers a wide variety of words, 
and could easily be expanded to treat more special cases. 

The function “cutoff” indicates what is to be cut from the end of the 
word. The ordinals “lst”, “2nd”, etc. count letters from the end of the 
word backwards, ignoring those which have been cut off, Several classes 
of letters are relevant to endings-VOWEL includes (A E I 0 U Y), 
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0 START 

FIG. 20. Analysis of English Endings. 
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LIQUID is (L R S V Z), and NOEND is (C G S V Z). The label “TRY” 
represents the part of the program which tries looking up the supposed 
root in the dictionary. It uses whatever letters have not been “cut off”. At 
some places, the program tries an interpretation, then if that fails, car- 
ries out a different analysis and tries again. 

The program can correctly analyze such roots as: bashes-bash, bathes- 
bathe, leaning-lean, leaving-leave, dented-dent, danced-dance, dogs-dog, 
kisses-kiss, curved-curve, curled-curl, rotting-rot, rolling-roll, played- 
play, plied-ply, realest-real, palest-pale, knives-knife, prettily-pretty, 
nobly-noble, etc. 

It is important to note that exceptions do not need to be explicitly 
included in the analysis program. The word “was” is directly in the 
dictionary, and the rules will therefore never be applied in trying to 
analyze it. The distinction between lexical idiosyncrasies and general- 
ities is empirical. A productive rule like the one relating “sang” and 
“sing”, or “rang” and “ring” might well be included in a more complete 
program, while less productive ones (such as relating “will” to “won’t” j 
will be left as separate dictionary entries. 

It is tempting to see this program as a simple finite state machine, but 
this is not the best formalism for several reasons. First, the tests which 
can be done to a word in deciding on a transition are not, in general, 
simple checks of the next input letter. Whether a certain analysis is 
possible may depend, for example, on how many syllables there are in 
the word, or on some complex phonological calculation involving vowel 
shifts. Semantic and syntactic information should be applied as well 
in many cases. 

The morphographemic analysis alone is sufficient to do a great deal 
of the interpretation of English endings. In fact, some systems (Thorne, 
1969) use it to avoid having a dictionary of open class words. The 
inflection of the words in the input determines their syntactic class 
possibilities. Of course, without a dictionary, they cannot attempt to 
deal with the meanings of words, beyond trying to match them with 
other occurrences of the same root, 

People rarely operate at this level of ignorance. They use their lexical 
knowledge to realize that “under” is not a comparative form of some 
adjective “und”, and that “bely” is not an adverbial form of “be”. This 
knowledge can readily be integrated into the interpretive program. Once 
a possible morphographemic analysis is found, the hypothetical root can 
be checked in the dictionary. If it is not there, the program can try another 
analysis. Notice that in the flow chart, words ending in a double LIQUID, 
followed by an inflection, are first tried in the form with the doubled 
consonant (as in “rolling’‘-“roll”), then if that fails, another try is made 
with the single consonant (“patrolled”-“patrol”). 
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If the root is found in the dictionary, its syntactic class is checked to see 
if the ending is appropriate (e.g. a “ -est” ending can apply only to an 
ADJ). The list of syntactic features is changed to take the ending into 
account. For example, the ending “-s” changes the feature NS (singular 
noun) to NPL (plural noun) and the feature INF (infinitive verb) to 
V3PS (third-person singular verb). A word which fits into more than 
one category may have more than one set of features changed. 

4. AN INTRODUCTION TO LISP 

4.1 List Structures 

LISP is a computer language for handling complex symbolic data 
structures. The basic building blocks of LISP are atoms and lists. An 
atom is either a number or a string of alphanumeric characters contain- 
ing no delimiters.3 
For example, some atoms are: 

105 0.99482 SPIRO A3*5B THISISAVERYLONGATOM 
In the language program, atoms are used for such things as English 
words, syntactic features, semantic markers, names of relations, actions, 
and properties, specific objects and events, and the names of variables. 

The basic data structure is the list, an ordered set of elements (either 
atoms or other lists). The list is enclosed in a pair of parentheses. (1 3 
ABCE 1) is a list of four elements, all of which are atoms. 

(PUT (THE BLOCK) (IN (THE BOX) ) ) 
is a list of three elements. The first is the atom PUT, the second is a two 
element list (THE BLOCK), and the third is a two element list, whose 
second element is another list. This ability to nest lists within lists gives 
LISP its characteristic parenthesized appearance, and enables it to build 
and manipulate tree-like data structures. The list containing no items 
can be written as ( ), and is called NIL. It is used to represent the 
logical value “false.” The atom T is often used to represent “true.” List 
structures (or expressions) are often printed with the depth of parenthesis 
nesting indicated by indentation. Elements of the same Iist appear 
directly below each other. This is not part of LISP syntax, but a 

3 LISP is used primarily in research centers, where the development of the 
language proceeds hand in hand with its use. Therefore, there is no standard LISP, 
and many of the details presented here (such as which characters are permitted in an 
atom name) may vary from version to version. Weissman (1967), and McCarthy 
et al. (1962) introduce the original LISP, but anyone using a particuIar version 
should be sure to read the documentation for it. The details used here are in accord 
with MACLISP, as implemented on the PDP-10 at the Artificial Intelligence Labo- 
ratory. See White (1970) for details. 
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typographical convenience. The extent of a list is determined solely by 
the matching of associated pairs of parentheses. 

The significance of a list is up to the programmer. It may be a list of 
separate entities, like meanings of a word, or the words in a sentence, or 
instead particular positions within the list may be assigned special 
significance. For example, we use three element lists like (#SUPPORT 
A R) to represent a two-place relation, putting the relation name in the 
first position, A node of the parsing tree produced by PROGRAMMAR 
is a five element list whose members are: a list of syntactic features; a 
pointer to the beginning of the phrase in the sentence; a pointer to the 
end of the phrase; a list of its daughter nodes; and an expression 
representing the semantic content of the phrase. 

4.2 Evaluation 

LISP programs operate by interpreting lists in a special way called 
evaluation. The first element in the list is interpreted as the name of a 
function, to be applied to the set of arguments, given by the rest of the 
list. For example, the list (PLUS 3 4) when evaluated returns a value of 
7, while (TIMES 2 2 2) evaluates to 8. In the normal operation of LISP, 
expressions are typed in at an interactive console, and their value is 
typed back by the system, In using the members of the list as arguments, 
they are in turn evaluated. The list (PLUS (TIMES 3 5) (PLUS 1 8) 6) 
tells LISP to apply the function PLUS to three arguments, the first of 
which is produced by applying TIMES to 3 and 5, the second by apply- 
ing PLUS to 1 and 8, and the third is 6. LISP always uses this prefix 
notation for operations rather than the more usual infix notation like 
3”5+ (l+S) +S. 

4.3 Functions 

The idea of function is used more widely in LISP than in other pro- 
gramming languages. In addition to built-in functions (like those for 
arithmetic), the user writes programs by creating his own functions. As 
a simple example, we might define a function F which accepts two 
arguments, X and Y, and has as its value X2 + 7XY + 5. We would type 
at the console: 

(DEFUN F (X Y) 
(PLUS (SQUARE X)(TIMES 7 X Y) 5)) 

The function DEFUN is used to define functions4 and when this expres- 
sion is evaluated, a definition for a function named F is entered in the 

’ DEFUN is an example of a function which is not found in many LISP imple- 
mentations-the exact syntax for defining a function may appear in a number uf 
forms. 
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system. Evaluating the expression (F 3 5) will cause the system to first 
assign the values 3 and 5 to the variables X and Y, respectively. It then 
will evaluate the expression which begins with PLUS. It wiI1 calI the 
function SQUARE with the argument 3, TIMES with arguments 7,3, and 
5, and add the results along with 5. It prints out the final value 119 on 
the console. In fact, SQUARE is not a predefined LISP function. Before 
evaluating an expression using F, we would have to define it in the same 
way by typing: 

(DEFUN SQUARE (X) (TIMES X X) ) 
As it runs, LISP accumulates the user’s function definitions, then uses 
them in evaluating his programs. Large programs are built up of a col- 
lection of functions which perform the various subroutines. Our language 
understanding system contains over 500 separate function definitions. 

4.4 Variables 

In the functions defined above, we have used the letters X and Y to 
represent variables. Any nonnumeric atom can be used as a variable 
name. A value is assigned to a variable in two ways. Above, the values 3 
and 5 were assigned to X and Y when the function definition was applied 
to particular arguments. This variable binding occurs whenever functions 
are called. In addition, there is a replacement function named SETQ 
which acts like the “=” of FORTRAN. Evaluating the expression (SETQ 
BREAD (PLUS 2 2) ) would cause the variable BREAD to have the 
value 4. If we now evaluated (TIMES BREAD BREAD) the result would 
be 16. 

4.5 Nonevaluating Functions 

The details presented so far are not consistent as they stand. The ex- 
pression (DEFUN SQUARE (X) (TIMES X X) ) is evaluated to define 
the function SQUARE. If DEFUN acted like PLUS, it would try to 
evaluate its arguments. Instead, functions have the option of taking their 
arguments directly without evaluation. DEFUN takes the atom SQUARE 
as a name, the list (X) as a Iist of variabIes, and the expression (TIMES 
X X) as a list to be stored away and evaluated whenever the function 
is applied. 

Many of the functions used in our program are of the nonevaluating 
type (called FEXPR). For example, (PARSE CLAUSE MAJOR) causes 
the function PARSE to be caRed with the atoms CLAUSE and MAJOR 
as arguments-it does not interpret them as variable names. Many 
PLANNER functions are nonevaluating. The expression (THGOAL 
(#ON A B)) d oes not evaluate its argument by applying the function 
#ON to arguments which are the values of A and B. Rather the list 
(#ON A B) is taken as a pattern to be matched in looking for relevant 
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data The simplest nonevaluating function is QUOTE, which ~i~nply 
returns its argument without evaluating it. So, for example, if we use the 
function LIST ( which evaluates its arguments), the result of: 

(LIST (PLUS 2 2) (TIMES 3 3) ) 
will be the list (4 9), while the result of 

(LIST (QUOTE(PLUS22)) (TIMES33)) 
will be ( (PLUS 2 2) 9). 

4.6 Program Control Functions 

Functions can decide which arguments to evaluate, and in what order. 
For example, SETQ accepts the first argument directly as a variable 
name (without evaluating to find its current value), but evaluates its 
second argument to find the value to be assigned. Program control is 
often handled by the functions AND, OR, COND, and PROG, which 
interpret their arguments as lists of expressions to be evaluated in a 
particular sequence. AND evaluates its arguments in order, but if any 
one of them returns NIL as its value, the rest are not evaluated, and AND 
returns NIL. Thus AND returns non-NIL (i.e., a logical value of “true”) 
only if every argument evaluates to a non-NIL expression. OR keeps 
evaluating its arguments in order until it finds one which is non-NIL, 
then immediately returns that value as the value of OR without evaluat- 
ing the rest. COND is the conditional, used like an “if-then” statement. 
Each argument is a pair of expressions. The first member of the first pair 
is evaluated, and if it is non-NIL the value of the second member of that 
pair is returned as the value of COND. If the first member evahrated 
to NIL, COND repeats the process with the next pair, etc. Thus (COND 
(A B) (C D). . .) is like IF A THEN B, ELSE: IF C THEN D, 
ELSE . . . 

PROG is used to write programs in a style more like other programming 
languages, giving a sequence of expressions to be evaluated, and naming 
places in that sequence so that control can be transferred with a GO 
command. Its first argument is a list of variables to be used in the pro- 
gram, and the rest are location tags (any atom), and expressions to be 
evaluated. The values produced by the expressions are ignored, but they 
can have side eflects such as inputting, printing, changing the values of 
variables, and modifying existing list structures. The function RETURN 
causes an exit from the PROG. To illustrate these, we can write a simple 
function which finds the smallest divisor of a number, returning NIL if 
the number is prime. It guesses divisors, beginning with 2, and increasing 
by 1 on every loop around. If the guess reaches the original number, it 
returns NIL, and if it ever divides the original number with no remainder, 
the guess is returned as the smallest divisor. 
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(DEFUN SMALLESTDIV (X) 
(FROG (GUESS) 

(SETQ GUESS 2) 
FIRSTPLACE 
(COND ((EQUAL GUESS X) (RETURN NIL)) 

( (EQUAL (REMAINDER X GUESS) 0) 
(RETURN GUESS) ) ) 

(SETQ GUESS (PLUS GUESS 1)) 
( GO FIRSTPLACE) ) ) 

4.8 Property Lists 

Every atom is given a property list, on which the programmer can put 
arbitrary pairs of indicators and values. An indicator can be any atom, 
and the value any LISP expression. There are functions PUTPROP and 
GET which put properties onto atoms, and get their values. In our system, 
much of the information is kept on property lists. The syntactic features 
of a word are kept as the property WORD, its definition as the property 
SMNTC, its past-tense form (if irregular) as PASTT, etc. 

5. A DESCRIPTION OF PROGRAMMAR 

5.1 Basic Operation of the Parser 

51.1 Grammar and Computers 

Section 5 describes the language PROGRAMMAR, which is used as 
the formalism for expressing a recognition grammar of English in our 
system. Before giving its details, we summarize some of the principles of 
grammar used in computer language processing. 

The basic form of most grammars used by computers is a list (ordered 
or unordered) of “replacement rules,” which represent a process of 
sentence generation. Each rule states that a certain string of symbols (its 
left side) can be replaced by a different string of symbols (its right side). 
These symbols include both the actual symbols of the language (called 
terminal symbols) and additional “nonterminal” symbols. One non- 
terminal symbol is designed as a starting symbol, and a string of terminal 
symbols is a sentence if and only if it can be derived from the starting 
symbol through successive application of the rules. For example we can 
write Grammar 1 as in Fig. 21. 

By starting with S and applying the list of rules (1.1 1.2 1.5 1.6 1.4 1.2 
I.7 1.5 1.9) in that order, we get the sentence “The giraffe eats the apple.” 
Several things about this set of rules are noteworthy here. Each rule can 
be applied any number of times at any point in the derivation where the 
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1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

S-tNP VP 
NP ---) DETERMINER NOUN 
VP --f VERB/INTRANSITIVE 
VP + VERB/TRANSITIVE NP 
DETERMINER + the 
NOUN + giraffe 
NOUN -+ apple 
VERB/INTRANSITIVE --$ dreams 
VERB/TRANSITIVE + eats 

FIG. 21-GRAMMAR 1. 

symbol appears. In addition, each rule is optional. We could just as well 
have reversed the applications of 1.6 and 1.7 to get “The apple eats the 
giraffe.“, or have used 1.3 and 1.8 to get “The giraffe dreams.” This type 
of derivation can be represented graphically as in Fig. 22. 

We will call this the parsing tree for the sentence, and use the usual 
terminology for trees (node, subtree, daughter, parent, etc. ). In addition 
we will use the linguistic terms “phrase” and “constituent” interchange- 
ably to refer to a subtree. This tree represents the “immediate constituent” 
structure of the sentence. The PROGRAMMAR language is a general 
parsing system which, although oriented toward systemic grammar, can 
be used to parse grammars based on other theories. In describing 
PROGRAMMAR we use a conventional analysis of English in order to 
make the description independent of the analysis presented in Section 3. 

5.1.2 Context-free and Context-sensitiue Grammars 

Grammar 1 is an example of what is called a context-free grammar. The 
left side of each rule consists of a single symbol, and the indicated re- 
placement can occur whenever that symbol is encountered. There are a 
great number of different forms of grammar which can be shown to be 
equivalent to this one, in that they can characterize the same languages. 
It has been pointed out that they are not theoretically capable of express- 
ing all of the rules of English. More important, even though they could 
theoretically handle the bulk of the English language, they cannot do 
this at all efficiently. Consider the simple problem of subject-verb agree- 
ment. We would like a grammar which generates “The giraffe dreams.” 

NPNSl”P 
DETER& h%N “ERB/TR/~N~NP 11 

DETERMINER NOUN 
I 

the giraffe eats the 
I 

apple 

FIG. 22. Parsing Tree. 
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and “The giraffes dream.“, but not “The giraffe dream.” or “The giraffes 
dreams.“. In a context-free grammar, this is done by introducing two 
starting symbols, S/PL and S/SG for plural and singular, respectively, 
then duplicating each rule to match. For example, we would have: 

1.1.1 S/PL + NP/PL VP/PL 
1.1.2 S/SG+ NP/SG VP/SG 
1.2.1 NP/PL + DETERMINER NOUN/PL 
1.2.2 NP/ SG + DETERMINER NOUN/ SG 

. . . 
1.6.1 NOUN!PL -+ giraffes 
1.6.2 NOUN/SG + giraffe 
etc. 
If we then wish to handle the difference between “I am”, “he is”, etc. 

we must introduce an entire new set of symbols for first person. This sort 
of duplication propagates multiplicatively through the grammar, and 
arises in all sorts of cases. For example, a question and the corresponding 
statement will have much in common concerning their subjects, objects, 
verbs, etc., but in a context-free grammar, they will in general be ex- 
panded through two entirely different sets of symbols. 

One way to avoid this problem is to use context-sensitive rules. In these, 
the left side may include several symbols, and the replacement occurs 
when that combination of symbols occurs in the string being generated. 
Systemic grammar introduces context dependence by introducing features 
associated with constituents at every level of the parsing tree. A rule of 
the grammar may depend, for example, on whether a particular clause 
is transitive or intransitive. In the examples “Fred found a frog.“, “A 
frog was found by Fred.“, and “What did Fred find?“, all are transitive, 
but the outward forms are quite different. A context-sensitive rule which 
checked for this feature directly in the string being generated would have 
to be quite complex. Instead, we can allow each symbol to have additional 
subscripts, or features which control its expansion. In a way, this is like 
the separation of the symbol NP into NP/PL and NP/SG in our aug- 
mented context-free grammar. But it is not necessary to develop whole 
new sets of symbols with a set of expansions for each. A symbol such as 
CLAUSE may be associated with a whole set of features (such as 
TRANSITIVE, QUESTION, SUBJUNCTIVE, OBJECT-QUESTION, 
etc.) but there is a single set of rules for expanding CLAUSE. These 
rules may at various points depend on the set of features present. 

5.13 Grammars as Programs 

in Section I.4 we pointed out that a complete generative description 
of a language can be in the form of a program for parsing it. We can 



Ui\‘DERSTAI’;DING NATURAL LANGUAGE 83 

think of a grammar as a set of instructions for parsing a sentence in the 
language. A rule like: NP + DETERMINER NOUN can be interpreted 
as the instruction “If you want to find a NP, look for a DETERMINER 
followed by a NOUN.” Grammar 1 could be diagrammed as shown in 
Fig, 23. 

As the procedure is followed, a parsing tree is built to keep track of the 

DEFINE program SENTENCE 

\*k-jRETu;N fa;““q 

DEFINE program NP 

DEFINE program VP 

FIG. 23. Simple Parsing Program. 
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results. The basic function used in writing a grammar is PARSE, which 
builds the structure of this parsing tree. Its arguments are syntactic 
features (including the name of a syntactic unit) specifying the type of 
node being searched for at that point in the parsing. It tries to add a 
constituent of the specified type to the parsing tree, using the words yet 
unparsed in the sentence, in left-to-right order, The different syntactic 
units, such as CLAUSE and NOUN GROUP each correspond to a 
PROGRAMMAR program for parsing them. If asked to parse one of 
these, PARSE activates the program for that unit, giving it as input the 
part of the sentence yet to be parsed and the list of initial features. If the 
command is to parse something other than a unit, PARSE interprets its 
arguments as a list of features which must be found in the dictionary 
definition of the next word in the sentence. If so, it attaches a node for 
that word to the parsing tree, and removes the word from the remainder 
of the sentence. If not, it fails. If a PROGRAMMAR program has been 
called and succeeds, the new node is attached to the parsing tree as a 
daughter of the node for the unit whose program initiated the PARSE 
instruction. If it fails, the tree is left unchanged. 

51.4 The Form of PROGRAMMAR Grammars 

Written in PROGRAMMAR, the programs would appear as in Fig. 24. 
This example illustrates some of the basic features of PROGRAMMAR. 

First it is embedded in LISP, and much of its syntax is LISP syntax. Units 
such as SENTENCE are defined as PROGRAMMAR programs of no 
arguments. Each tries to parse the string of words left to be parsed in the 
sentence. The exact form of this input string is described in Section 5.2.7. 
The value of (PARSE SENTENCE) will be a list structure corresponding 
to the parsing tree for the complete sentence. 

Each time a call is made to the function PARSE, the system begins to 
build a new node on the tree. Since PROGRAMMAR programs can call 
each other recursively, it is necessary to keep a pushdown list of nodes 
which are not yet completed (i.e., the entire rightmost branch of the tree). 
These are all called “active” nodes, and the one formed by the most recent 
call to PARSE is called the “currently active node”. 

We can examine our sample program to see the basic operation of the 
language. Whenever a PROGRAMMAR program is called directly by 
the user, a node of the tree structure is set up, and a set of special 
variables are bound (see Section 5.2.8). The lines of the program are then 
executed in sequence, as in a LISP PROG, except when they have the 
special form of a BRANCH statement (a list whose first member (the 
CONDITION) is nonatomic, and which has either 2 or 3 other members, 
called DIRECTIONS). Line 2.3 of GRAMMAR 2 is a three-direction 
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2.1 (PDEFINE SENTENCE 
2.2 ( ((PARSE NP) NIL FAIL) 
2.3 ( (PARSE VP) FAIL FAIL RETURN) ) ) 

2.4 (PDEFINE NP 
2.5 (((PARSE DETERMINER) NIL FAIL) 
2.6 ((PARSE NOUN) RETURN FAIL) )) 

2.7 (PDEFINE VP 
2.8 ( ( (PARSE VERB) NIL FAIL) 
2.9 ( (ISQ H TRANSITIVE) NIL INTRANS ) 
2.10 ( (PARSE NP) RETURN NIL) 
2.11 INTRANS 
2.12 ( (ISQ H INTRANSITIVE) RETURN FAIL) ) ) 

Rules 1.6 to 1.9 would have the form: 

2.13 (DEFPROP GIRAFFE (NOUN) WORD) 
2.14 (DEFPROP DREAM (VERB INTRANSITIVE) WORD) 

etc. 

FIG. 24-Grammar 2 

branch, and all the other executable lines of the program are two-direction 
branches. 

When a branch statement is encountered, the condition is evaluated, 
and branching depends on its value. In a two-direction branch, the first 
direction is taken if it evaluates to non-NIL, the second direction if it is 
NIL. In a three-direction branch, the first direction is taken only if the 
condition is non-NIL, and there is more of the sentence to be parsed. If no 
more of the sentence remains, and the condition evaluates non-NIL, the 
third direction is taken. 

The directions can be of three types. First, there are three reserved 
words, NIL, RETURN, and FAIL. A direction of NIL sends evaluation 
to the next statement in the program. FAIL causes the program to return 
NIL after restoring the sentence and the parsing tree to their state before 
that program was called. RETURN causes the program to attach the cur- 
rently active node to the completed parsing tree and return the subtree 
below that node as its value. 

If the direction is any other atom, it acts as a GO statement, transferring 
evaluation to the statement immediately following the occurrence of that 
atom as a tag. For example, if a failure occurs in line 2.9, evaluation 
continues with line 2.12. If the direction is nonatomic, the result is the 
same as a FAIL, but the direction is put on a special failure message 
list, so the calling program can see the reason for failure. The statement 
(GOCOND TAG1 TAGZ) causes the program to go to TAG1 if there 
are words left to be parsed, and to TAG2 otherwise. 
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Looking at the programs, we see that SENTENCE will succeed only 
if it first finds a NP, then finds a VP which uses up the rest of the sentence. 
If no NP is found, the second direction in line 2.2 will cause a failure. If 
no VP is found, the second direction in 2.3 will fail, while if a VP is 
found, but some of the sentence remains, the first direction in 2.3 fails. 

In the program VP, we see that the first branch statement checks to 
see whether the next word is a verb, If so, it removes it from the remain- 
ing sentence, and goes on. If not, VP fails. The second statement uses the 
PROGRAMMAR function ISQ, one of the functions used for checking 
features. (ISQ A B) checks to see whether the node or word pointed to 
by A has the feature B. H is one of a number of special variables used to 
hold information associated with a node of the parsing tree (see Section 
5.2.8). It points to the last word or constituent parsed by that program. 
Thus the condition (ISQ H TRANSITIVE) succeeds only if the verb 
just found by PARSE has the feature TRANSITIVE. If so, the direction 
NIL sends it on to the next statement to look for a NP, and if it finds one 
it returns success. If either no such NP is found or the verb is not TRAN- 
SITIVE, control goes to the tag INTRANS, and if the verb is INTRAN- 
SITIVE, the program VP succeeds. Note that a verb can have both the 
features INTRANSITIVE and TRANSITIVE, and the parsing will then 
depend on whether or not an object NP is found. 

51.5 Context-Sensitive Aspects 

So far, we have done little to go beyond a context-free grammar. How, 
for example, can we handle agreement? One way to do this would be for 
the VP program to look back in the sentence for the subject, and check 
its agreement with the verb before going on. We need a way to climb 
around on the parsing tree, looking at its structure. In PROGRAMMAR, 
this is done with the pointer PT and the moving function named “*“. 

Whenever the function * is called, its arguments form a list of instruc- 
tions for moving PT from its present position. These instructions can be 
quite general, saying things like “Move left until you find a unit with 
feature X, then up until you find a CLAUSE, then down to its last 
constituent, and left until you find a unit meeting the arbitrary condition 
Y.” The instruction list contains nonatomic CONDITIONS and atomic 
INSTRUCTIONS. The instructions are taken in order, and when a 
condition is encountered, the preceding instruction is carried out repeat- 
edly until the condition is satisfied. If the condition is of the form 
(ATOM), it is satisfied only if the node pointed to by PT has the feature 
ATOM, Any other condition is evaluated by LISP, and is satisfied if it 
returns a non-NIL value. Section 52.9 lists the instructions for *. 



UNDERSTANDING NATURAL LASGUAGE 87 

For example, evaluating (* C U) will set the pointer to the parent of 
the currently active node. (The mnemonics are: Current, Up) The call 
( * C DLC PV (NP) ) will start at the current node, move down to the 
rightmost completed node (i.e., not currently active) then move left until 
it finds a node with the feature NP (Down-Last-Completed, Previous ). 
If * succeeds, it returns the new value of PT and leaves PT set to that 
value. If it fails at any point in the list, because the existing tree structure 
makes a command impossible, or because a condition cannot be satisfied, 
PT is left at its original position, and * returns NIL. 

In order to check for subject-verb agreement, we can now add another 
branch statement to the VP program in Figure 24 between lines 2.8 and 
2.9 as follows: 

2.8.1 ( (OR( AND( ISQ( * C PV DLC)SINGULAR) 
(ISQ H SINGULAR) ) 

2.8.2 (AND( ISQ PT PLURAL) (ISQ H PLURAL) ) ) 
2.8.3 NIL (AGREEMENT) ) 
This is an example of a branch statement with an error message. It 

moves the pointer from the currently active node (the VP) to the previous 
node (the NP) and down to its last constituent (the noun). It then 
checks to see whether this shares the feature SINGULAR with the last 
constituent parsed by VP (the verb). If not it checks to see whether they 
share the feature PLURAL. Notice that once PT has been set by *, it 
remains at that position. If agreement is found, evaluation continues as 
before with line 2.9. If not, the program VP fails with the message 
(AGREEMENT). 

So far in these examples we have not made much use of features, 
except on words. As the grammar gets more complex, they become much 
more important. As a simple example, we may wish to augment our 
grammar to accept the noun groups “these fish,” “this fish,” “the giraffes,” 
and “the giraffe,” but not “these giraffe,” or “this giraffes.” We can no 
longer check a single word for agreement, since “fish” gives no clue to 
number in the first two, while “the” gives no clue in the third and fourth. 
Number is a feature of the entire noun group, and we must interpret it 
in some cases from the form of the noun, and in others from the form of 
the determiner. 

We can rewrite our programs to handle this complexity as shown in 
Grammar 3 (Fig. 25). 

We have used the PROGRAMMAR functions FQ and TRNSF, which 
attach features to constituents. The effect of evaluating (FQ A) is to 
add the feature A to the list of features for the currently active node of 
the parsing tree. TRNSF is used to transfer features from some other 
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3.1 (PDEFINE SENTENCE 
3.2 (((PARSE NP)NIL FAIL) 
3.3 ( (PARSE VP) FAIL FAIL RETURN) ) ) 

3.4 (PDEFINE NP 
3.5 ( ( ( AND( PARSE DETERMINER) (FQ DETERMINED) )NIL NIL FAIL) 
3.6 ((PARSE NOUN)NIL FAIL) 
3.7 ((CQ DETERMINED)DET NIL) 
3.8 ( ( AND( * H) (TRNSF (QUOTE( SINGULAR PLURAL) ) ) )RETURN 

FAIL ) 
3.9 DET 
3.10 ( (AND ( * H) (TRNSF (MEET( FE( * H PV (DETERMINER) ) ) 
3.11 ( QUOTE ( SINGULAR PLURAL ) ) ) ) ) 
3.12 RETURN 
3.13 FAIL))) 

3.14 (PDEFINE VP 
3.15 (((PARSE VERB)NIL FAIL) 
3.16 ( (MEET(FE H)(FE( * c pv (NP)) )(QuoTE(SINGULAR PLURAL))) 
3.17 NIL 
3.18 (AGREEMENT) ) 
3.19 ((ISQ H TRANSITIVE)NIL INTRANS) 
3.20 ((PARSE NP)RETURN NIL) 
3.21 INTRANS 
3.22 ( ( ISQ H INTRANSITIVE )RETURN FAIL ) ) ) 

FIG. 25-Grammar 3 

node to the currently active one. Its argument is a list of features to be 
looked for, and any of them present in the node being pointed to by the 
pointer are taken. For example, line 3.8 looks for the features SINGULAR 
and PLURAL in the last constituent parsed (the NOUN), and adds 
whichever ones it finds to the currently active node (the NP) . 

The branch statement beginning with line 3.10 is more complex. The 
function * finds the determiner of the NP being parsed. The function FE 
finds the list of features of this node, and the function MEET intersects 
this with the list of features (SINGULAR PLURAL). This intersection 
is then the set of allowable features to be transferred to the NP node from 
the noun. Therefore if there is no agreement between the NOUN and the 
determiner, TRNSF fails to find any features to transfer, and the result- 
ing failure causes the rejection of such phrases as “these giraffe.” 

In line 3.7 we use the function CQ which checks for features on the 
current node. (CQ DETERMINED) will be non-NIL only if the current 
node has the feature DETERMINED (i.e., it was put there in line 3.5). 
Therefore, a noun group with a determiner is marked with the feature 
DETERMINED, and is also given features corresponding to the inter- 
section of the number features associated with the determiner, if there is 
one, and the noun. Notice that this grammar can accept noun groups with- 
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out determiners, as in “Giraffes eat apples.” since line 3.5 fails only if a 
determiner is found and there are no more words in the sentence. 

In conjunction with the change to the NP program, the VP program 
must be modified to check with the NP for agreement. The branch state- 
ment beginning on line 3.16 does this by making sure there is a number 
feature common to both the subject and the verb. 

This brief description explains some of the basic features of PRO- 
GRAMMAR. In a simple grammar, their importance is not obvious, and 
indeed there seem to be easier ways to achieve the same effect. As 
grammars become more complex, the special aspects of PROGRAMMAR 
become more and more important. The flexibility of writing a grammar 
as a program is needed both to handle the complexities of English syntax, 
and to combine the semantic analysis of language with the syntactic 
analysis in an intimate way. 

5.2 Programming Details 

5.2.1 Operation of the System 

Since the grammar is itself a program, the overhead mechanism needed 
for the basic operation of the parser consists mostly of special functions 
to be used by the grammar. The system maintains a number of global 
variables, and keeps track of the parsing tree as it is built by the main 
function, PARSE. When the function PARSE is called for a unit which 
has been defined as a PROGRAMMAR program, the system collects 
information about the currently active node, and saves it on a pushdown 
list (PDL). It th en sets up the necessary variables to establish a new 
active node, and passes control to the PROGRAMMAR program for the 
appropriate unit. If this program succeeds, the system attaches the new 
node to the tree, and returns control to the node on the top of the PDL. 
If it fails, it restores the tree to its state before the program was called, 
then returns control. 

When the function PARSE is called with a first argument which has 
not been defined as a PROGRAMMAR program, it checks to see whether 
the next word has all of the features listed in the arguments. If so, it 
forms a new node pointing to that word, with a list of features which is 
the intersection of the list of features for that word with the allowabIe 
features for the word class indicated by the first argument of the call. For 
example, the word “blocks” will have the possibility of being either a 
plural noun or a third-person-singular present-tense verb. Therefore, 
before any parsing it will have the features (NOUN VERB N-PL VB- 
3PS TRANSITIVE PRESENT). If the expression (PARSE VERB 
TRANSITIVE) is evaluated when “blocks” is the next word in the 
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sentence to be parsed, the feature list of the resulting node will be the 
intersection of this combined list with the list of allowable features for 
the word-class VERB. If we have defined: 

(DEFPROP VERB (VERB INTRANSITIVE TRANSITIVE 
PRESENT PAST VB3PS VB-PL) ELIM), 
The new feature list will be (VERB TRANSITIVE PRESENT VB-SPS). 
(ELIM is simply a property indicator chosen to indicate this list which 
eliminates features). Thus, even though words may have more than one 
part of speech, when they appear in the parsing tree, they will exhibit 
only those features relevant to their actual use in the sentence, as deter- 
mined up to that point. 

52.2 Special Words 

Some words, such as the conjunctions “and” and “or,” are handled in 
special ways in the grammar. When one of these is encountered, the 
normal process is interrupted and a special program is called to decide 
what steps should be taken in the parsing. This is done by giving these 
words the syntactic features SPEC or SPECL. Whenever the function 
PARSE is evaluated, before returning, it checks the next word in the 
sentence to see if it has the feature SPEC. If so, the SPEC property on 
the property list of that word indicates a function to be evaluated before 
parsing continues. This program can in turn call PROGRAMMAR 
programs and make an arbitrary number of changes to the parsing tree 
before returning control to the normal parsing procedure. SPECL has 
the same effect, but is checked for when the function PARSE is called, 
rather than just before it returns. Various other special variables and 
functions allow these programs to control the course of the parsing process 
after they have been evaluated. By using these special words, it is pos- 
sible to write simple and efficient programs for some of the aspects of 
grammar which cause the greatest difficulty. 

For example, “and” can be defined as a program which is diagrammed 
in Fig. 26. 

For example, given the sentence “The giraffe ate the apples and 
peaches.” the program would first encounter “and” after parsing the 
NOUN apples. It would then try to parse a second NOUN, and would 
succeed, resulting in the structure of Fig. 27. 

If we had the sentence ‘The giraffe ate the apples and drank the 
vodka.” the parser would first try the same thing. However, “drank” is not 
a NOUN, so the AND program would fail and the NOUN “apples” would 
be returned unchanged. This would cause the NP “the apples” to succeed, 
so the AND program would be called again, since the check for a SPEC 
word occurs every time a unit succeeds. It would fail to find a NP begin- 
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Replace the node with a 
new node combining the 
old one and the one you 
have just found 

Return success 

I 
FIG. 26. Conjunction Program. 

ning with “drank”, so the NP “the apples” would be returned, causing the 
VP to succeed. This time, AND would try to parse a VP and would find 
“drank the vodka”. It would therefore make up a combined VP and cause 
the entire SENTENCE to be completed as in Fig. 28. 

SENTENCE 

/ /YP“----- : 
DETERM& NP\ 

,; ipl, NCIUN,, 

NOUN VERB DETERMINER NOUN NOUN 

I I 
the gtraffe ate the apples and peaches 

FIG. 27. Conjoined Noun Structure. 

A program to do nothing more than this would take only three or four 
lines in a PROGRAMMAR grammar. The present system is more complex 
as it handles lists (like “A, B, and C”) other conjunctions (such as “but”) 
and special constructions (such as “both A and B”). The conjunction 

FIG. 28. Conjoined Clauses. 
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program is called by all of the conjunctions, the words “either”, “neither”, 
and “both”, and the mark “,” which appears as a separate word in the 
input. 

The function ** is used to look ahead for a repetition of the special 
word, as in “. . . and . . . and . . ,.“. If one is found, a unit of the type 
most recently parsed is parsed again, trying to extend all the way to the 
repeated conjunction or comma. This is iterated as long as there are 
repetitions, with special checks made for structures like “A, B, and C” or 
“A and B but not C”. As each new mode is parsed, its structure is saved, 
and when the last is found, a new node is created for the compound. Its 
features combine those for the type of conjunction with those appropriate 
for the type of unit (e.g., a compound NG connected with “and” is given 
the feature “plural” (NPL). ) The list of constituent structures is put on 
the tree as a list of subnodes of the conjoined structure, which then re- 
places the original unit on the parsing tree. 

Compounds with a preceding word like “both” are parsed differently, 
since the word is encountered before any unit has been parsed. In this 
case it is possible to adopt the more general strategy of attempting the 
longest possible unit first. These words have a SPECL definition, so the 
program is called as the next unit is about to be parsed. The conjunction 
program looks for the matching conjunction (“and” with “both”, “or” with 
“either”, and “nor” with “neither”) and tries to parse the unit extending 
only to the conjunction, If this succeeds, the normal conjunction procedure 
is followed. If not, some shorter subcomponent is the conjoined one, and 
nothing happens until the parser attempts a sub-unit, when the process 
is repeated. 

A SPECL program can modify the parsing in several ways. For example 
it can call the function FLUSHME, which simply removes the word from 
the input sentence (i.e., it is ignored). It can take arbitrary actions on 
the current parsing tree, can indicate to PROGRAMMAR that it should 
SKIP parsing the unit and use instead results provided by the SPECL 
program, or it can indicate an action to be taken after the normal parsing 
is DONE. Finally, a SPEC or SPECL program can abort the entire pars- 
ing, indicating a response to the user. For example, the word “thank” 
calls a SPECL program which checks to see if the next word is “you”. If 
so, the parsing is given up, and the system replies “you’re welcome”. 
Currently there is no backup procedure to modify the interpretation of 
an ambiguous structure like “A and B or C”. This will in fact be parsed 
as (A and (B or C) ). Notice that “either A and B or c” will be parsed 
correctly as ( (A and B ) or C) . 

The exact format for a SPEC or SPECL definition is a LISP list to which 
will be appended two items-the initial feature list of the unit being 
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parsed and an indicator of whether it is a word or a unit which called 
the program. The resultant form is then evaluated. 

52.3 Possessives 

One of the best examples of the advantages of procedural grammars is 
the ability to handle left-branching structures like possessives. In a normal 
top-down parser, these present difficulties, since any NG can begin with a 
possessive NG, which can in turn begin with a possessive NG, etc., as in 
“my mother’s sister’s student’s cat’s fur”. Special care must be taken to 
avoid infinite loops. 

In our grammar this is handled by a check after the NOUN or PRO- 
NOUN is found in a NG. If it has the feature “possessive” (POSS) (e.g., 
“my” or “block’s”) a node is created for the NG thus far parsed, and this 
is placed on the tree as a constituent (the determiner) of a NG to be 
continued. The program then returns to the point where it was after find- 
ing a determiner, and continues looking. This can happen any number of 
times, but in each case is triggered by the presence of another possessive 
word. It therefore loops only as much as necessary. This departure from 
top-down parsing involves no changes to the parser, and only a simple 
loop in the program. Any other left-branching structure can be handled 
similarly. 

52.4 The Dictionury 

Since PROGRAMMAR is embedded in LISP, the facilities of LISP 
for handling atom names are used directly. To define a word, a list of 
syntactic features is put on its property list under the indicator WORD, 
and a semantic definition under the indicator SMNTC. Two facilities are 
included to avoid having to repeat information for different forms of the 
same word. First, there is an alternate way of defining words, by using the 
property indicator WORDl. This indicates that the word given is an 
inflected form, and its properties are a modified form of the properties 
of its root. A WORD1 definition has three elements, the root word, the 
list of features to be added, and the list of features to be removed. For 
example, we might define the word “go” by: (DEFPROP GO (VERB 
INTRANSITIVE INFINITIVE) WORD) We could then define “went” 
as: (DEFPROP WENT (GO (PAST) (INFINITIVE) ) WORDl) 
This indicates that the feature INFINITIVE is to be replaced by the 
feature PAST, but the rest (including the semantic definition) is to remain 
the same as for “go”. 

The other facility is the system described in Section 3.9 which checks 
for inflectional endings. If a definition for a reduced root word is found, 
appropriate changes are made for the ending (such as changing the 
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feature SINGULAR to PLURAL). The program which does this is not 
a part of the PROGRAMMAR system, but is specifically designed for 
English. For any other language, this input function would have to be 
rewritten according to that language’s rules of morphographemic struc- 
ture. In terms of interacting with the rest of the system, the only require- 
ment for such a program is that its output be a list, each member of 
which corresponds to a word in the original sentence, and is in the form 
described in Section 5.2.7. This list is bound to the variable SENT, and is 
the way in which PROGRAMMAR sees its input. 

The other data in the dictionary consists of tables of verb-particle and 
preposition-preposition combinations like “pick up” and “on top of”. The 
tables are stored on the property list of the initial word of the com- 
bination, under the indicator PRTT or PREPP, respectively. It is a list of 
pairs, each member of which has the second word of the combination as 
its first element, and a syntactic structure for the combined form (see 
Section 52.7) as its second element. There may be more than one com- 
bination for the same initial word ( e.g., “pick up”, “pick out”), and three- 
word combinations can be defined by making the second element of a pair 
an association list of the same form for a third word (as for “on top of”). 

52.5 Backup Facilities 

As explained in Section 1.4.3, there is no automatic backup, but there 
are a number of special functions which can be used in writing gram- 
mars. The simplest, (POPTO X), simply removes nodes from the tree. 
The argument is a list of features, and the effect is to remove daughters of 
the currently active node, beginning with the rightmost and working left- 
ward until one is reached with all of those features (POP X) is the same, 
except that it also removes the node with the indicated features. If no 
such node exists, neither function takes any action. (POP) is the same as 
(POP NIL), and a non-nil value is returned by both functions if any 
action has been taken. 

A useful feature is the CUT variable. One way to simplify the book- 
keeping needed for backup is to follow a simple strategy when going 
forward, first trying to find the longest possible constituent at any point. 
If for any reason an impasse is reached, the system can return and try 
again, limiting the constituent from going as far along in the sentence. For 
example, in the sentence “Was the typewriter sitting on the cake?“, the 
parser will first find the auxiliary verb “was”, then try to parse the subject. 
It will find the noun group “the typewriter sitting on the cake”, which 
in another context might well be the subject (“the typewriter sitting on 
the cake is broken.“). It then tries to find the verb, and discovers none 
of the sentence is left. To back up, it must change the subject. A very 
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clever program would look at the structure of the noun group and would 
realize that the modifying clause “sitting on the cake” must be dropped. 
A more simple-minded but still effective approach would use the following 
instructions: 

(** N PW) 
(POP) 
( (CUT PTW) SUBJECT (ERROR) ) 

The first command sets the pointer PTW to the last word in the con- 
stituent (in this case, “cake”). The next removes that constituent. The 
third sets a special pointer, CUT to that location, then sends the program 
back to the point where it was looking for a subject. It would now try 
to find a subject again, but would not be allowed to go as far as the word 
“cake”. It might now find “the typewriter sitting,” an analog to “The man 
sitting is my uncle.” If there were a good semantic program, it would 
realize that the verb “sit” cannot be used with an inanimate object with- 
out a location specified. This would prevent the constituent “the type- 
writer sitting” from ever being parsed. Even if this does not happen, the 
program would fail to find a verb when it looked at the remaining sen- 
tence, “on the cake.” By going through the cutting loop again, it would 
find the proper subject, “the typewriter,” and would continue through the 
sentence. 

Once a CUT point has been set for any active node, no descendant of 
that node can extend beyond that point until the CUT is moved. Wben- 
ever a PROGRAMMAR program is called, the variable END is set to 
the current CUT point of the node which called it. The CUT point for 
each constituent is initially set to its END. When the function PARSE 
is called for a word, it first checks to see if the current CUT has been 
reached (i.e., N and CUT are the same), and if so it fails. The third 
branch in a three-direction branch statement is taken if the current CUT 
point has been reached. The CUT pointer is set by evaluating (CUT X), 
where X is a pointer to a place in the sentence. 

52.6 Messages 

A good parsing program may at times need to know why a particular 
PROGRAMMAR program failed, or why a certain pointer command 
could not be carried out. To facilitate this, two message variables are 
kept at the top level of the system, MES, and MESP. Messages can be 
put on MES in two ways, either by using the special failure directions 
in the branch statements (see Section 51.4) or by using the functions M 
and MQ. When a unit returns either failure or success, MES is bound 
to the current value of ME, the message list, so the calling program can 
receive an arbitrary list of messages for whatever purpose it may want 
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them. MESP always contains the last failure message received from ** 
or *. (See Section 52.9.) 

5.2.7 The Form of the Parsing Tree 

Each node is actually a list structure with the following information: 

FE the list of features associated with the node 
NB the place in the sentence where the constituent begins 
N the place immediately after the constituent 
H the subtree below that node (actually a list of its daughters in 

reverse order, so that H points to the last constituent parsed) 
SM a space reserved for semantic information 

These symbols can be used in two ways. If evaluated as variables, they 
will always return the designated information for the currently active 
node. C is always a pointer to that node. If used as functions of one 
argument, they give the appropriate values for the node pointed to by 
that argument; so (NB H) g ives the location in the sentence of the first 
word of the last constituent parsed, while ( FE( NB H) ) gives the feature 
list of that word. 

Each word in the sentence is actually a list structure containing the four 
items : 

FE as above 
SMWORD the semantic definition of the word 
WORD the word itself (a pointer to an atom) 
ROOT the root of the word (e.g., “run” if the word is 

“running”). 

5.2.8 Variables Maintained by the System 

There are two types of variables, those bound at the top level, and 
those which are rebound every time a PROGRAMMAR program is called. 
Variables bound at the top level: 

N Always points to next word in the sentence to be 
parsed 

SENT Always points to the entire sentence 
PT PTW Tree and sentence pointers. See Section 52.9 
MES MESP List of messages passed up from lower levels. See 

Section 5.2.6 

Special variabIes bound at each level: 

C FE NB SM H See Section 5.2.7 
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NN CUT END 

UNIT 

REST 

Tl T2 T3 

MVB 

ME 

See Section 5.25 NN always equals 
(NOT( EQ N CUT) ) 

the name of the currently active 
PROCRAMMAR program 

the list of arguments for the call to PARSE 
(These form the initial feature list for the 
node, but as other features are added, REST 
continues to hold only the original ones.) 

Three temporary variables for use by the pro- 
gram in any way needed. 

Bound only when a CLAUSE is parsed, used as 
a pointer to the main verb 

List of messages to be passed up to next level. 
See Section 5.2.6 

52.9 Pointers 

The system always maintains two pointers, PT to a place on the parsing 
tree, and PTW to a place in the sentence. These are moved by the func- 
tions * and **, respectively, as explained in Section 51.4. The instructions 
for PT are: 

C 
H 
DL 

DLC 

DF 
PV 
NX 
U 
N 

set PT to the currently active node 
set PT to most recent (rightmost) daughter of C 
(down-last) move PT to the rightmost daughter of its cur- 

rent value 
(down-last completed) like DL, except it only moves to nodes 

which are not on the push-down list of active nodes. 
(down-first) like DL, except the leftmost 
(previous) move PT to its left-adjacent sister 
(next) move PT to its right-adjacent sister 
(up) move PT to parent node of its current value 
Move PT to next word in sentence to be parsed 

The pointer PTW always points to a place in the sentence. It is moved 
by the function * * which has the same syntax as *, and the commands: 

N Set PTW to the next word in the sentence 
FW (first-word) set PTW to the first word of the constituent 

pointed to by PT 
LW (last-word) like FW 
AW (after-word like FW, but first word after the constituent 
NW (next-word) Set PTW to the next word after its current value 
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PW (previous-word) like NW 
SFW (sentence-first-word) set PTW to the first word in the 

sentence 
SLW (sentence-last-word) like SFW 

Since the pointers are bound at the top level a program which calls 
others which move the pointers may want to preserve their location. 
PTW is a simple variable, and can be saved with a SETQ, but PI 
operates by keeping track of the way it has been moved, in order to be 
able to retrace its steps. This is necessary since LISP lists are threaded 
in only one direction (in this case, from the parent node to its daughters, 
and from a right sister to its left sister). The return path is bound to the 
variable PTR, and the command (PTSV X) saves the values of both PT 
and PTR under the variable X, while (PTRS X) restores both values. 

52.10 Feature Manipulating 

As explained in Section 5.1.4, we must be able to attach features to 
nodes in the tree. The functions F, FQ, and TRNSF are used for putting 
features onto the current node, while R and RQ remove them. (F A) sets 
the feature list FE to the union of its current value with the list of features 
A. (FQ A) adds the single feature A (i.e., it quotes its argument). 
(TRNSF A B) was explained in Section 5.1.5. R and RQ are inverses of 
F and FQ. The functions IS, ISQ, CQ, and NQ are used to examine 
features. If A points to a node of the tree or word of the sentence, and B 
points to a feature, (IS A B ) returns non-nil if that node has that feature. 
( ISQ A B) is equivalent to (IS A (QUOTE B ) ), ( CQ B ) is the same as 
(ISQ C B) ( h w ere C always points to the currently active node), and 
(NQ B) is the same as (ISQ N B) (N always points to the next word 
in the sentence left to be parsed). 

The function NEXTW checks to see if the root of the next word 
matches the argument. ( NEXTW BE ) evaluates to non-NIL only if the 
next word is some form of the verb “be.” PUTF and REMF are used to 
add and remove features from some node other than the current one. 
They are nonevaluating functions whose arguments are features, which 
are put on or removed from the node currently pointed to by the pointer 
PT. 

5.3 Following the Parser in Operation 

Let us follow the parser through two examples to see how the grammar 
is used in practice. We will not actually watch all of the details, or deal 
with the way semantic programs are intermixed with the grammar. Instead 
we wiI1 follow a somewhat reduced version, to get a feeling for the way 
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the grammar works, and the way it interacts with the different features 
described above. We have chosen one very simple sentence, and another 
which is difficult enough to exercise some of the more complex features 
of the grammar. 

53.1 Simple Sentences 

The first sentence is the first sentence of our sample dialog (Section 
1.3) : “Pick up a big red block.” 

The system begins trying to parse a sentence, which, as explained 
above, means looking for a MAJOR CLAUSE. It activates the grammar 
by calling (PARSE CLAUSE MAJOR). Since CLAUSE is one of our 
units, there is a program defined for it. The CLAUSE program is called 
with an initial feature list of (CLAUSE MAJOR), 

The CLAUSE program looks at the first word, in order to decide what 
unit the CLAUSE begins with. If it sees an adverb, it assumes the sen- 
tence begins with a single-word modifier. If it sees a preposition, it looks 
for an initial PREPG. If it sees a BINDER, it calls the CLAUSE program 
to look for a BOUND CLAUSE. In English (and possibly all languages) 
the first word of a construction often gives a very good clue as to what 
that construction will be. We have “advance notice” of what structures to 
look for, and this makes parsing much easier. Our grammar tries to make 
as much use as possible of these signals. In this case, the initial word is 
a verb, and this indicates that we may have an IMPERATIVE CLAUSE. 
The program calls (PARSE VG IMPER) to start the VG program with 
the initial VG feature list (VG IMPER), looking for a VG of the right 
type. The VG program checks this initial feature list, and sees that it is 
looking for an imperative VG. This must either begin with some form of 
the verb “do,” or with the main verb itself. Since the next word is not 
“do,” it calls (PARSE VB INF (MVB) ). This is a different kind of call 
to PARSE, since VB is not a unit we have defined. It is a word class, and 
the call says to check the next word in the input (in this case still the 
first word) to see whether it is indeed the infinitive form of a verb. If so, 
it is to be attached to the parsing tree, and given the additional feature 
MVB (main verb). The current structure can be diagrammed as in 
Fig. 29. 

We use several conventions for diagramming syntactic structures. For 
each node of the parsing tree, we display its list of syntactic features. 
Rather than using a tree format (which quickly grows off of the page), 

(CLAUSE MAJOR) 
(VG IMPER) * 

(VB MVB INF TRANS VPRT) 

Figure 29--Syntactic Structure I 

(pick.. .) 
(pick. . .) 

pick 
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we use a format more like a traditional outline, with the sub-phrases of 
any phrase indicated immediately below it and indented. We use the 
symbol “** following the feature list to indicate the program which is 
currently active. The actual words making up a constituent are shown 
to the right of its feature list, putting units larger than WORD in 
parentheses. A series of dots in the English words to the right of a unit 
indicates that the program for that unit has not yet finished. 

Our diagram shows that we have a CLAUSE, with a constituent which 
is a VG, and that the VG program is active. The VG so far consists of 
only a VB. Notice that some new properties have appeared on the list for 
VB. We have not mentioned TRANS or VPRT. These came from the 
definition of the word “pick” when we called the function PARSE for 
a word (see Section 52.4 for details). 

Ordinarily the VG program checks for various kinds of tense and 
number, but in the special case of an IMPER VB, it returns immediately 
after finding the verb. We will see other cases in the next example. 

When the VG program succeeds, CLAUSE takes over again. Since it 
has found the right kind of VG for an imperative CLAUSE, it puts the 
feature IMPER on the CLAUSE feature list. It then checks to see whether 
the MVB has the feature VPRT, indicating it is a special kind of verb 
which takes a particle. It discovers that “pick” is such a verb, and next 
checks to see if the next word is a PRT, which it is. It then checks in the 
dictionary to see if the combination “pick up” is defined, and when it 
discovers this is true, it calls (PARSE PRT) to add “up” to the parsing 
tree. Notice that we might have let the VG program do the work of look- 
ing for a PRT, but it would have run into difficulties with sentences like 
“Pick the red block up.” in which the PRT is displaced. By letting the 
CLAUSE program do the looking, the problem is simplified. 

As soon as it has parsed the PRT, the CLAUSE program marks the 
feature PRT on its own feature list. It then looks at the dictionary entry 
for “pick up” to see what transitivity features are there. It is transitive, 
which indicates that we should look for one object-OBJl. The dictionary 
entry does not indicate that this is a verb which can take special types of 
RSNG clauses as objects, so the object must be either a NG or a WHRS 
clause (which can appear wherever a NG can). If the object were a 
WHRS clause, it would begin with a relative pronoun, like “Pick up what 
I told you to.” Since the next word is “a”, this is not the case, so the 
CLAUSE program looks for an object by calling (PARSE NG OBJ OBJI), 
asking the NG program to find a NG which can serve as an OBJl. The 
structure is shown in Fig. 30. 

The NG program is started and notices that the upcoming word is a 
determiner, “a”. It calls (PARSE DET) to add it to the parsing tree, then 
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(CLAUSE MAJOR IMPER PRT) (pick up,..) 
(VG IMPER ) ( pick ) 

(VB MVB INF TRANS PRT) pick 
(PRT) 
(NC OBJ OBJl)* (.lT! 

Figure BeSyntactic Structure 2 

uses the function TRNSF to transfer relevant features from the DET to 
the entire NG. It is interested in the type of determination (DEF DS. 
INDEF 27s. QNTFR), and the number ( NS 0s. NPL). It also adds the 
feature DET to the NG to indicate that it has a determiner. The feature 
list for the NG is now: 

(NC OBJ OBJl DET INDEF NS) 

since “a” is a singular indefinite determiner. The NG program then notices 
the feature INDEF, and decides not to look for a number or an ordinal 
(we can’t say “a next three blocks”), or for the OF construction (“a of 

them” is impossible). It goes on immediately to look for an adjective by 
calling (PARSE ADJ). When this succeeds with the next word “big”, a 
simple program loop returns to the (PARSE ADJ) statement, which 
succeeds again with “red”. On the next trip it fails, and sends the program 
on to look for a classifier, since “block” isn’t an ADJ. But “block” isn’t a 
CLASF either in our dictionary, so the NG program goes on to look for 
a NOUN, by calling (PARSE NOUN). This succeeds with the NOUN 
“block”, which is singular, and the program checks to see if it agrees with 
the number features already present from the determiner (to eliminate 
illegal combinations like “these boy”). In this case, both are singular 
(NS), so the program is satisfied. Ordinarily it would go on to look for 
qualifiers, but in this case there is nothing left in the sentence. Remember 
that we have an especially easy way of indicating in a PROGFtAMMAR 
program what action should be taken at any point if the sentence runs 
out. WC can do it by simply putting a third direction in any branch state- 
ment. In this case, since we have found all of the basic constituents we 
need for a NC, the “third branch” tells us that the NG program should 
return success. If we had run out after the determiner, it would have 
checked for an incomplete NG, while if we run out after an ADJ it would 
have entered a backup program which would check to see whether it had 
misinterpreted a NOUN as an ADJ. 

In this case, the NG program returns, and the CLAUSE program 
notices that the sentence has ended. Since a TRANS verb needs only one 
object, and that object has been found, the CLAUSE program marks 
the feature TRANS, and returns, ending the parsing. In actual use, a 
semantic program would be called here to understand and execute the 
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command-in fact, semantic programs would have been called at various 
points throughout the process. The final result looks like Fig, 31. 

53.2 Complex Sentences 

Now let us take a more complex sentence, like: “How many blocks are 
supported by the cube which I wanted you to pick up?” 

We will not go into as much detail, but will emphasize the new 
features exhibited by this example. First, the parser recognizes that this 
sentence is a question by its punctuation. This “cheating” is not really 
necessary: the grammar could be revised to look for the other signals of 
a question (for example, beginning with a determiner like “how many” 
or “which”). 

In any event, the feature QUESTION is noted, and the program must 
decide what type of question it is. It checks to see if the CLAUSE begins 
with a QADT like “‘why”, “ where”, etc. or with a preposition which might 
begin a PREPG QUEST (like “In what year . . .“). 

All of these things fail in our example, so it decides the CLAUSE 
must have a NG as its question element, (called NGQ), marks this 
feature, and calls (PARSE NG QUEST). The NC program starts out by 
noticing QUEST on its initial feature list, and looking for a question 
determiner ( DET QDET). Since there are only three of these (“which”, 
“what”, and “how many”), the program checks for them explicitly, pars- 
ing “how” as a QDET, and then calling (PARSE NIL MANY), to add 
the word “many” to the parsing tree, without worrying about its features. 
(The call (PARSE NIL X) checks to see if the next word is actually the 
word “x”) ) . 

Since a determiner has been found, its properties are added to the NC 
feature Iist, (in this case, (NUMDET INDEF NPL) ), and the NG 
program goes on with its normal business, looking for adjectives, classi- 
fiers, and a noun. It finds only the NOUN “blocks” with the features 
(NOUN NPL). Th e word “block” appears in the dictionary with the 

(CLAUSE MAJOR IMPER PRT TRANS ) (pick up a big red block) 

(VG IMPER) (pick ) 
(VB MVB INF TRANS VPRT) pick 

(PRT) UP 

(NG OBJ OBJl DET INDEF NS) (a big red block) 
( DET INDEF NS ) 
(ADJ) b;g 
(ADJ) red 
(NOUN NS) block. 

Figure 31--Syntactic Structure 3 
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(CLAUSE MAJOR QUESTION NGQ) * (how many blocks . . . ) 
(NQ QUEST DET NUMDET NPL INDEF) (how many blocks) 

(DET QDET NPL INDEF) how 
0 many 
(NOUN NPL) blocks 

Figure 32-Syntactic Structure 4 

feature NS, but the input program which recognized the plural ending 
changed NS to NFL for the form “blocks”. Agreement is checked between 
the NOUN and the rest of the NG, and since “how many” added the 
feature NPL, all is well. This time, there is more of the sentence left, SO 
the NC program continues, looking for a qualifier. It checks to see if the 
next word is a preposition (as in “blocks on, the table), a relative word 
(“blocks which . . ,), a past participle (“blocks supported by . . .), an 
ING verb (“blocks sitting on . . .), a comparative adjective (‘blocks 
bigger than . . .), or the word “as” (“blocks as big as . . .). If any of these 
are true, it tries to parse the appropriate qualifying phrase. If not, it tries 
to find an RSQ CLAUSE (“blocks the block supports). In this case, all 
of these fail since the next word is “are”, so the NG program decides it 
will find no qualifiers, and returns what it already has. This gives us 
Fig. 32. 

Next the CLAUSE program wants a VG, so it calls (PARSE VG 
NAUX). The feature NAUX indicates that we want a VG which does 
not consist of only an auxiliary verb, like “be” or “have”. If we saw such 
a VG, it would indicate a structure like “How many blocks are the boxes 
supporting?“, in which the question NG is the object of the CLAUSE. We 
are interested in first checking for the case where the question NG is the 
subject of the CLAUSE. 

The VG program is designed to deal with combinations of auxiliary 
verbs like “had been going to be , . .” and notes that the first verb is a 
form of “be”. It calls (PARSE VB AUX BE), assuming that “are” is an 
auxiliary rather than the main verb of the sentence (if this turns out 
wrong, there is backup). It transfers the initial tense and person features 
from this verb to the entire VG (The English VG always uses the leading 
verb for these features, as in “He has been . . .“, where it is “has” which 
agrees with “he”.) In this case “are” is plural (VPL) and present tense 
(PRES). 

When “be” is used as an auxiliary, it is followed by a verb in either the 
ING or the EN form. Since “supported” is an EN form (and was marked 
that way by the input program), the VG program calls (PARSE VB EN 
( MVB ) ), marking “supported” as the main verb of the clause, The use of 
a “be” followed by an EN form indicates a PASV VG, so the feature 
PASV is marked, and the VG program is ready to check agreement. Notice 
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that so far we haven’t found a subject for this clause, since the question 
NG might have been an object, as in “How many blocks does the box 
support?” However the VG program is aware of this, and realizes that 
instead of checking agreement with the constituent marked SUBJ, it must 
use the one marked QUEST. It uses PROGRAMMAR’s pointer-moving 
functions to find this constituent, and notes that it is NPL, which agrees 
with VPL. VG therefore returns its value. We now have Fig. 33. 

The CLAUSE program resumes, and marks the feature SUBJQ, since 
it found the right kind of VG to indicate that the NG “how many blocks” 
is indeed the subject. It next checks to see if we have a PRT situation as 
we did in our first example. We don’t, so it next checks to see if the VG 
is PASV, and marks the clause with the feature PASV. This indicates that 
there will be no objects, but there might be an AGENT phrase. It checks 
that the next word is “by”, and calls (PARSE PREPG AGENT). 

The PREPG program is fairly simple-it first calls (PARSE PREP), 
then (PARSE NG OBJ PREPOBJ ). The word “by” is a PREP, so the first 
call succeeds and NG is called and operates as described before, finding 
the DET “the” and the NOUN “cube,” and checking the appropriate 
number features. 

The NG program next looks for qualifiers, as described above, and this 
time it succeeds. The word “which” signals the presence of a RSQ WHRS 
CLAUSE modifying “cube”. The NG program therefore calls (PARSE 
CLAUSE RSQ WHRS). Th e p arsing tree now looks like Fig. 34. 

The CLAUSE program is immediately dispatched by the feature 
WHRS to look for a RELWD. It finds “which”, and marks itself as 
NGREL. It then goes on to look for a (VG NAUX) just as our QUES- 
TION NGQ clause did above. Remember that WH- questions and WHRS 
clauses share a great deal of the network, and they share much of the 
program as well. This time the VG program fails, since the next word is 
“I”, so the CLAUSE program decides that the clause “which I . . .” is not 
a SUBJREL. It adds the temporary feature NSUBREL, indicating this 
negative knowledge, but not deciding yet just what we do have. It then 

(CLAUSE MAJOR QUESTION NGQ)” (how many blocks are supported. . 

(NG QUEST DET NUMDET NPL INDEF) (how many blocks) 
(DET QDET NPL INDEF) how 
0 many 
(NOUN NPL) blocks 

(VG NAUX VPL PAW (PRES) ) (are supported) 
(VB AUX BE PRES VPL) are 
( VB MVB EN TRANS ) supported 

Figure 33-Syntactic Structure 5 
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(CLAUSE MAJOR QUESTION NGQ SUBJQ PASV) 
(how many blocks are supported by the cube . . . ) 

(NG QUEST DET NUMDET NPL INDEF) 
(DET QDET NPL INDEF) 
0 
(NOUN NPL) 

(VG NAUX VPL PASV (PRES) ) 
(VB AUX BE PRES VPL) 
(VB MVB EN TRANS) 

(PREPG AGENT) 
(PREP) 

(NG OBJ PREPOBJ DET DEF NS) 
( DET DEF NPL NS ) 
(NOUN NS ) 
( CLAUSE RSQ WHRS ) * 

Figure 34-Syntactic Structure 6 

(how many blocks) 
how 
many 
blocks 

(are supported) 
are 

supported 

(by the cube.. .) 
by 

(the cube...) 
the 

cube 
C...) 

goes to the point in the normal clause program which starts looking for 
the major constituents of the clause-subject, verb, etc. We call (PARSE 
NC SUBJ) and succeed with the PRONG “I”. We then look for a VG, 
and find “wanted”. In this case, since the verb is PAST tense, it doesn’t 
need to agree with the subject (only the tenses beginning with PRES 
show agreement). The feature NAGR marks the nonapplicability of 
agreement. The parsing tree from the WHRS node on down is shown in 
Fig. 35. 

The CLAUSE program notes that the MVB is TRANS and begins to 
look for an OBJl. This time it also notes that the verb is a TOOBJ and 
a SUBTOBJ (it can take a TO clause as an object, as in “I wanted to go.“, 
or a SUBTO, as in “I wanted you to go.” Since the next word isn’t “to”, 
it decides to look for a SUBTO clause, calling (PARSE CLAUSE RSNG 
OBJ OBJl SUBTO). In fact, this checking for different kinds of RSNG 
clauses is done by a small function named PARSEREL, which looks at 
the features of the MVB, and calls the appropriate clauses. PARSEREL 
is used at several points in the grammar, and one of the main advantages 

(CLAUSE RSQ WHRS NGREL NSUBREL)” (which I wanted. . . ) 

( RELWD ) which 

(NC SUBJ PRONG NFS ) (1) 
(PRON NFS ) I 

(VG NAGR (PAST)) (wanted) 
(VB MVB PAST TRANS TOOBJ SUBTOBJ) wanted 

Figure 35-Syntactic Structure 7 
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of writing grammars as programs is that we can write such auxiliary 
programs (whether in PROGRAMMAR or LISP) to make full use of 
regularities in the syntax. 

The CLAUSE program is called recursively to look for the SUBTO 
clause “you to pick up”. It finds the subject “you”, and calls (PARSE VG 
TO) since it needs a verb group of the “to” type. The VG program 
notices this feature and finds the appropriate VG (which is again 
NAGR). The PRT mechanism operates as described in the first example, 
and the bottom of our structure now looks like Fig. 36. 

Notice that we have a transitive verb-particle combination, ‘pick up”, 
with no object, and no words left in the sentence. Ordinarily this would 
cause the program to start backtracking-checking to see if the MVB 
is also intransitive, or if there is some way to reparse the clause. How- 
ever we are in the special circumstance of an embedded clause which is 
somewhere on the parsing tree below a relative clause with an “un- 
attached” relative. In the clause “which I told you to pick up”, I is the 
subject, and the CLAUSE “you to pick up” is the object. The “which” has 
not been related to anything. There is a small program named UP- 
CHECK which uses PROGRAMMAR’s ability to look around on the 
parsing tree. It looks for this special situation, and when it finds it does 
three things: ( 1) Mark the current clause as UPREL, and the appropriate 
type of UPREL for the thing it is missing (in this case OBJlUPREL). 
(2) Remove the feature NSUBREL from the clause with the unattached 
relative. (3) Replace it with DOWNREL to indicate that the relative has 
been found below. This can all be done with simple programs using the 
basic PROGRAMMAR primitives for moving around the tree (see Section 
5.29) and manipulating features at nodes (see 52.10). The information 

(CLAUSE RSQ WHRS NGREL NSUBREL) (which I wanted you to pick up) 
( RELWD ) which 
( NG SUBJ PRONG NFS) (1) 

(PRON NFS) I 
(VG NAGR (PAST) ) (wanted) 

(VB MVB PAST TRANS TOOBJ SUBTOBJ) wanted 

(CLAUSE RSNG SUBTO OBJ OBJI PRT)’ (you to pick up) 

(NG SUBJ PRONG NPL) (YOU) 
(PRON NPL) YOU 

( VG TO NAGR ) ( to pick) 
0 to 
(VB MVB INF TRANS VPRT ) pick 

(PRT) UP 

Figure 36-Syntactic Structure 8 
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which is left in the parsing tree is sufficient for the semantic routines to 
figure out the exact relationships between the various pieces involved. 

In this example, once the CLAUSE “to pick up” has been marked as 
OBJlUPREL, it has enough objects, and can return success since the end 
of the sentence has arrived. The CLAUSE “which I want you to pick up” 
has an object, and has its relative pronoun matched to something, so it 
also succeeds, as does the NG “the cube , . .“, the PREPG “by the cube . .“, 
and the MAJOR CLAUSE. The final result is shown in Fig. 37. 

(CLAUSE MAJOR QUESTION NGQ SUBJQ PAW AGENT) 

(NG QUEST DET NUMDET NPL INDEF) (how many blocks) 
(DET QDET NPL INDEF) how 
0 m=v 
(NOUN NPL) blocks 

(VG NAUX VPL PASV (PRES ) ) ( are supported ) 
(VB AUX BE PRES VPL) are 
(VB MVB EN TRANS) supported 

(PREPG AGENT) (by the cube which I wanted you to pick up) 
(PREP) by 

( NG OBJ PREPOBJ DET DEF NS ) 
(the cube which I wanted you to pick up) 

( DET DEF NPL NS ) the 
(NOUN NS) cube 

(CLAUSE RSQ WHRS NGREL DOWNREL TRANS) 
(which I wanted you to pick up) 

( RELWD ) which 

(NC: SUBJ PRONG NFS) (1) 
(PRON NFS ) I 

(VG NAGR (PAST)) ( wanted ) 

( VG MVB PAST TRANS TOOBJ SUBTOBJ ) wanted 

(CLAUSE RSNG SUBTO OBJ OBJl PRT 
TRANS UPREL OBJlUPREL) (you to pick up) 

(NC SUBJ PRONG NPL) (YOU) 
(PRON NPL ) YOU 

(VG TO NAGR) (to pick) 
( 1 to 
(VB MVB INF TRANS VPRT) pick 

(‘PRT) UP 

Figure 37-Syntactic Structure 9 
“HOW many blocks are supported by the cube 

which I wanted you to pick up?” 
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Even in this fairly lengthy description, we have left out much of what 
was going on. For example we have not mentioned all of the places where 
the CLAUSE program checked for adverbs (like “usually” or “quickly”), 
or the VG program looked for “not”, etc. These are all “quick” checks, 
since there is a PROGRAMMAR command which checks the features of 
the next word. In following the actual programs, the course of the process 
would be exactly as described, without backups or other attempts to 
parse major structures. 

6. DEDUCTION, PROBLEM SOLVING, AND PLANNER 

6.1 Representing Knowledge in PLANNER 

6.1.1 Complex Znformution 

Section 1.5 described a formalism for representing assertions about 
particular objects, properties, and relationships. We also want to handle 
more complex information, involving logical relationships and procedures. 
The representation for this knowledge must be useable by a problem- 
solving system. This could be done using a formal language such as the 
predicate calculus. Basic logical relations such as implies, or, and, there 
exists, etc. would be represented symbolically, and information would be 
translated into a “formula”. Thus if we wanted to represent the informa- 
tion “All humans are fallible,” or “A thesis is acceptable if either it is 
long or it contains a persuasive argument.” we might have the formulas 
in Fig. 38. 

Several notational conventions are used. First, we need variables so 
that we can say things about objects without naming particular ones. This 
is done with the quantifiers FORALL and EXISTS. Second, we need 
logical relations like AND, OR, NOT, and IMPLIES. For easier reading, 

(FORALL (x) (IMPLIES( #HUMAN x)( #FALLIBLE x))) 
(FORALL (X) (IMPLIES 

(AND ( #THESIS X) 
(OR (#LONG X) 

(EXISTS (Y) 
(AND ( #PERSUASIVE Y) 

(#ARGUMENT Y) 
(#CONTAINS X Y))))) 

( #ACCEPTABLE X ) ) ) 

Figure 38-Predicate Calculus Representation 
“All humans are fallible.” 
“All objects which are theses, and either are long or contain a persuasive argument 
are acceptable.” 
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indentation is used. Expressions beginning at the same point on the line 
are subparts of the same larger expression. 

Using this formalism, we can represent a question as a formula to be 
“proved”. To ask “Is Sam’s thesis acceptable?” we could give the formula 
(#ACCEPTABLE :SAM-THESIS) to a theorem prover to prove by 
manipulating the formulas and assertions in the data base according to the 
rules of logic. We would need some additional theorems which would 
allow the theorem prover to prove that a thesis is long, that an argument 
is acceptable, etc. 

In some theoretical sense, such predicate calculus formulas could 
express all of our knowledge, but in a practical sense there is something 
missing. A person would also have knowledge about how to go about 
doing the deduction. He would know that he should check the length 
of the thesis first, since he might be able to save himself the bother of 
reading it, and that he might even be able to avoid counting the pages 
if there is a table of contents. In addition to complex information about 
what must be deduced, he also knows a lot of hints and “heuristics” tell- 
ing how to do it better for the particular subject being discussed. 

Many “theorem-proving” systems (see Green, 1969) do not have any 
way to include this additional intelligence. Instead, they are limited to a 
kind of “working in the dark”. A uniform proof procedure gropes its way 
through the collection of theorems and assertions, according to some 
general procedure which does not depend on the subject matter. It tries 
to combine any facts which might be relevant, working from the bottom 
up. In our example given above, we might have a very complex theorem 
for deciding whether an argument is persuasive. A uniform proof 
procedure might spend a great deal of time checking the persuasiveness 
of every argument it knew about, since a clause of the form (#PER- 
SUASIVE X) might be relevant to the proof. What we would prefer is 
a way to guide the process of deduction in an intelligent way. Toward 
this end, Hewitt ( 1971) has developed a theorem proving language called 
PLANNER. In PLANNER, theorems are programs. They can control 
how to go about proving a goal, or how to deduce consequences from an 
assertion. 

In PLANNER, the rule for thesis evaluation could be represented as 
shown in Fig. 39. 

This is similar in structure to the predicate calculus representation 
given above, but there are important differences. The theorem is a 
program, in which each logical operator indicates steps to be carried out. 
THGOAL will try to find an assertion in the data base, or prove it using 
other theorems. THUSE gives advice on what other theorems to use, and 
in what order. THAND and THOR are equivalent to the logical AND 
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(DEFTHEOREM EVALUATE 
EVALUATE is the name we are giving to the theorem. 

(THCONSE( X Y) ( #ACCEPTABLE $?X) 
This indicates the type of theorem, names its variables, 
and states that we are trying to prove something acceptable. 

(THGOAL( #THESIS $?X) ) 
Show that X is a thesis. The “$?” indicates a variable. 

(THOR 
THOR is like “or”, trying things in the order given unti1 one works. 

(THGOAL( #LONG $?X) (THUSE CONTENTS-CHECK COUNTPAGES) ) 
THUSE says to try the theorem named CONTENTS-CHECK first, 
then if that doesn’t work, try the one named COUNTPAGES. 

(THAND 
THAND is like “and”. 

(THGOAL( #CONTAINS $?X $?Y) ) 
Find something Y which is contained in X. 

(THGOAL( #ARGUMENT $?Y) ) 
Show that it is an argument. 

(THGOAL( #PERSUASIVE $?Y) (THTBF THTRUE ) ) ) ) ) ) 
Prove that it is persuasive, using any theorems which are applicable. 

Figure 39-PLANNER Representation 

and OR except that they give a specific order in which things should be 
tried. (The initial “TIP in the names is to differentiate PLANNER 
functions from the standard LISP functions AND and OR. This same 
convention is used for all functions which have LISP analogs, since 
PLANNER’s backup system demands that the functions operate differ- 
ently internally.) 

The theorem EVALUATE says that to prove that a thesis is acceptable, 
we should first make sure it is a thesis (by looking in the data base, since 
there are no recommendations for theorems to be tried), Next, try to 
prove that it is long, first by using the theorem CONTENTS-CHECK 
(which would check the table of contents), and if that fails, by using a 
theorem named COUNTPAGES. If both fail, then look in the data base 
for something contained in the thesis, check that this something is an 
argument, and then try to prove that this argument is persuasive. The 
instruction (THTBF THTRUE) is PLANNER’s way of saying “try any- 
thing you know which can help prove it”. PLANNER then will search 
through all of its theorems on persuasiveness, just as any other theorem 
prover would. Note, however, that PLANNER never need look at 
persuasiveness at all if it can determine that the thesis is long. Second, it 
only looks at the persuasiveness of arguments that are a part of the 
thesis. We do not get sidetracked into looking at the persuasiveness 
theorems except for the cases we really want, 
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6.1.2 Questions, Statements, and Commands 

PLANNER is particularly convenient for a language understanding 
system, since it can express statements, commands, and questions directly. 
We have already shown how assertions can be stated in simple PLANNER 
format, Commands and questions are also easily expressed. Since a 
theorem is written in the form of a procedure, we can let steps of that 
procedure actually be actions to be taken by a robot. The command 
“Pick up the block and put it in the box.” could be expressed as a 
PLANNER program: 

( THAND ( THGOAL ( #PICKUP : BLOCK23) ) 
(THGOAL ( #PUTIN :BLOCK23 :BOX7) ) ) 

Remember that the preti “:” and the number indicate a specific object. 
The theorems for #PICKUP and #PUTIN would also be programs, 
describing the sequence of steps to be done. Since the robot is the only 
thing in its world which can pick things up, we have chosen to always 
represent actions like #PICKUP and #PUTIN without explicitly 
mentioning the subject. In a more complex model, they would be ex- 
pressed as two-place predicates. 

Earlier we asked about Sam’s thesis in predicate calculus. In PLAN- 
NER we can ask: 

(THGOAL (#ACCEPTABLE SAM-THESIS) 
( THUSE EVALUATE) ) 

Here we have specsed that the theorem EVALUATE is to be used. 
If we evaluated this PLANNER statement, the theorem would be called 
and executed as described above. PLANNER would return one of the 
values “T” or “NIL” depending on whether the statement is true or false. 

The function THFIND is used for many question-answering tasks. It 
finds all of the objects or assertions satisfying a given PLANNER con- 
dition. For example, if we want to find all of the red blocks, we can 
evaluate: 

(THFIND ALL $?X (X) 
(THGOAL( #BLOCK $?X) ) 
(THGOAL( #COLOR $?X RED) ) ) 

THFIND takes four pieces of information, First, there is a parameter, 
telling it how many objects to look for. When we use ALL, it looks for as 
many as it can find, and succeeds if it finds any. If we use an integer, it 
succeeds as soon as it finds that many, without looking for more. If we 
want to be more complex, we can tell it three things: (a) how many it 
needs to succeed; (b) how many it needs to quit looking, and (c) 
whether to succeed or fail if it reaches the upper limit set in b. 



112 TERRY WINOGRAD 

Thus if we want to find exactly three objects, we can use a parameter 
of (34 NIL), h h w ic means “Don’t succeed unless there are three, look for 
a fourth, but if you find it, fail”. 

The second bit of information tells it what we want in the list it returns. 
For our purposes, this will always be the variable name of the object we 
are interested in. The third item is a list of variables to be used in the 
process. This acts much like an existential quantifier in the predicate 
calculus notation. 

The fourth item is the body of the THFIND statement. It is this body 
that must be satisfied for each object found. It is identical to the body 
of a theorem, giving a sequence of expressions to be evaluated in order. 

For a question like “What nations have never fought a war?” 
we would ask: 

(THFIND ALL $?X (X Y) 
( THGOAL( #NATION $?X) ) 
(THNOT 

(THAND(THGOAL( #WAR $?Y)) 
( THGOAL ( #PARTICIPATED $?X $?Y) ) ) ) ) 

and PLANNER would return a list of all such countries. (The prefix 
characters $? indicate that X and Y are variables.) Using our conventions 
for giving names to relations and events, we could even ask: 

(THFIND ALL $?X (X Y Z EVENT) 
( THGOAL ( #CHICKEN $?Y) ) 
(THGOAL( #ROAD $?Z) ) 
(THGOAL( #CROSS $?Y $?Z $?EVENT) ) 
( THGOAL ( #CAUSE $?X $?EVENT) ) ) 

6.2 Operation of the Deductive System 

6.2.1 Basic Operation of PLANNER 

The easiest way to understand PLANNER is to watch how it works, 
so in this section we will present a few simple examples and explain the 
use of some of its features. 

First we will take the traditional deduction: 
Turing is a human. 
All humans are fallible. 

so 
Turing is fallible. 
It is easy enough to see how this could be expressed in the usual logical 

notation and handled by a uniform proof procedure. Instead, let us express 
it in one possible way to PLANNER by saying: 

(THASSERT ( #HUMAN :TURING) ) 
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This asserts that Turing is human. 
(DEFTHEOREM THEOREM1 

(THCONSE (X) ( #FALLIBLE $?X) 
(THGOAL ( $-HUMAN $?X) ) ) ) 

This is one way of saying that all humans 
are fallible. 

The proof would be generated by asking PLANNER to evaluate the 
expression: 

(THGOAL ( #FALLIBLE :TURING) ( THTBF THTRUE) ) 
Remember that PLANNER is an evaluator which accepts input in the 

form of expressions written in the PLANNER language, and evaluates 
them, producing a value and side effects. THASSERT is a function which, 
when evaluated, stores its argument in the data base of assertions or the 
data base of theorems (which are cross-referenced to gi.ve the system 
efficient look-up capabilities). A theorem is defined using the function 
DEFTHEOREM. 

In this example we have defined a theorem of the THCONSE type 
(THCONSE means consequent; we will see other types later). This states 
that if we ever want to establish a goal of the form (,#FALLIBLE $?X), 
we can do this by accomplishing the goal (#HUMAN $?X), where, as 
before, the prefix characters $? indicate that X is a variable. 

The third statement illustrates the function THGOAL, which calls the 
PLANNER interpreter to try to prove an assertion. This can function 
in several ways. If we had asked PLANNER to evaluate (THGOAL 
(#HUMAN :TURING) ) t i would have found the requested assertion 
immediately in the data base and succeeded (returning as its value some 
indicator that it had succeeded). However, (#FALLIBLE :TURING) 
has not been asserted, so we must resort to theorems to prove it. 

Later we will see that a THGOAL statement can give PLANNER 
various kinds of advice on which theorems are applicable to the goal and 
should be tried. For the moment, (THTBF THTRUE) is advice that 
causes the evaluator to try all theorems whose consequent is of a form 
which matches the goal (i.e., a theorem with a consequent ($?Z 
:TURING) would be tried, but one of the form (#HAPPY $?Z) or 
(#FALLIBLE $?Y $?Z) would not). Assertions can have an arbitrary 
list structure for their format-they are not limited to two-member lists 
or three-member lists as in these examples. 

In the present case, the theorem we have just defined would be found, 
and in trying it, the match of the consequent to the goal would cause 
the variable $?X to be assigned to the constant :TURING. Therefore, the 
theorem sets up a new goal (#HUMAN :TURING) and this succeeds 
immediately since it is in the data base. In general, the success of a 
theorem will depend on evaluating a PLANNER program of arbitrary 
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complexity. In this case it contains only a single THGOAL statement, so 
its success causes the entire theorem to succeed, and the goal (#FAL- 
LIBLE :TURING) is proved. 

Consider the question “Is anything fallible?“, or in predicate calculus, 
(EXISTS (Y) ( #FALLIBLE Y) ). Th is requires a variable and it could 
be expressed in PLANNER as: 

(THPROG (Y) (THGOAL (#FALLIBLE $?Y) 
( THTBF THTRUE ) ) ) 

Notice that THPROG (PLANNER’s equivalent of a LISP PROG, 
complete with GO statements, tags, RETURN, etc.) acts as an existential 
quantifier. It provides a binding-place for the variable Y, but does not 
initialize it-it leaves it in a state particularly marked as unassigned. To 
answer the question, we ask PLANNER to evaluate the entire THPROG 
expression above. To do this it starts by evamating the THGOAL ex- 
pression. This searches the data base for an assertion of the form 
( #FALLIBLE $?Y) and fails. It then looks for a theorem with a con- 
sequent of that form, since the recommendation (THTBF THTRUE) 
says to look at all possible theorems which might be applicable. When the 
theorem defined above is called, the variable X in the theorem is identified 
with the variable Y in the goal, but since Y has no value yet, X does not 
receive a value. The theorem then sets up the goal (#HUMAN $?X) 
with X as a variable. The data-base searching mechanism takes this as a 
command to look for any assertion which matches that pattern (i.e., an 
instantiation), and finds the assertion (#HUMAN :TURING). This 
causes X (and therefore Y) to be assigned to the constant :TURING, 
and the theorem succeeds, completing the proof and returning the value 
( #FALLIBLE :TURING) . 

6.2.2 Backup 

So far, the data base has contained only the relevant objects, and there- 
fore PLANNER has found the right assertions immediately. Consider the 
problem we would get if we added new information by evaluating the 
statements : 

(THASSERT ( #HUMAN :SOCRATES) ) 
(THASSERT ( #GREEK : SOCRATES) ) 

Our data base now contains the assertions: 
( #HUMAN :TURING) 
(#HUMAN :SOCRATES) 
(#GREEK :SOCRATES) 
and the theorem: 
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(THCONSE (X) ( #FALLIBLE $?X) 
(THGOAL ( #HUMAN $?X) ) ) 

What if we now ask, “Is there a fallible Greek?” In PLANNER we 
would do this by evaluating the expression: 

(THPROG (X) (THGOAL (#FALLIBLE $?X) 
( THTBF THTRUE) ) 

(THGOAL ( #GREEK $?X) ) ) 
THPROG acts like an AND, succeeding only if all of its terms are 

satisfied, Notice that the first THGOAL may be satisfied by the exact same 
deduction as before, since we have not removed information. If the data- 
base searcher happens to run into :TURING before it finds :SOCRATES, 
the goal (#HUMAN $?X) will succeed, assigning $?X to :TURING. 
After ( #FALLIBLE $?X) succeeds, the THPROG will then establish 
the new goal ( #GREEK :TURING), which fails since it has not been 
asserted and there are no applicable theorems. If we think in LISP terms, 
this is a serious problem, since the evaluation of the first THGOAL has 
been completed before the second one is called, and the “push-down 
list” now contains only the THPROG. If we try to go back to the begin- 
ning and start over, it will again find :TURING and so on, ad infinitum. 

PLANNER has a “backup” control structure which remembers what 
the program has done, so that in case of failure, it can always back up 
to the last decision made. In this instance, the last decision was the 
selection of a particular assertion from the data base to match a goal. In 
other instances the decision might be the choice of a theorem to achieve 
a goal, or an explicit choice put into the program using the function 
THOR. 

In our example the decision was made inside the theorem for .#FAL- 
LIBLE, when the goal ( #HUMAN $?X) was matched to the assertion 
(#HUMAN :TURING). PLANNER will retrace its steps, try to find a 
different assertion which matches the goal, find (#HUMAN 
:SOCRATES), and continue with the proof, The theorem will succeed 
with the value ( #FALLIBLE :SOCRATES), and the THPROG will 
proceed to the next expression, (THGOAL ( #GREEK $?X) ). Since X 
has been assigned to :SOCRATES, this will set up the goal ( #GREEK 
:SOCRATES) which will succeed immediately by finding the correspond- 
ing assertion in the data base. Since there are no more expressions in the 
THPROG, it will succeed, returning as its value the value of the last 
expression, ( #GREEK : SOCRATES). The whole course of the deduction 
process depends on this mechanism for backing up in case of failure and 
trying different branches in the subgoal tree. The PLANNER interpreter 
keeps track of all the bookkeeping needed for this backup, and gives the 
user facilities to control when and how it will happen. 
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6.2.3 Controlling the Data Base 

The statement that all humans are fallible, though unambiguous in a 
declarative sense actually is ambiguous in its imperative sense (i.e., the 
way it is to be used by the theorem prover). We can use it whenever we 
are faced with the need to prove ( #FALLIBLE $?X), or we can watch 
for assertions of the form ( #HUMAN $?X) and then immediately assert 
( #FALLIBLE $?X) as well. There is no abstract logical difference, but 
the difference in impact on the size and utility of the data base is 
tremendous. The more conclusions we draw right at the time information 
is asserted, the easier proofs will be, since they will not have to deduce 
these consequences over and over again. Not having infinite speed and 
size, however, we cannot deduce and then assert everything possible 
(or even everything interesting) about data as it is entered. When we 
assert ( #LIKES $?X #POETRY), we may want to deduce and assert 
(#HUMAN $?X), I n d d e ucing things about an object, it will often be 
relevant whether that object is human, and we shouldn’t need to deduce 
it each time. On the other hand, it would be silly to deduce and assert 
( #HAS-AS-PART $?X #SPLEEN). PLANNER must know which facts 
about a subject are important, and when to draw consequences from an 
assertion. This is done by having theorems of an antecedent type: 

(DEFTHEOREM THEOREM2 
(THANTE (X Y) ( #LIKES $?X $?Y) 

(THASSERT (,#HUMAN $?X) ) ) ) 
This says that when we assert that X likes something, we should also assert 
(.#HUMAN $?X). Such theorems need not be so simple. A THANTE 
theorem may activate an entire PLANNER program. In addition, when- 
ever anything is asserted, it is possible to evaluate the current situation 
and decide which if any antecedent theorems to call. 

6.2.4 Events and States 

Another advantage in representing knowledge in an imperative form 
is in dealing with a sequence of events. Notice that a declarative theorem 
prover cannot accept a statement like (.#ON :Bl :B2) at face value. It 
is not an axiom, since its validity will change as the process goes on. To 
become an axiom, it must be put in a form (#ON :Bl :B2 SO) where 
SO is a symbol for an initial state of the world. (See Green (1969) for a 
discussion of such “state” problems.) In a declarative theorem prover 
we need to create a function whose value is the state which results from 
putting X on Y. We run into a problem when we try to ask whether block 
Z is on block W after we put X on Y. It may take a complex deduction 
to decide whether we have moved Z and W, and even if we haven’t, it 
will take a whole chain of deductions (tracing back through the time 
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sequence) to prove they haven’t been moved. In PLANNER, this 
problem can be handled in an intuitively more satisfactory way by using 
the primitive function THERASE. 

Evaluating (THERASE ( #ON $?X $?Y) ) removes the assertion 
( #ON $?X $?Y) from the data base. If we think of theorem provers as 
working with a set of axioms, it seems strange to have a function whose 
purpose is to erase axioms. But, instead we think of the data base as the 
“state of the world” and the operation of the prover as manipulating that 
state. Now we can simply assert (#ON :Bl :B2) without any explicit 
mention of states. We can express the necessary theorem as: 

(DEFTHEOREM THEOREM3 
(THCONSE (X Y Z) (#PUT $?X $?Y) 

(THGOAL ( #ON $?X $?Z) ) 
(THERASE (#ON $?X $?Z) ) 
(THASSERT ( #ON $?X $?Y) ) ) ) 

This says that whenever we want to satisfy a goal of the form (PUT 
$?X $?Y), we should first find out what thing Z the thing X is sitting on, 
erase the fact that it is sitting on Z, and assert that it is sitting on Y. In a 
more complex case, for example, we might have thought it worthwhile 
to keep assertions of the form (#ABOVE $?X $?Y). We would need 
to delete those assertions which became false when we erased (#ON $?X 
$?Z) and add those which became true when we added (#ON $?X 
$?Y). ANTECEDENT theorems would be called by the assertion (#ON 
$?X $?Y) to take care of that part, and ERASING theorems can be called 
in an exactly analogous way when an assertion is erased, to derive 
consequences of the erasure. 

7. THE BLOCKS WORLD 

We need a subject to discuss with our language-understanding 
program-something about which we can carry on a discourse, with 
statements, questions, and commands. We have chosen to pretend we 
are talking to a simple robot (like the ones being developed in AI projects 
at Stanford and MIT) with only one arm and an eye. It can look at a 
scene containing toy objects like blocks and balls, and can manipulate 
them with its hand (see section 1.3). Since we are interested primarily 
in complex language activity, we have adopted a very simplified model 
of the world, and the “‘robot” exists only as a display on the CRT scope 
attached to the computer. 

7.1 Objects 

First we must decide what objects we will have in the world, The model 
begins with the two participants in the dialog of section 1.3, the robot 
(named :SHRDLU), and the person (called :FRIEND). The robot has 
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a hand (:HAND), and manipulates objects on a table ( :TABLE), which 
has on it a box ( :BOX). The rest of the physical objects are toys-blocks, 
pyramids, and balls. We give them the names :Bl, :B2, :B3, . . . 

Next we must decide on the set of concepts we will use to describe 
these objects and their properties. We can represent these in the form of 
a tree as shown in Fig. 40. The symbol #PHYSOB stands for “physical 
object,” and #MANIP for “manipulable object” (i.e., something the robot 
can pick up ) . 

We could use these as simple predicates just like ( #BLUE :B5), and 
have assertions like (#ROBOT SHRDLU), (#HAND :HAND), and 
( #PYRAMID :B5) to say that Shrdlu is a robot, the hand is a hand, and 
:B5 is a pyramid. Instead, for reasons involving the generation of English 
responses, as described in Section 8.3, we set these apart from other 
predicates. We use the concept #IS to mean “has as its basic description”, 
and write (#IS :SHRDLU #ROBOT), (#IS :HAND #HAND), and 
( #IS :B5 #PYRAMID). Looking at the tree, we see that the properties 
#PHYSOB and #MANIP cannot be represented in this fashion, since 
any object having them also has a basic description. We therefore write 
(#MANIP :B5) and (#PHYSOB :TABLE). 

Next, we assign physica properties to these objects, such as size, shape, 
color, and location. Shape and color are handled with simple assertions 
like (#COLOR :BOX #WHITE) and (#SHAPE :B5 #POINTED). 
The possible shapes are ,#ROUND, #POINTED, and ,#RECTAN- 
GULAR, and the colors are #BLACK, #RED, .#WHITE, #GREEN, 
and #BLUE. To introduce any other shape or color name we need only 
use it in an assertion, like (#COLOR :Bll ##MAUVE), and add an 
assertion telling what type of thing it is. The property names themselves 
can be seen as objects, and we have the concepts #COLOR and 
#SHAPE, to make assertions like (,#IS ,#BLUE #COLOR), and 
( #IS ,#RECTANGULAR #SHAPE). 

For size and location we use a three-dimensional coordinate system, 
with coordinates ranging from 0 to 1200 in all three directions. (The 

#TABLE 

# BOX #BLOCK 

#PHYSOEl # MANIP #BALL 

#ROBOT ’ #HAND -I #PYRAMID 

#PERSON # STACK 

#PROPERTY 
-I 

# COLOR 

# SHAPE 

FIG. 40. Classification of Objects and Properties. 
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number 1200 was chosen for convenience in programming the display.) 
The coordinate point (0 0 0) is in the front lower left-hand corner of the 
scene. We assume that objects are not allowed to rotate, and therefore 
always kept their orientation aligned with the coordinate axes. We can 
represent the position of an object by the coordinates of its front lower 
left-hand corner, and its size by the three dimensions. We use the symbols 
#SIZE and #AT, and put the coordinate triples as a single element in the 
assertions. For example, we might have ( #AT : B5 ( 400 600 200) ), and 
( #SIZE :B5 ( 100 100 300) ). 

Since we assume that the robot has an eye, the system begins the dialog 
with complete information about the objects in the scene, their shapes, 
sizes, colors, and locations. 

7.2 Relations 

The basic relations we need are the spatial relations between objects, 
and, since we are interested in moving objects around, the #SUPPORT 
relation. The initial data base contains all of the applicable support 
relations for the initial scene, and every time an object is moved, an 
antecedent theorem removes the old assertion about what was support- 
ing it, and puts in the correct new one. We have adopted a very simplified 
notion of support, in which an object is supported by whatever is directly 
below its center of gravity, at the level of its bottom face. Therefore, an 
object can support several others, but there is only one thing supporting 
it. Along with the #SUPPORT relations, we keep track of the property 
#CLEARTOP. The assertion (#CLEARTOP X) will be in the data 
base if and only if there is no assertion (#SUPPORT X Y) for any 
object Y. It is also kept current by antecedent theorems called whenever 
an object is moved. This happens automatically whenever an assertion 
of the form (#AT OBJ (X Y Z) ) is made. The theorems check to see 
whether the #CLEARTOP status of any object has changed, and if so 
the necessary erasures and assertions are made. 

Another relation kept in the data base is #CONTAIN. Information 
about what is contained in the box is kept current by an antecedent 
theorem. The relation #GRASPING is used to indicate what object (if 
any) the robot’s hand is grasping. It is theoretically a two-place predicate, 
relating a grasper and a graspee, as in ( #GRASPING :SHRDLU :B2). 
Since there is only one hand in our scene, it is clear who must be doing 
the grasping, so the assertion is reduced to (#GRASPING :B2). The 
same convention is followed for other relations involving :SHRDLU as 
a participant. 

The #PART relation between an object and a stack is also stored in 
the data base. We can give a name to a stack, such as :Sl, and assert 
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( #PART :B2 :Sl ) . As objects are moved, the changes to the data base 
are again made by antecedent theorems which notice changes of location, 

As explained in Section 6.23, we must decide what relations are useful 
enough to occupy space in our data base, and which should be re- 
computed from simpler information each time we need them. #SUP- 
PORT and #CONTAIN are often referenced in deciding how to move 
objects. Other relations, such as the relative position of two objects, are 
computed from their locations when needed. We represent these relations 
using the symbols #RIGHT, #BEHIND, and #ABOVE. (These 
represent the direction of the positive coordinate axes for X, Y, and Z, 
respectively). We do not need the converse relations, since we can 
represent a fact like “: Bl is below :B2” by (#ABOVE :B2 :Bl), and 
our semantic system can convert what is said to this standard format. 
The symbol #ON is used to represent the transitive closure of #SUP- 
PORT. That is, Z is .#ON A if A supports B, B supports C . , . supports Z. 

The three spatial relations use a common consequent theorem called 
TC-LOC which decides if they are true by Iooking at the coordinates and 
sizes of the objects. The #ON relation has a consequent theorem TC-ON 
which looks for chains of support. (Notice that the prefix TC- stands for 
Theorem Consequent, and is attached to all of our consequent theorems. 
Similarly, TA- and TE- are used for antecedent and erasing theorems.) 

#HEIGHT, #WIDTH, and #LENGTH are computed when needed 
from the #SIZE assertion, and can be accessed by using the theorem 
TC-MEASURE, or by using the name of the measure as a LISP function. 
The expression (#HEIGHT $?X) evaluates to the height of whatever 
object the variable X is bound to. If #SIZE is used in this way, it returns 
a measure of “overall size” to be used for comparisons like “bigger”. Cur- 
rently it returns the sum of the X, Y, and Z coordinates, but it could be 
changed to a heuristic program more in accord with human judgments of 
size. 

To compare measurements, we have the relation #MORE. The 
sentence “. .Bl is shorter than :B2” is equivalent to the assertion ( #MORE 
#HEIGHT :B2 :Bl). Again, we do not need the relation “less” since we 
can simply reverse the order of the objects. #MORE, and the relation 
#ASMUCH, which expresses “greater than or equal”, are computed as 
needed. 

One final relationship is #OWN, which relates a person to any object. 
Knowledge about what the human user owns is gathered from his state- 
ments. The semantic programs can use statements about owning to 
generate further PLANNER theorems which are used to answer questions 
about what :FRIEND owns and make deductions needed to carry out 
commands. 
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7.3 Actions 

Events in our world are actions taken by the robot. At the most basic 
level, there are only three actions which can occur: MOVETO, GRASP, 
and UNGRASP. These are the commands sent to the display routines, and 
could theoretically be sent directly to a physical robot system. MOVETO 
moves the hand and whatever it is currently grasping to a set of specified 
coordinates. GRASP sets an indicator that the grasped object is to be 
moved along with the hand, and UNGRASP unsets it. The robot grasps 
by moving its hand directly over the center of the object on its top sur- 
face, and turning on a “magnet”. It can do this to any manipulable object, 
but can only grasp one thing at a time. Using these elementary actions, 
we can build a hierarchy of actions, including goals which may involve 
a whole sequence of actions. The result of calling a consequent theorem 
to achieve a goal requiring motion, like ( #PUTON :B3 :B4), is not an 
action, but a plan-a list of instructions using the three elementary func- 
tions. For example, when PLANNER evaluates a statement like: 

(THGOAL ( #MOVEHAND (600 200 300) ) 
(THUSE TC-MOVEHAND) ) 

nothing is actually moved. The theorem TC-MOVEHAND creates a 
plan to do the motion, but if necessary, the PLANNER backup mecha- 
nism can erase part or all of the plan. 

The theorems also check to see if we are trying to do something physi- 
cally impossible. For example, TC-MOVEHEAD makes sure the action 
would not involve placing a block where there is already an object, and 
TC-UNGRASP fails unless there is something supporting the object it 
wants to let go of. Conceptual impossibilities (like “Move an idea.“) are 
handled by the semantic programs as explained in Section 8. 

7.4 Currying Out Commands 

Some theorems, like TC-GRASP, are complex, as they can cause a 
series of actions. Figure 41 gives simplified definitions of various PLAN- 
NER theorems. Using these definitions, let us now follow PLANNER 
through a complex action in detail. If PLANNER tries the goal: 

(THGOAL (##GRASP :Bl) (THUSE TC-GRASP) ) 
the theorem TC-GRASP can do a number of things. It checks to make 
sure :Bl is a graspable object by looking in the data base for (#MANIP 
:Bl). If the hand is already grasping the object, it has nothing more to 
do. If not, it must first get the hand to the object. This may involve 
complications-the hand may already be holding something, or there may 
be objects sitting on top of the one it wants to grasp. In the first case, it 
must get rid of whatever is in the hand, using the command #GET- 
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(DEFTHEOREM TC-CLEARTOP 
(THCONSE (X Y) ( #CLEARTOP $?X) 

GO (THCOND ( (THGOAL ( #SUPPORT $?X $-Y) ) 
(THGOAL ( #GET-RID-OF $?Y ) 

(THUSE TC-GET-RID-OF) ) 
(THGO GO)) 

( (THASSERT ( #CLEARToP $?X) ) ) ) ) ) 

(DEFTHEOREM TC-GET-RID-OF 
(THCONSE (X Y) (#GET-RID-OF $?X) 

(THOR 
(THGOAL ( #PUTON $?X :TABLE ) (THUSE 

TC-PUTON ) ) 
( THGOAL ( #PUTON $?X $?Y) (THUSE TC- 

KJ’JXM) 1) ) 1 

( DEFTHEOREM TC-GRASP 
(THCONSE (X Y) (#GRASP $?X) 

(THGOAL( #MANIP $?X) ) 
(THCOND ( (THGOAL ( #GRASPING $?X) ) ) 

( ( THGOAL ( #GRASPING $-Y ) ) 
(THGOAL ( #GET-RID-OF $?Y) 

(THUSE TC-GET-RID- 
OF)))) 

(T)) 
(THGOAL ( #CLEARTOP $?X) (THUSE TC- 

CLEARTOP) ) 
(THSETQ $-Y (TOPCENTER $?X) ) 
( THGOAL ( # MOVEHAND $?Y) 

( THUSE TC-MOVEHAND) ) 
( THASSERT ( #GRASPING $?X) ) ) ) 

(DEFTHEOREM TC-PUT 
(THCONSE (X Y Z) ( #PUT $?X $?Y) 

(CLEAR $?Y (SIZE $?X) $?X) 
(SUPPORT $?Y (SIZE $?X) $?X) 
(THGOAL ( #GRASP $?X) (THUSE TC-GRASP) ) 
(THSETQ $Z (TCENT $?Y (SIZE $?X))) 
(THGOAL ( #MOVEHAND $?Z) (THUSE 

TC-MOVEHAND ) ) 
(THGOAL ( #UNGRASP) (THUSE TC- 

UNGRASP) ) ) ) 

( DEFTHEOREM TC-PUTON 
(THCONSE (X Y Z) (#PUTON $?X $?Y) 

(NOT (EQ $?X $?Y)) 
(THGOAL ( #FINDSPACE $?Y $E ( SIZE $?X ) 

$?X $-2) 
(THUSE TC-FINDSPACE TC- 

MAKESPACE) ) 
(THGOAL ( #PUT $?X $?Z) (THUSE TC-PUT) ) ) ) 

Figure M-Simplified PLANNER Theorems 



UNDERSTANDING NATURAL LANGUAGE 123 

RID-OF. The easiest way to get rid of something is to set it on the table, 
so TC-GET-RID-OF creates the goal ( #PUTON $?X :TABLE), where 
the variable $?X is bound to the object the hand is holding. TC-PUTON 
after checking to see that it is not trying to put some object onto itself, 
must in turn find a big enough empty place to set down its burden. It uses 
the command #FINDSPACE, which performs the necessary calculations, 
using information about the sizes and locations of all the objects. TC- 
PUTON then creates a goal using #PUT, which calculates where the 
hand must be moved to get the object into the desired place, then calls 
#MOVEHAND to actually plan the move. If we look at the logical 
structure of our active goals at this point, assuming that we want to 
grasp :Bl, but are presently grasping :B2, we see: 

( #GRASP :Bl) 
( #GET-RID-OF : B2) 

(#PUTON :B2 :TABLE) 
( #PUT :B2 (453 201 0) ) 

( #MOVEHAND (553 301 100) ) 
After moving, TC-PUTON calls #UNGRASP, and we have achieved 

the first part of our original goal-emptying the hand. Now we must 
clear off the block we want to grasp. TC-GRASP sets up the goal: 

(THGOAL( #CLEARTOP :B2) (THUSE TC-CLEARTOP) ) 
This is a good example of the double use of PLANNER goals to both 
search the data base and carry out actions. If the assertion ( #CLEAR- 
TOP :Bl) is present, it satisfies this goal immediately without calling the 
theorem. However if :Bl is not already clear, this THGOAL statement 
calls TC-CLEARTOP which takes the necessary actions. 

TC-CLEARTOP will try to #GET-RID-OF the objects on top of :Bl. 
This will in turn use #PUTON, which uses #PUT. But TC-PUT may 
have more to do this time, since the hand is not already grasping the 
object it has to move. It therefore sets up a goal to #GRASP the object, 
recursively calling TC-GRASP again. Figure 42 lists the different action 
concepts more systematically, showing the form of the goal statements, 
and the actions taken by the theorems corresponding to them. 

7.5 Memory 

To answer questions about past events, the BLOCKS programs re- 
member selected parts of their subgoal tree. They do this by creating 
objects called events, and putting them on an EVENTLIST. The system 
does not remember the detailed series of specific steps like ,#MOVE- 
HAND, but keeps track of the larger goals like ,#PUTON and 
#STACKUP. The time of events is measured by a clock which starts at 
0 and is incremented by 1 every time any motion occurs. The theorems 
call the function MEMORY when the theorem is entered and MEMO- 
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Command 

(#MOVEHAND (X Y Z)) 

( # UNGRASP) 

(#GRASP X) 

(#PUT W (X Y Z)) 

( #RAISEHAND) 

(#PICKUP X) 
(#PUTON X Y) 

#PUTIN X Y) 

#GET-RID-OF X) 

#CLEARTOP X) 
#STACKUP (X Y.. .)) 

TERRY WINOGRAD 

Effect 

Move the center of the hand to location 
(X Y Z). Anything being grasped goes 
along automatically. 

Let go of whatever the hand is holding. 
Fails if the object is not supported. 

Grasp object X, doing any manipulations 
necessary to get to it. 

Put W at location (X Y Z). Fails unless 
the space is empty. 

Raise the hand and whatever it holds as 
high as it will go. 

Grasp X and raise the hand. 
Put object X on object Y. If there is 

not enough free space on Y, move 
objects to make it. 

The same as #PUTON, except that Y must be 
a box, and different methods are used 
to find space. 

Try to put X on the table, and if that 
fails put it on anything else. 

Get rid of everything which is on X. 
Stack X, Y, . . . on top of each other, 

in order of size. 

(#FINDSPACE A (X Y Z) B $-C) 
This goal can be achieved by two different 

theorems. TC-FINDSPACE tries to find a 
space of size (X Y Z) on top of object 
A, counting any space occupied by B as 
empty. $ C is a variable binding used 
to return the answer. If this fails, 
TC-MAKESPACE can create the space by 
moving objects. 

Figure 42-BLOCKS Commands. 

REND when it exists. MEMOREND causes an event to be created, 
combining the original goal statement with an arbitrary name (chosen 
from El, E2, . . .). 

In addition to putting an assertion representing the event into the 
data base, MEMOREND puts information on the property list of the 
event name-the starting time, ending time, and reason for each event. 
The reason is the name of the event nearest up in the subgoal tree which 
is being remembered. The reason for goals called by the linguistic part 
of the system is a special symbol meaning “because you asked me to.” 
MEMORY is called at the beginning of a theorem to establish the start 
time and declare that theorem as the “reason” for the subgoals it calls. 
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A second kind of memory keeps track of the actual physical motions 
of objects, noting each time one is moved, and recording its name and 
the location it went to. This list can be used to establish where any object 
was at any past time. 

When we want to pick up block :Bl, we can say: (THGOAL 
(#PICKUP :Bl) ), and it is interpreted as a command. We can also ask 
“Did you pick up :Bl?“, since when the robot picked it up, an assertion 
like (#PICKUP E2 :Bl) was stored in the data base. If PLANNER 
evaluates : 

(THPROG(X) 
( THGOAL ( #PICKUP $?X :Bl) ) ) 

it will find the assertion, binding the variable X to the event name E2. 
Since the property list of E2 gives its starting and ending times, and its 
reason, this is sufficient information to answer most questions. 

If we want to ask something like “Did you pick up :Bl before you built 
the stack?” we need some way to look for particular time intervals. This 
is done by using a modified version of the event description, including 
a time indicator. The exact form of the time indicator is described in 
Section 8.1.8, but the way it is used to establish a goal is: 

(THGOAL( #PICKUP $?X :Bl $?TIME) 
(THUSE TCTE-PICKUP) ) 

The prefix TCTE- on the name of a theorem means that it includes 
a time and an event name. Ordinarily when such a theorem is entered, 
the variable TIME would have a value, while the variable X would not. 
The theorem looks through the data base for stored events of the form 
( #PICKUP $?X :Bl) and checks them to see if they agree with the time 
TIME. 

For some events, like #PUTON, this is sufficient since the system 
remembers every #PUTON it does. For others, like #PICKUP, less 
information is kept. When #PICKUP is called as a goal at the top level, 
it is remembered. But the system does not remember each time something 
was picked up in the course of moving the toys around. The fact that 
a block was picked up can be deduced from the fact that it was put 
somewhere, and the theorem TCTE-PICKUP actually looks at a number 
of different types of events (like #PUTON and #PUTIN) to find all 
the occasions on which an object was really picked up. 

For spatial relations, we also need to be able to include time, for 
questions like, “Was the block behind the pyramid before . . .?” In this 
C’lSC’ ‘L > no assertions are stored, since the memory of motion events is 
sufficient to reconstruct the scene. There are special theorems with the 
prefix TCT- which try to verify a relation with a time condition. For 
example, we can ask “Is :Bl on :B2?” with the goal 
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(THGOAL( #ON :Bl :B2) (THUSE TC-ON) ) 
To ask “Was :Bl on :B2 before . . .?” we bind the variable TIME to the 
representation of the time we are interested in, and ask 

(THGOAL( #ON :Bl :B2 $?TIME) (THUSE TCT-ON) ) 
The theorem TCT-ON is the same as TC-ON except that it deals with 
the specified time instead of the present. Similar TCT-theorems exist for 
all of the spatia1 relations, and for properties which change in time, such 
as #CLEARTOP and #AT. 

Appendix C is a listing of parts of the BLOCKS program as it was used 
in generating the sample dialog. 

8. SEMANTICS 

8.1 Semantic Structuws 

Section 1.6 outlined the structure of a semantic interpreter, and de- 
scribed the use of semantic “specialists,” procedures for analyzing different 
aspects of linguistic structure. These create parts of a complete description 
of the meaning of the sentence by building complex list structures, which 
we will call “semantic structures,” to describe objects and relationships. 
Events are a type of relationship involving time, and the class of “object” 
includes anything which could be treated as an object in English gram- 
mar, even if it is as abstract as “truth”. There are two basic types of 
structures : an Object Semantic Structure, or OSS, and a Relation 
Semantic Structure (RSS) . In general, noun groups yield object structures, 
and other groups and clauses form relationship structures. Words already 
have semantic structures (their definition), which are used in building 
up the structures for the larger units. 

8.1.1 Object Semantic Structures 

Let us first look at the semantic structures used to describe objects. 
First, we need the actual PLANNER statements which will be used in 
deducing things about the objects, An NG like “a red cube” can be de- 
scribed using the formalism of Sections 6 and 7 as in Fig. 43. 

The variable “Xl” represents the object, and this description says that 
it should be a block, it should have equal dimensions, and it should be 
red. (See Section 7 for the details of representation). A phrase such as 
“a red cube which supports three pyramids but is not contained in a box” 

( THPROG (Xl ) 
(THGOAL( #IS $?Xl #BLOCK) ) 
(#EQDIM $?Xl) 
(THCOAL( #COLOR $?Xl #RED))) 

Figure 43-Simpb PLANNER Description 
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( THPROG ( Xl ) 
( THGOAL( #IS $?Xl #BLOCK) ) 
( #EQDIM $?Xl) 
(THGOAL( #COLOR $?Xl #RED) ) 
(THFIND 3 $?X2 (X2) (THGOAL( #IS $?X2 #PYRAMID)) 

(THGOAL( #SUPPORT $?Xl $?X2) ) ) 
(THNOT( THPROG( X3) 

(THGOAL( #IS $?X3 #BOX) ) 
( THGOAL( #CONTAIN $?X3 $?Xl ) ) ) ) ) 

Figure 44-PLANNER Description 

has a more complex description, This would be built up from the de- 
scriptions for the various objects, and would end up as in Fig. 44. 

We can learn how the semantic specialists work by watching them 
build the pieces of this structure. First take the simpler NG, “a red cube”. 
The first NG specialist doesn’t start work until after the noun has been 
parsed. The PLANNER description is then built backwards, starting with 
the noun, and continuing in right-to-left order through the classifiers and 
adjectives. Tbe beginning of the NG, with the determiner, number, and 
ordinal is handled by a part of the NG specialist described later. The 
first NG specialist is named SMNGl-all of the names begin with SM 
(for “semantic”), followed by the name of the unit they work with, fol- 
lowed by a number indicating the order in which they are called. SMNGl 
sets up an environment (we will describe various parts of it as we go), 
then calls the definition of the noun. (Remember that definitions are in 
the form of programs). For simple nouns there is a standard function to 
define them easily. This includes, first, a way to indicate the PLANNER 
statements which are the heart of its meaning. The symbol “***” is used 
to represent the object, so our definition of “cube” contains the expression: 

((#IS *** ,#BLOCK) ( #EQDIM ***) ) 
The syntax of PLANNER functions such as THPROG and THGOAL will 
be added by the specialists, since we want to keep the definition as simple 
as possible. 

There is one other part of the definition for a noun-the semantic 
markers, used to filter out meaningless interpretations of a phrase. The 
definition needs to attach these semantic markers to each OSS. The 
BLOCKS world uses the tree of semantic markers in Fig. 45. 

As before, vertical bars represent choices of mutually exclusive markers, 
while horizontal lines represent logical dependency. The word “cube” 
refers to an object with the markers (#THING #PHYSOB #MANIP 
#BLOCK). We shouldn’t need to mention all of these in the definition, 
since the presence of #BLOCK implies the others through the logical 
structure of the marker tree. 
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#NAME 

#PLACE 

! 

#SHAPE 

#PROPERTY 
#SIZE 

*LOCATION 

#COLOR 

THING # 

#CONSTRUCT 

FIG. 45. Semantic Markers for the BLOCKS Vocabulary. 

The definition of the noun “cube” is then: 
(NMEANS( (#BLOCK) ( (#IS *** #BLOCK) (#EQDIM ***) ) )) 

NMEANS is the name of the function for dealing with nouns, and 
it accepts a list of different meanings for a word. In this case, there is 
only one meaning. The first part of the definition is the marker list, fol- 
lowed by the reduced PLANNER definition. When NMEANS is executed, 
it puts this information onto the semantic structure which is being built 
for the object. It takes care of finding out what markers are implied by the 
tree, and deciding which predicates need to be in a THGOAL statement 
(like #IS), and which are LISP predicates (like ,#EQDIM). We will 
see later how it also can decide what recommendation lists to put onto 
the PLANNER goals, to guide the deduction. 

SMNGl then calls the definition for the adjective “red”. We would like 
this definition to include the PLANNER assertion (#COLOR *** 
#RED), and indicate that it applies only to physical objects. We can use 
the same format used for nouns, defining “red” as: 

(NMEANS((,#PHYSOB)((#COLOR *** <#RED)))) 
Notice that the same format is used to specify that ,#PHYSOB “applies 

only to physical objects” and that #BLOCK is part of the definition of 
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“cube.” This is because the marker list in a definition is interpreted to 
mean “this definition applies only if none of the markers here are in 
conflict with any of the markers already established for the object”. Since 
the noun is the first thing interpreted, its markers cannot possibly conflict, 
and are simply entered as the initial marker list for the object. The 
marker programs permit us to classify objects along several dimensions, 
and set up separate marker trees for each. For example, we might classify 
objects both by their physical properties and by their use. 

The order of analysis simplifies handling of “relative” modifiers. There 
is no absolute definition for “big” or “little”; a “big flea” is still not much 
competition for a “little elephant”. The meaning of the adjective is 
relative to the noun it modifies, and it may also be relative to the adjec- 
tives following it as well, as in a “big toy elephant.” Since our system 
analyzes the NG from right to left, the meaning of each adjective is added 
to the description already built up for the head and modifiers to the right. 
Since each definition is a program, it can just as well examine the de- 
scription (both the semantic markers and the PLANNER description), 
and produce an appropriate meaning relative to the object being de- 
scribed. This may be an absolute measurement (e.g., a “big elephant” is 
more than 12 feet tall) or a relative PLANNER description of the form 
“the number of objects fitting the description and smaller than the one 
being described is more than the number of suitable objects bigger than 
it is”. 

In adding the meaning of “red” to the semantic structure, the specialist 
must make a choice in ordering the PLANNER expressions. We remember 
from Section 6.2.2 that the order of expressions can be important, since 
variable assignments are made in the order encountered, If we have the 
first sequence shown in Fig. 46, PLANNER will look through all of the 
blocks, checking until it finds one which is red. However if we have the 
second, it will look through all of the red objects until it finds one which 
is a block. In the robot’s tiny world, this isn’t of much importance, but if 
the data base took phrases like “a man in this room”, we certainly would 
be better off looking around the room first to see what was a man, than 
looking through all the men in the world to see if one was in the room. 

(THPROG(X) 
(THGOAL( #Is $?x #BLOCK)) 
(THGOAL( #COLOR $?X #RED))) 

(THPROG( X) 
(THGOAL( #COLOR $?X #RED) ) 
(THGOAL( #IS $?X #BLOCK))) 

Figure 46Ordering Goals 
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To make this choice we allow each predicate (like .#IS or ##COLOR) 
to have associated with it a program which knows how to evaluate its 
“priority” in any given environment. The program might be as simple as 
a single number, which would mean “this relation always has this 
priority”. It might on the other hand be a complex heuristic program 
which takes into account the current state of the world and the discourse. 
The present system uses only the simpler alternative. By keeping track of 
the priority of the expression currently at the top of the PLANNER 
description, the function NMEANS can decide whether to add a new 
expression above or below it. 

Figure 47 shows the structure which would be built up by the program. 
Most of the parts of this structure have already been explained. The 

PLANNER description includes a variable list (we will see its use later), 
the priority of the first expression, and a list of PLANNER expressions 
describing the object. The “markers” position lists all of the semantic 
markers applicable to the object. The 0 at the beginning of the list is a 
place holder for a “plausibility value” for the interpretation of a unit. This 
value might be useful if we were faced with more than one possible inter- 
pretation of a word. The program includes mechanisms for carrying 
along with each semantic structure an accumulated plausibility rating. 
This remains 0 unless an ambiguity is detected. Since the present system 
involves only a single topic of discourse, no use is now made of this 
possibility. 

The “systems” position is a list of all of the nodes in the set of marker 
trees (remember that there can be more than one) which have already 
had a branch selected. It is used in looking for marker conflicts. The 
“variable” is the variable name chosen to represent this object. The system 
generates it from the set Xl, X2, X3 . . . , providing a new one for each 
new structure. The only two positions left are the determiner and the 
ordinal. These are explained in section 8.1.4. 

( ( ((Xl) 200 (THGOAL( #IS $?Xl #BLOCK)) 
(THGOAL( #COLOR $2X1 #RED)) 
( #EQDIM $?Xl) ) 

(0 #BLOCK #MANIP #PHYSOB #THING) 

(#MANIP #PHYSOB #THING)) 

Xl 

(NS INDEF NIL) 

NIL ) 

PLANNER 
description 

markers 

systems 

variable 

determiner 

ordinal 

Figure 47-OSS for “a red cube” 
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8.1.2 Relative Clauses 

Let us now take a slightly more complicated NG, “a red cube which 
supports a pyramid,” and follow the parsing and semantic analysis. First, 
the NG parsing program finds the determiner (“a”), adjective (“red”), 
and noun (“cube”). At this point SMNGl is called and creates the struc- 
ture described in the previous section. Notice that SMNGl is called 
before the NG is finished, as soon as an initial semantic analysis is possible. 
At this point, the NC might be rejected without further parsing if the 
combination of noun, classifiers, and adjectives is contradictory to the 
system of semantic markers, 

Next the NG program looks for a qualifier, and calls the CLAUSE part 
of the grammar by (PARSE CLAUSE RSQ). The feature RSQ (rank 
shifted qualifier) informs the CLAUSE program that it should look for 
a RELWD like “which”. It does find the word, and then looks for a VG, 
succeeding with “supports.” The VG program calls its own semantic 
specialist to analyze the time reference of the clause, but we will ignore 
this for now. Next, since “support” is transitive, the CLAUSE looks for 
an object, and calls the NG program once again. This operates in the 
same way as before, producing a semantic structure to describe “a 
pyramid”, The definition of “pyramid” is: 

(NMEANS( ( #PYRAMID) ( ( #IS *** #PYRAMID) ) ) ) 
so the resulting structure is shown in Fig. 48. 

At this point the first CLAUSE specialist is called to analyze the clause 
“which supports a pyramid.” We want to define verbs in a simple way, as 
we do nouns and adjectives, saying something like “If the subject and 
object are both physical objects, then “support” means the relation 
#SUPPORT between them in that order.” This is written formally using 
the function CMEANS, as: 

(CMEANS( ( ( ( #PHYSOB) ) ( ( #PHYSOB) ) ) 

(#SUPPORT #l #2)NIL) ) 
The extra parentheses are there to leave room for options to be de- 

scribed later. The important parts are the semantic marker lists for the 
objects participating in the relationship, and the actual PLANNER ex- 
pression naming it. The symbols ‘:#l” and “#2” (and “#r if necessary) 

( ( ((X2) 200 (THGOAL(#IS $?x2 #PYRAMID))) 
(0 #PYRAMID #MANIP #PHYSOB #THING) 
(#MANIP #mYsoB #THING)) 

x2 

(NS INDEF NIL) 
NIL) 

Figure 48-O% for “a pyramid” 
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are used to indicate the objects, and the normal order is: (I) semantic 
subject (SMSUB); (2) semantic first object ( SMOBl ) ; ( 3) semantic 
second object ( SMOB2). Notice that we have prefixed “semantic” to each 
of these, since they may not be the syntactic subject and objects of the 
clause. In this example, the SMSUB is the NG “a red cube” to which the 
clause is being related. SMCLl knows this since the parser has noted 
the feature SUBJREL. Before calling the definition of the verb, SMCLl 
found the OSS describing “a red cube” and set it as the value of the 
variable SMSUB. Similarly it put the OSS for “a pyramid” in SMOBl, 
since it is the object of the clause. The definition of the verb “support” 
is now called, and CMEANS uses the information in the definition to build 
up a Relation Semantic Structure. First it checks to make sure that both 
objects are compatible with their respective marker lists. The marker 
lists are in the same order as the symbols ,#l, #2, and #3. In this case, 
both the subject and object must be physical objects. 

Next SMCLl substitutes the objects into the relation. If it inserted the 
actual semantic structures, the result would be hard to read and time- 
consuming to print. Instead, the NG specialists assign a name to each 
OSS, from the set NGl, NG2, NG3, . . . . We therefore get ( #SUPPORT 
NGl NG2) as the description of the relationship. The final semantic 
structure for the clause (after a second specialist, SMCLB has had a 
chance to look for modifiers and rearrange the structure into a convenient 
form) is in Fig. 49. 

The position marked “rel” holds the name of the NG description to 
which this clause serves as a modifier. We will see later that it can be 
used in a more general way as well. The “relation” is the material PLAN- 
NER uses, and “neg” marks whether the clause is negative or not. 

The last element is a set of semantic markers and a priority, just as we 
had with object descriptions. Relationships have the full capability to use 
semantic markers just as objects do, and at an early stage of building a 
relation structure, it contains a PLANNER description, markers, and 
systems in forms identical to those for object structures (this is to share 
some of the programs, such as those which check for conflicts between 
markers). We can classify different types of events and relationships (for 
example, those which are changeable, those which involve physical 
motion, etc.) and use the markers to help filter out interpretations of 
clause modifiers. For example, in the sentence “He left the house with- 
out the shopping list,” the modifying PREPG “without the shopping list” 

(NGl 
rel 

(#SUPPORT NGl NC2) NIL) 
relation neg 

Figure 49-Relation Semantic Structure 1 

(0)) 
markers 
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( ( ((Xl X2) 200 (THGOAL( #IS $?Xl #BLOCK)) 
(THGOAL( #COLOR $?Xl #RED) ) 
( #EQDIM $?Xl) 
( THGOAL ( #IS $?X2 #PYRAMID ) ) 
( THGOAL ( #SUPPORT $?Xl $?X2 ) ) ) 

(0 #BLOCK #MANIP #PHYSOB #THING) 
(#MANIP #PHYSOB #THING)) 

Xl 
(NS INDEF NIL) 
NIL ) 

FIG. 50-OSS for “a red cube which supports a pyramid.” 

has a different interpretation from “without a hammer” in “He built 
the house without a hammer.” If we had a classification of activities 
which included those involving motion and those using tools, we 
could choose the correct interpretation. A system can be constructed 
which operates much like Filhnore’s (1968) case system, assigning classes 
of verbs according to the type of modification they take, and using this to 
find the correct relation between a verb and its modifying phrase. 

In our limited world, WC have not set up a marker tree for relation- 
ships and events, so we have not included any markers in the definition 
of “support”. The marker list in the RSS therefore contains only the 
plausibility, 0. The “NIL” indicates that there are no markers, and would 
be replaced by a list of markers if they were used. 

The clause is now finished, and the specialist on relative clauses 
(SMRSQ) is called. It takes the PLANNER descriptions of the objects 
involved in the relation, along with the relation itself, and puts the 
information onto the PLANNER description of the object to which the 
clause is being related. The procedure depends on the exact form of the 
different objects (particularly on their determiners). In this case, it is 
relatively easy, and the description of “a red cube which supports a 
pyramid” is shown in Fig. 50. 

The only thing which has changed is the PLANNER description, which 
now holds all of the necessary information. Its variable list contains both 
Xl and X2, and these variable names have been substituted for the 
symbols NGl and NG2 in the relation, which has been combined with the 
separate PLANNER descriptions for the objects. Section 8.1.4 describes 
how a relative clause works with other types of NG descriptions. 

8.1.3 Preposition Groups 

Comparing the phrase “a red cube which supports a pyramid” with 
the phrase “a red cube under a pyramid” we see that relative clauses and 
qualifying prepositional phrases are very similar in structure and mean- 
ing. In fact, their semantic analysis is almost identical. The definition of a 
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preposition like “under” uses the same function as the definition of a verb 
like “support”, saying “if the semantic subject and object are both 
physical objects, then the object is #ABOVE the subject” (Remember 
that in our BLOCKS world we chose to represent all vertical space 
relations using the concept #ABOVE). This can be formalized as: 

(CMEANS( ( ( ( #PHYSOB) ) ( ( #PHYSOB) ) ) 
(#ABOVE #2 ,#l)NIL) 

Again, the symbols ,#l and ,#2 refer to the semantic subject and 
semantic first object, but in the case of a preposition group used as a 
qualifier, the SMSUB is the NG of which the PREPG is a part, while the 
SMOBl is the object of the PREPG (the PREPOBJ). As with clauses, the 
situation may be more complex. For example, in a sentence like ‘Who 
was the antelope I saw you with last night?“, the SMOBJ of the PREP 
“with” is the question element “who” in the MAJOR CLAUSE. However, 
the PREPG specialist (SMPREP) takes care of all this, and in defining a 
preposition, we can deal directly with the SMSUB and the SMOBl. 
Notice that if we had been defining “above” instead of “under”, every- 
thing would have been the same except that the relation would have 
been (#ABOVE #l #2) instead of (,#ABOVE #2 .#l). If the 
PREPG is an adjunct to a CLAUSE, the SMSUBJ is the RSS defining the 
CLAUSE. The definition of a preposition can then use the semantic 
markers which are included in an RSS. 

8.1.4 Types of Object Descriptions 

In the examples so far, all of the objects described have been singular 
and indefinite, like “a red cube”, and the semantic system has been able 
to assign them a PLANNER variable and use it in building their prop- 
erties into the description. Let us consider another simple case, a definite 
object, as in “a red cube which supports the pyramid”. 

The analysis begins exactly as it did for the earlier case, building a 
description of “red cube”, then one of “pyramid.” The “pyramid” de- 
scription differs from OSS 2 in having DEF in place of INDEF in its 
determiner. This is noted at the very beginning of the analysis, but has 
no effect until the entire NG (including any qualifiers) has been parsed. 
At that time, the second NG specialist SMNGB checks for a definite NG 
and tries to determine what it refers to before going on. The PLANNER 
description which has been built up is given to PLANNER in a THFIND 
ALL expression. The result is a list of all objects fitting the description. 
Presumably if the speaker used ‘the”, he must be referring to a particular 
object he expects the listener to be aware of. If more than one object fits 
the description, there are various discouse heuristics used to find the 
reference (see Section 8.2.3)) and if nothing succeeds, a failure message 
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((Xl) 200 (THGOAL( #IS $?Xl #BLOCK)) 
( #EQDIM $?Xl) 
(THGOAL( #COLOR $?Xl #RED) ) 
(THGOAL( #SUPPORT $?Xl :B5) ) ) 

Figure 51-PLANNER Description 1 
“a red cube which supports the pyramid” 

is produced and the parser has to back up and try something else to parse 
the NG. 

If SMNG2 is able to find the object being referred to, it puts it into the 
description (on the property list). When the Semantic Rank Shifted 
Qualifier specialist ( SMRSQ) relates the descriptions to build the mean- 
ing of “a red cube which supports the pyramid” it takes advantage of 
this. The object found will have a proper name like :B5. Instead of build- 
ing the PLANNER description of Fig. 50, it builds the one in Fig. 51. 
The object itself is used in the relation rather than dealing with its 
description. 

What if we had asked about “a red cube which supports three 
pyramids”? In that case the PLANNER description would include an 
expression using the function THFIND with a numerical parameter, as 
shown in Fig. 52. If we had said “a red cube which supports at most two 
pyramids”, a fancier THFIND parameter would have been used, as 
shown. Here, the parameter means “be satisfied if you don’t find any, 

(THGOAL( #IS $?X2 #PYRAMID) ) 
( THGOAL( #SUPPORT $?Xl $?X2 ) ) 

“which supports a pyramid” 
(THGOAL( #SUPPORT $?xl :~3)) 

“which supports the pyramid” 
(THFIND 3 $?X2 (X2) (THGOAL( #IS $?x2 #PYRAMID)) 

(THGOAL( #SUPPORT $?Xl $?X2) ) ) 
“which supports three pyramids” 

(THFIND (0 3 NIL) $?X2 (X2) 
(THGOAL( #IS $?X2 #PYRAMID) ) 
( THGOAL ( #SUPPORT $?Xl $?X2 ) ) ) 

“which supports at most two pyramids” 
(THNOT 

(THPROG (X2) (THGOAL( #IS $?X2 #PYRAMID) ) 
( THGOAL ( #SUPPORT $?Xl $?X2 ) ) ) ) ) 

“which supports no pyramids” 
( THNOT 

( THPROG ( X2 ) (THGoAL( #Is vx2 #PYRAMID) ) 
(THNOT 

( THGoAL ( #SUPPORT $?xl $?x2 ) ) ) ) ) 
“which supports every pyramid” 

FIG. 52-Quantifiers. 
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but if YOU find 3, immediately cause a failure.” In addition to numbers, 
the SMNGl and RSQ programs can work together to relate descriptions of 
quantified objects. “A red cube which supports some pyramid” is handled 
just like the original indefinite case. “A red cube which supports no 
pyramid” and “a red cube which supports every pyramid” are handled 
using the other PLANNER primitives. A universal quantifier is translated 
as “there is no pyramid which the red cube does not support”. For the 
robot, “every” means “every one I know about”. This is not a requirement 
of PLANNER, or even of the way we have set up our semantic programs. 
The system could be expanded to discuss universal statements as well 
as the specific commands and questions it now handles, 

We similarly handle the whole range of quantifiers and types of 
numbers, using the logical primitives and THFIND parameters of 
PLANNER. The work is actually done in two places. SMNGl takes the 
words and syntactic features, and generates the “determiner” which was 
one of the ingredients of our semantic structure for objects. The deter- 
miner contains three parts (see Fig. 53). First, the number is either NS 
(singular, but not with the specific number “one”), NPL (plural with 
no specific number), NS-PL (ambiguous between the two, as in “the 
fish”), or a construction containing an actual arithmetic number. This can 
either be the number alone, or a combination with “>“, “<“, or 
“exactly”. Thus the two noun groups “at most 2 days” and “fewer than 
3 days” produce the identical determiner, containing “( <3)“. The second 
element of the determiner is either DEF, INDEF, ALL, NO, or NDET 
(no determiner at all-as in “We like sheep.“) The third is saved for the 
question types HOWMANY and WHICH, so it is NIL in a NG which 
is not a QUEST or REL. 

Other specialists such as SMRSQ and the answering routines use this 
information to produce PLANNER expressions like the ones described 
above. In addition, there are special programs for cases like the OF NG, 
as in “three of the blocks”. In this case, the PREPOBJ following “of” is 
evaluated as a NG first. Since “the blocks” is definite, PLANNER is 
called to find out what it refers to. It returns a list of the blocks, (e.g., 
( :Bl :B4 :B6 :B7) ) . The OF specialist uses the PLANNER function 
THAMONG (which chooses its variable bindings from “among” a given 
list) to produce an expression like: 

(THFIND 3 $?Xl (Xl) (THAMONG Xl 
(QUOTE(:Bl :B4 :B6 :B7)))) 

Ordinals are treated specially, along with superlative adjectives. If we 
have a NG like “the biggest block which supports a pyramid”, it is im- 
possible for SMNGl to add the meaning of “biggest” to the description 
in the same way as it would add an expression for “big*. The block is 
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Number 

NS 
NPL 
7 

(>2) 
(<5) 
(EXACTLY 2) 

Determiner 

an apple 
some thoughts 
seven sisters 
at least three ways 
fewer than five people 
esactly two minutes 

DEF 
INDEF 
ALL 
NO 
NDET 

Question Marker 

the law 
a riot 
every child 
nothing 
good intentions 

HOWMANY how many years 
WHICH which road 

Figure 53-Examples of Determiner Elements 

“biggest” with respect to a group of objects, and that group is not fully 
defined until the entire NC has been parsed, including the qualifiers. 
SMNGl therefore does a partial analysis of the meaning, looking up the 
name of the measure the particular adjective refers to, then hangs the 
result in the last niche of the OSS described in Section 8.1.1. After all 
has been parsed, SMNG2 finds it there and creates a full logical descrip- 
tion. In the case of “the biggest block which supports a pyramid”, we 
would get the PLANNER description in Fig. 54. A similar type of de- 
scription is generated for other superlatives and ordinals. 

8.1.5 The Meaning of Questions 

So far, we have discussed the semantics of objects and the relationships 
which are used to describe them in preposition groups and relative 
clauses. Now we will deal with the overall meaning of a sentence as an 

((Xl X2 X3 X4 ) 200 
(THGOAL( #IS $?Xl #BLOCK) ) 
(THGOAL( #IS $?X2 #PYRAMID) ) 
(THGOAL( #SUPPORT $?Xl $?X2) ) 

(THNOT 
(THAND( THGOAL( #IS $?X3 #BLOCK) ) 

(THGOAL( #IS $?X4 #PYRAMID) ) 
(nrGoAL( #SUPPORT $?x3 $?x4) ) 
(THGOAL( #MORE #SIZE $?X3 $?xI ) ) ) ) ) 

Figure 54-PLANNER Description 2 
“the biggest block which supports a pyramid” 
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utterance -as a statement, a question, or a command. The sentence is 
analyzed into a relationship semantic structure, and the system must act 
on it by responding, taking an action, or storing some knowledge. 

First let us look at questions. In describing the grammar of clauses (see 
Section 3.1) we pointed out the similarities between questions and 
relative clauses, which share a large part of the system network and the 
parsing program. They also have much in common on a semantic level. 
We can look at most questions as being a relative clause to some focus 
element in the sentence. 

In the class of WH questions, this resemblance is easy to see. First we 
can take a NGQ question, whose question element is a NG. The question 
“Which red cube supports a pyramid?” is very closely related to the NG 
“a red cube which supports a pyramid,” The system can answer such a 
question by relating the clause to the object, and building a description 
of “a red cube which supports a pyramid.” It then takes this entire 
PLANNER description and puts it into a THFIND ALL statement, which 
is evaluated in PLANNER. The result is a list of objects fitting the 
description, and is in fact the answer to our question. Of course PLAN- 
NER might find several objects or no objects meeting the description. In 
this case we need answers like “none of them” or “two of them”. Section 
8.3 describes how responses to questions such as these are generated, 
depending on the relation between the specific question and the data 
found. If the question is “how many” instead of “which”, the system goes 
through the identical process, but answers by counting rather than nam- 
ing the objects found. 

No matter what type of NGQ we have (there is a tremendous variety- 
see Section 3.1) the same method works. We treat the MAJOR clause as 
a relative clause to the NG which is the question element, and which we 
call the focus. This integrates the relationship intended by the clause into 
the description of that object. PLANNER then finds a11 objects satisfy- 
ing the expanded description, and the results are used to generate an 
answer. 

Next, we have the QADJ questions, like “when”, “why”, and “how”. 
In these cases the focus is on an event rather than on one element of the 
relation. If we ask ‘Why did you pick up a block?“, we are referring to 
an event which was stored in the system’s memory as (#PICKUP E23 
:B5) where :B5 is the name of the object picked up, and E23 is the 
arbitrary name which was assigned to the event (see Section 7.5 for a 
description of the way such information is stored.) We can ask in 
PLANNER: 

(THFIND ALL $?EVENT ($?EVENT $?X) 
( THGOAL( ,#PICKUP $?EVENT $?X) ) 
(THGOAL( #IS $?X #BLOCK) ) ) 
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In other words, “Find all of the events in which you picked up a block.” 
This is clearly the first thing which must be done before we can answer 
“why”. Once it has been done, answering is easy, since PLANNER will 
return as the value of THFIND a list of names of such events. On the 
property list of an event we find the name of the event for which it was 
called as a subgoal (the “reason”). We need only to describe this in 
English. Similarly if the question is “when”, the property list of the event 
gives its starting and ending times. If the question is “how” it takes a little 
more work, since the subgoal tree is stored with only upward links. But 
by looking on the EVENTLIST, the system can generate a list of all those 
goals which had as their reason the one mentioned in the sentence. 

This concept of a relation as a sort of object called an “event” is useful 
in other parts of the semantics as well-for instance in dealing with em- 
bedded clauses as in “the block which I told you to pick up”. This is 
described in section 8.1.12. 

“Where” is sometimes handled differently, as it may be either a 
constituent of a clause, such as a location object (LOBJ) (in “Where 
did you put it?“) or an ADJUNCT (as in “Where did you meet him?“). 
The first case is handled just like the NG case, making the clause a 
relative, as if it were “the place where you put it”, then asking in 
PLANNER: 

(THFIND ALL $?PLACE (PLACE EVENT) 
(THGOAL ( #$PUT $?EVENT :OBJ $?PLACE) ) ) 

The ADJUNCT case involves a special #LOCATION assertion, as in: 
(THFIND ALL $?PLACE (PLACE EVENT) 

(THGOAL( #MEET $?EVENT :YOU :HIM) ) 
(THGOAL( #LOCATION $?EVENT $?PLACE) ) ) 

In this example, we have moved away from the BLOCKS world, which 
does not contain in its vocabulary any actions that occur at a specific 
place without the place being mentioned in the event. However the 
semantic system is perfectly capable of handling such cases. 

So far, we have seen that we can answer WH- questions by pretending 
they are a relative to some object, event, or place, and by adding the 
relationship to the description of this focus. It is an interesting fact about 
English that even in a YES-NO question, where there is no question 
element, there is usually a focus, Consider a simple question like “Does 
the box contain a block?” Someone might answer “Yes, a red one.“, as 
if the question had been “Which block does the box contain?’ Notice that 
“Yes, the box.” would not have been an appropriate answer. Something 
about “the box” makes it obvious that it is not the focus. It is not its place 
as subject or object, since “Is a block in the box?” reverses these roles, 
but demands the same answer. Clearly it is the fact that “a block” is an 
indefinite NG. 
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The fact that a speaker says “a block” instead of “the block” indicates 
that he is not sure of a specific object referred to by the description. Even 
if he does not inquire about it specifically, the listener knows that the 
information will be new, and possibly of interest since he mentioned the 
object. In answering “Does the box contain a block?“, our system does the 
same thing it would do with “How many blocks does the box contain?“. 
It adds the relation “contained by the box” to the description of “a block”, 
and finds all of the objects meeting this description. Of course the verbal 
answer is different for the two types of question. In one case, “Yes” is 
sufficient, while in the other “one” is. But the logical deduction needed 
to derive it is identical. In fact, our system uses this extra information 
by replying, “Yes, two of them: a red one and a green one.” This may 
sometimes be verbose, but usually gives a natural sounding answer. It 
takes on the “intelligent” character of telling the questioner information 
he would be interested in knowing, even when he doesn’t ask for it 
explicitly. 

In YES-NO questions, it is not always easy to determine the focus. 
Only an INDEF NC which is not embedded in another NG can be the 
focus, but there may be several of them in a sentence. Sometimes there 
is no way to choose, but that is rare. In asking a question, people usualIy 
focus their attention on a particular object or event. There are a number 
of devices for indicating the focus. For example a quantifier, like “any” 
or a TPRON like “something” emphasizes the NG more than a simple 
determiner like “a”. In both “Does anything green support a block?“, and 
“Does a block support anything green?“, the phrase “anything green” is 
the focus. When none of these cues are present, the syntactic function of 
the NG makes a difference. If we ask “Is there a block on a table”, then 
“block” is the focus, since it is the subject while “table” is inside a PREPG. 
Our system contains a heuristic program which takes into account the 
kind of determiners, number features ( singular is more IikeIy than pIural), 
syntactic position, and other such factors in choosing a focus. If it is in 
fact very difficult to choose in a given case, it is likely that the speaker 
will be satisfied with any choice. 

For sentences in the past tense, which contain no focus NG, we can 
again have an event as a focus. If we ask, ‘Did Jesse James rob the stage- 
coach?“, a possible answer, interpreting the event as the focus, is “Yes, 
three times: yesterday, last week, and a year ago.” This is closely parallel 
to answering questions in which the focus is an object. 

There are some questions which have no focus, such as present-tense 
clauses with only definite noun groups. These however, are even easier 
to answer, since they can be expressed in the form of a simple set of 
assertions with no variables. The NG analysis finds the actual objects 
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referred to by a definite NG, and these are used in place of the variable 
in relationships. We can therefore answer “yes” or “no” by making a goal 
of the relationship and letting PLANNER evaluate it. The question “Does 
the red cube support the box?” would generate the simple PLANNER 
expression 

(THGOAL ( #SUPPORT :B3 :BOX) ) 
if :B3 is the internal name for the red cube. PLANNER would return a 
non-NIL value only if the answer were “yes”. 

8.1.6 Interpreting Imperatives 

The system can accept commands in the form of IMPERATIVE 
sentences. These are handled somewhat differently from questions. If they 
contain only definite objects, they can be treated in the way mentioned 
above for questions with no focus. The command “Pick up the red ball.“, 
is translated into the relationship (#PICKUP :B7) which can be 
evaluated directly by putting it in a THGOAL statement which will 
carry out the action: 

(THGOAL (,#PICKUP :B7) (THUSE TC-PICKUP) ) 
However, if we say “Pick up a red ball.“, the situation is different. We 

could first use THFIND to find a red ball, then put this object in a simple 
goal statement as we did with “the red ball”. This, however, might be a 
bad idea. In choosing a red ball arbitrarily, we may choose one which is 
out of reach or which is supporting a tower. The robot might fail or be 
forced to do a lot of work which it could have avoided with a little 
thought. 

Instead, we send the theorem which works on the goal a description 
rather than an object name, and let the theorem choose the specific 
object to be used, according to the criteria which best suit it, Remember 
that each OSS has a name like “NG45”. Before a clause is related to its 
objects, these are the symbols used in the relationship. 

When we analyze “Pick up a red ball”, it will actually produce 
( #PICKUP NG45), h w ere NG45 names an OSS describing “a red ball.” 
We use this directly as a goal statement, calling a special theorem which 
knows how to use these descriptions. The theorem calls a theorem named 
TC-FINDCHOOSE, which uses the description of the object, along with 
a set of “desirable properties” associated with objects used for trying to 
achieve the goal. #PICKUP may specify that it would prefer picking up 
something which doesn’t support anything, or something near the hand’s 
current location. Each theorem can ask for whatever it wants. Of course, 
it may be impossible to find an object which fits all of the requirements, 
and the theorem has to be satisfied with what it can get. TC-FIND- 
CHOOSE tries to meet the full specifications first, but if it can’t find an 
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object (or enough objects in the case of plural), it gradually removes the 
restrictions in the order they were listed in the theorem. It must always 
keep the full requirements of the description input in English in order to 
carry out the specified command. The robot simply tries to choose those 
objects which fit the command but are also the easiest for it to use. 

8.1.7 Accepting Decihrative Information 

In addition to questions and commands, the system can accept declar- 
ative sentences. We have intentionally not emphasized them, as there are 
theoretical problems and dangers in designing a program to accept in- 
formation in this way. In Section 1.5, we discussed the complex world- 
model a person has and explained why we felt that intelligence needed 
a highly structured and coordinated body of knowledge rather than a 
set of separate uniform facts or axioms. It is comparatively easy to get a 
program to add new information of the latter type, but very difficult to 
get it to add the former, since this involves understanding the relationship 
between the new information and whatever is already there. 

Therefore, although we have included declarative sentences in our 
dialog (and they are fully handled in the grammar), we believe that 
before trying to “tell” many things to a program, we need to have a better 
idea of how knowledge should be structured; the program should ap- 
proach new information as a problem solving activity rather than a 
clerical one. 

When a human sees a new sentence, he does not simply store it away, 
but he relates it to what he already knows, perhaps changing his “pro- 
grams”, or ignoring the content of the sentence and interpreting something 
about the person who said it. A language understander needs to have an 
interpreter which looks at each new sentence and decides how to use it. 
This may include checking it for consistency with what it already knows, 
creating new data or types of data in its storage, modifying theorems, and 
many other possibilities. 

In our system we have four different ways in which information can be 
accepted in a declarative sentence. The first is a simple word definition 
facility. If we say “A ‘mar-b’ is a red block which is behind a box.“, the 
system recognizes that we are defining a new word. It currently 
recognizes this by the quote marks, but it could just as easily declare all 
unfamiliar words as possible new words. We have not done this as it 
would eliminate the feature that the system immediately recognizes typing 
errors without waiting to begin parsing the sentence. 

In this kind of definition, the complement of the sentence is a noun 
group, which has an OSS. We save this OSS and generate a new diction- 
ary entry for the word, defined syntactically as a noun, and with its 
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semantic definition being the program “set the object description to this 
one we saved earlier.” Remember that all definitions are programs, SO 

this one fits in with no problem. When it is called on to build part of the 
description, it simply inserts the description used to define it. If we talk 
about “two big marbs”, the system will build a description exactly like 
the one for “two big red blocks which are behind a box.” 

The second kind of information the system accepts is simple assertions 
involving a predicate for which it does not have complete knowledge. AS 
we mentioned in Section 7, the system has complete data about the 
physical characteristics of the objects in the scene. We have selected 
#OWN as an arbitrary relation about which the system knows nothing 
except what it is told in the dialog. If we say “I own you.” this produces 
the assertion ( #OWN :FRIEND :SHRDLU), which is simply added 
to the data base. The system also understands pronouns like “mine”. 

If we use an object which isn’t definite, as in “I own red blocks.“, the 
system uses the object description to generate a simple PLANNER 
consequent theorem. It creates a theorem of the form: 

(THCONSE (Xl) 
(#OWN :FRIEND $?Xl) 

(THGOAL (.#IS $?Xl #BLOCK) ) 
(THGOAL ( #COLOR $?Xl #RED) ) ) 

This theorem says “Whenever you want to prove that the user owns 
something, you can do it by proving that it is a block and it is red.” This 
is added to the theorem data base, and can be used to answer questions 
or carry out deductions. The system does not separate types of nou- 
definite objects and assumes universal quantification. The results would 
have been the same if the sentence used “any red block”, “every red 
block”, “all red blocks”, or (wrongly) “a red block.” A more complete 
treatment is one of the possible extensions of the system. 

It does notice the form “no red blocks” and uses this for the fourth 
kind of information, If we say “I own no red blocks.“, it sets up the 
theorem : 

(THCONSE (Xl) 
(#OWN :FRIEND $?Xl) 

(THGOAL (##IS $?Xl #BLOCK) ) 
(THGOAL (.#COLOR $?Xl #RED) j ) 
( THFAIL THGOAL) ) 

When the system is trying to prove that we own something, this 
theorem is called just like the one above. But this time, after it finds out 
that the object is a red block, it does not succeed. Instead, it uses the 
PLANNER function THFAIL, to cause not just that theorem but the 
entire goal to fail, regardless of what other theorems there are, We can 
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also accept a sentence like this with a positive NG but a negative clause, 
as in “I don’t own the red block” or “I don’t own any red blocks,” produc- 
ing a similar theorem. 

8.1.8 Time 

One of the most complex parts of English semantics is temporal 
relationships. It was pointed out earlier that one of the primary differ- 
ences between the clause and other units such as the NG or PREPG is 
the special set of mechanisms within the clause for handling time. In this 
section we will describe how those mechanisms operate both within the 
clause and at other levels of syntax. The semantic programs for dealing 
with time can be described in three parts-the form of structures used to 
represent time, the way those structures are created, and the way they 
are used in understanding and deduction. 

Time Semantic Structures (TSS). For the purposes of our BLOCKS 
world, we have treated only a simple part of the overall range of time 
references in English. In particular we have dealt only with references to 
actual events which happened in the past or are occurring in the present, 
not with the many varieties of future events, possible events, conditional 
events, etc. With this simplification the system can use a simple linear time 
scale (like a clock), relating all events to specific numerical times. This 
does not mean that a single event must occur at a single time-it may 
continue for a period of time during which other events are occurring. 

English makes a clear distinction between events which are thought 
of as occurring at a particular time, and those which are pictured as 
continuing over an interval. This contrast is expressed both in the choice 
of verbs and in the shape of the VG containing the verb. 

Verbs like “like”, and “know”, are inherently progressive. They express 
a relationship which continues over a period of time. Verbs like “hit”, and 
“write” are not progressive, but indicate the completion of an action as a 
whole. Of course, this action also involves a process, and there is a way 
to express this aspect by using tenses whose first element is PRESENT 
such as PRESENT IN PAST. The sentence “I broke it.” is not progressive, 
giving the feeling of a single momentary act. “I was breaking it.” empha- 
sizes the process of breaking, to which other events can be related. 

In the present tense, the distinction is clear. The present of a progres- 
sive verb has the expected meaning, as in “I know your name.” With a 
nonprogressive verb, there is a special meaning of habitual or repeated 
action, as in “I break bottles.” In order to produce the meaning usually 
considered “present,” the verb group must be PRESENT IN PRESENT, 
as in “I am breaking bottles.” 

Ambiguities can arise from verbs which are both progressive and non- 
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A supports B (PRES) T :NOW :NOW 
A supported B before time 23 (PAST) T NIL 23 
A hit B before time 23 (PAST) NIL NIL 23 
You built it after time 24 (PAST) NIL 24 NIL 
You were building it after time 24 (PAST) T 24 NIL 

Figure 5%Time Semantic Structures 

progressive. The question “Did the red block touch the green one while 
you were building the stack?” has two interpretations. One means “Was 
it in contact during that time?“, while the other asks “Did it make contact 
during that time ?” If the verb were replaced by “support”, only the analog 
of the first meaning would be valid, while “hit” would involve the second. 
The representation for time references must take this progressivity into 
account in trying to interpret time modifiers. 

The representation used for time has four elements: the tense, an 
indicator for progressive, a starting time limit, and an ending time limit. 
Either or both of the limits may be omitted. Some examples of sentences 
and their corresponding structures are shown in Fig. 55. 

The difference between the last two examples in Fig. 55 can be visual- 
ized by drawing a time line as in Fig. 56. 

A nonprogressive action must begin after the start time, and end before 
the end time. A progressive one begins before the start time and ends 
after the end time. The TSS for “you hit it during event 23” (assuming 
event 23 began at time 3 and ended at 7) would be 

(PAST) NIL 3 7 
i.e., the hit began after event 23 started and ended before it ended. The 

sentence “you were hitting it during event 23” would be: 
(PAST) T 7 3 

i.e., the hitting began before event 23 was over, but ended after it had 
begun. This covers all ways of having the two events overlap. The 

Non-Progressive 

You built it after time 24 

~ ~ 
time begin 

24 building 

Progressive 

You were building it after time 24 

time 
24 

finish 
building 

Figure 5G-Progressive and non-Progressive Times 
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definitions of the relating words like “during” and “before” do not have 
explicit mention of this distinction, but the semantic analysis programs 
take into account whether the verb and VG are progressive in setting up 
the TSS. 

Setting Up Time Structures. Time Semantic Structures are associated 
with clauses, and a new one is generated each time a clause is parsed. Its 
elements are determined by different aspects of the clause structure-the 
tense depends on the form of the VG, the progressivity depends on both 
the tense and the specific verb, and the limits are set by modifiers such 
as bound clauses, adverbs, and time noun groups as well as by the tense. 

No analysis is done until after the VG is parsed and the tense 
established. Some types of secondary clauses such as ING, SUBING, 
TO, and SUBTO do not indicate a tense. There is a potential ambiguity in 
determining the time reference. “The man sitting on the table baked the 
bread.” might indicate that the man was sitting on the table when he 
baked it, or that he is sitting on the table now. 

Unless there is a specific reference (like “the man sitting on the table 
yesterday . . .” ) the system should take both possibilities into account and 
resolve them as it would an ambiguity caused by multiple senses of words. 
The current system does not do this, but uses a simplifying heuristic. If 
the secondary clause involves PAST, and is embedded in a PAST 
MAJOR CLAUSE, the two times are assumed the same unless specifically 
mentioned. If the secondary clause has no tense, it is assumed PRESENT. 
If it is PAST, but imbedded in a PRESENT MAJOR CLAUSE, the 
system checks the time reference of the previous sentence. If this is 
PAST, the new one is assumed to be the same (including whatever 
modifiers, limits, etc. applied). If not it sets up a general time structure 
for PAST, with no beginning limit, and an end limit of :NOW. A 
PRESENT tense TSS is represented by the single atom :NOW, which is 
treated specially by the programs, and is often deleted from relations 
which interrogate the current state of the data base (see below). It can 
be applied only to progressive verbs and tenses (no provision now exists 
for understanding habitual action). Modals are treated like the present 
tense in establishing time references. A more complete system would 
account for future tenses, different types of modals, and more complex 
tenses. 

The start and end limits are set by modifiers. Adverbs like “yesterday” 
and TIME NG’s like “the week he arrived” set both limits. This can also 
be done by bound clauses like “while you were building the stack” or 
preposition groups like “during the flood". Other clauses, prepositions, 
and groups set only the start limit (like “after you hit it”, “after the war”) 
while others (like “before” and “until”) set the end limit. In the current 
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system the event being referred to in the modifier is assumed to be known 
along with its exact time (it must be in the past.) The exact beginning 
and ending time are used in setting the limits. 

The question “Did you pick it up while you were building the stack?” 
is answered by first finding the event of building the stack (using a TSS 
for PAST tense with no other limits), then using the beginning and ending 
of that event as limits for the TSS in the relation #PICKUP. 

There are discourse phenomena which involve time reference. First, 
there are specific back-references with words like “then” and phrases like 
“at that time.” The system keeps track of the major time reference of the 
previous sentence, and substitutes it in the current sentence whenever 
such phrases are used. This time is also carried forward implicitly. Con- 
sider “Did you pick up a red block while you were building the tower?” 
“No.” “Did you pick up a green one?” In this sequence, the second 
question involves a specific time interval although it is not mentioned 
again. Whenever there are two successive PAST sentences and the second 
does not have any explicit time reference, the previous TSS is used. Long 
dialogs can appear in which the same time interval is used throughout, 
but is mentioned only in the first sentence. 

Use of TSS. So far, all of our discussion has involved the clause with 
its verb group and time modifiers. But in making use of time information 
we must handle other units as well. The sentence “The man sitting on the 
table baked the bread.” has two meanings, but the point would have been 
identical for “The man on the table baked the bread.” The qualifying 
prepositional phrase “on the table” does not refer to time, but can be 
interpreted either as meaning “on the table now” or “on the table then.” 
Adjectives can be affected similarly. Consider the sentences: 

a. Many rich men made their fortunes during the depression. 
1?. Many rich men lost their fortunes during the depression. 
c. Many rich men worked in restaurants during the depression. 
The first clearly means “men who are now rich”, the second “men who 

were rich”, and the third might have either interpretation. The adjective 
“rich” involves an implicit time reference, as does any adjective which 
describes a state which can be true of an object at one time, but false at 
another. Nouns can also involve states which are changeable, and the 
problem would be identical if ‘rich men” were replaced by “millionaires”. 

In a traditional transformational approach, this would be used to show 
that even a simple phrase such as “a rich man” or “millionaires” is 
generated by a series of transformations. The possibility of two meanings 
is accounted for by two different deep structures, involving sentences 
corresponding to “The men were rich.” and “The men are rich.” This leads 
to a syntactic theory in which the simplest sentence may involve dozens 
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of such transformations, to account for each noun, adjective, preposition, 
etc. The parser must be able to handle all of these details using syntactic 
information. 

In our approach, these can be seen as semantic ambiguities which arise 
within a single syntactic structure. Part of the semantic definition of the 
word “millionaire” (or “student”, “bachelor”, etc.) involves a reference 
to time. Within the language for writing semantic definitions, there is a 
special symbol “TIME. Whenever the program for the meaning of a 
word in the dictionary is called, the semantic system will have determined 
the appropriate Time Semantic Structure (or structures) and have 
assigned a value to this symbol accordingly. If the time reference is 
ambiguous, the definition will be called once for each possibility. The 
noun “millionaire” might be defined: 
(NMEANS ( (#PERSON) ( (##IS *** #PERSON) 

(#POSSESS *** $l,OOO,OOO *TIME) ) ) ) 
Notice that not every relation involves time. Being a *#PERSON is 

assumed to be a permanent characteristic. If the time is PRESENT 
(indicated by the TSS :NOW), the system deletes the time reference, so 
PLANNER will receive the expression (THGOAL (#POSSESS $?Xl 
$I,OOO,OOO) ), where $?XI is the variable assigned to the object being 
described. If the sentence were “During the war, many millionaires 
worked in restaurants.“, the time reference of the sentence would be a 
structure like ( (PAST) NIL 1941 1945)) and the PLANNER expression 
for “millionaire” would include: 

(##POSSESS $?Xl $l,OOO,OOO ( (PAST) NIL 1941 1945)) 
A different theorem would be used for this case, since it cannot look 
directly into the data base to see what the person has, but must look into 
its past “records” to reconstruct the information. In our programs, a 
record is kept of when and where objects have been moved, so theorems 
can determine the location of any object at any time in the past. 

Since adjectives can be defined with NMEANS, they are treated 
identically. Prepositions and verbs are usually defined with CMEANS, 
which has the same conventions. The symbol *TIME can appear in the 
definition, and is deleted if the applicable time is :NOW, and replaced 
with the TSS otherwise. The time applicable to anything but a clause 
is that of the clause closest above it in the parsing tree. This is only an 
approximation, and does not take into account ambiguities such as il- 
lustrated in sentence c above. In fact, a PREP or NG can have its own 
time reference, as in “a former millionaire”, “many future students”, “my 
roommate last year”, “the man on the table yesterday”. This is one of 
many places where the current semantic system needs to be extended by 
making the analysis more general. 
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8.1.9 Semantics of Conjunction 

The semantic system does not handle conjunction as generally as does 
the parser. A few cases have been dealt with in a simplified way-noun 
groups, adjectives, RSQ clauses, and MAJOR clauses which are not 
questions. The distinction between “and” and “but” is ignored. 

With AlAJOR clauses, the conjunction must be “and”, and the com- 
ponents are processed as if they were completely separate sentences, 
except that the response (“ok.” for imperatives, and “I understand.” for 
declaratives) is suppressed for all but the last. The system will not accept 
sentences joined with “or”, or “nor”, and will misunderstand compounds 
which cannot be separated into individual actions (e.g., “Build a stack 
and use three cubes in it.“) 

Noun groups can be connected with “and” wherever they appear, and 
with “or” if they are part of an argument to a command (like “Pick up 
a cube or a pyramid.“). An 0% is built with the semantic markers of 
the first constituent NG, the conjunction itself, and a list of the OSS for 
the components. If all of the components are definite and the conjunction 
is “and”, the conjoined NG is definite, and its referent is the union of the 
referents. 

The use of the conjoined 0% depends on its place in the sentence. If 
it is the object or subject of a verb or preposition, the definition of that 
verb or preposition can check explicitly for conjoined structures and treat 
them specially. For example, “touch” can be defined so that the sentence 
“A and B are touching.” will be represented as (THGOAL (#TOUCH 
:A :B) ). If there is no special check, the system assumes that the desired 
object is the list of referents. “A and B support C.” would produce 
(THGOAL ( #SUPPORT ( :A :B) :C) ). If the first element of the 
PLANNER expression (usually the name of a predicate) has a property 
MULTIPLE on its property list, the system modifies this to create the 
expression: 

(THAND(THGOAL( #SUPPORT :A :C)) 
(THGOAL( #SUPPORT :B :C))) 

If the conjoined NG is one of the arguments to a command, the theorem 
TC-CHOOSE will choose the specific referents. If the conjunction is 
“and”, it will combine the referents for each of the components in a single 
list. If it is “or”, it will first choose according to the first constituent, then 
if a failure backs up to the choice, it will try the second, third, etc. It does 
not look at the various choices in advance to decide which is most ap- 
propriate for the task being done. 

The other units which can be combined with “and” and “or” are the 
adjective and RSQ clause. The semantic structure for the conjoined unit 
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is a list whose first element is the conjunction, and the rest are the 
individual interpretations for the constituents. In using these to modify an 
OSS, the system combines all of the descriptions with THOR or implicit 
THAND. For example, “a block which is in the box and is red” becomes: 

(THGOAL( #IS $?X #BLOCK) ) 
(THGOAL( ##IN $?X :BOX) ) 
(THGOAL( .#COLOR $?X #RED) ) 

while “a red or green block” becomes: 
(THGOAL( #IS $?X <#BLOCK) ) 
(THOR( THGOAL( #COLOR $?X #RED) ) 

(THGOAL( ##COLOR $?X .#GREEN) ) ) 
This could easily be extended to other modifiers such as preposition 
groups. Many other types of conjunction could be handled without major 
changes to the system, usually by adding two bits of program. One would 
create a conjoined semantic structure appropriate to the unit, and the 
other would recognize it and take the appropriate action for its use. 

81.10 More on Ambiguity 

Section 8.1.1 described the OSS as having a position to mark the 
“plausibility” of its interpretation. As a semantic structure is built, it takes 
on the sum of the plausibilities of its components. If the sentence is a 
command, the system tries to carry out the most plausible interpretation. 
If that fails, it tries the next, and so on until one succeeds or a total 
failure causes the system to respond “I can’t.” Questions are handled more 
completely. The system orders the interpretations by plausibility and 
finds the answer for the most plausible. It then tries again to answer it, 
using only information mentioned in the previous sentence and its 
answer. If it succeeds in finding the same answer, it reduces the plausi- 
bility, since it is unusual to ask a question to which the answer was just 
given, either explicitly or implicitly. If the information in the previous 
sentence is not sufficient to answer it, the system then tries to answer using 
only information which has been mentioned previously in the discourse. 
If the plausibility is higher than that of the next interpretation by a large 
enough margin (a factor set by the user and called TIMID) it gives the 
answer as found. If not, it saves the answer and repeats the process for 
the next interpretation. After all interpretations have been processed, the 
answers are checked to see if they are identical. In this case it doesn’t 
matter which interpretation is intended, and the system simply gives the 
answer. Finally, if there are differing answers, the user must be asked 
what he meant. Associated with each interpretation is a list of those places 
where it differed from others. This is produced automatically by each 
program which accepts multiple definitions (such as NMEANS and 
CMEANS). 
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Faced with an unresolvable ambiguity, the system looks through the 
list of interpretations for a conflict, then generates a response like: 

I’m not sure what you mean by “on top of” in the phrase “on top of 
green cubes”. 

do you mean: 
1 - directly on the surface 
2 - anywhere on top of? 

The response (a typed number) indicates which is meant, and all 
interpretations which involve the other meanings (there can be more 
than two associated with a single ambiguity) are eliminated. If there 
are still conflicting interpretations, another ambiguity is selected and the 
process is repeated until all those which have not been eliminated give 
the same answer, and it can be used as a response. 

8.1.11 To Be and To Have 

The verbs “be” and “have” have a complex variety of uses, and they 
appear in the system in two ways. First, in the syntax they are treated 
specially since they can occur as auxiliary verbs, as in “I would Irave 
been going”. In this use, they do not add any semantic information ex- 
cept for helping to determine features of the VG, such as its tense. Their 
other use is as main verbs in clauses like “Do you have a match?” and 
“He is wrong.” As a main verb, “be” is handled specially in the syntax 
since it can enter into constructions such as “there is” which do not 
appear with any other verb. However, the semantic analyzer does not 
know anything special about “be” and ‘have”. 

Be. The use of “be” depends on the specific constellation of objects 
and complements in the clause. The definition of its meaning is a LISP 
program of about 40 lines, which handles those meanings relevant to the 
BLOCKS world (for example, it cannot deal with a “role-playing” mean- 
ing, like “Laurence Olivier was Hamlet.“) 

Sentences with the feature THERE, involving a construction like 
“there is,” are represented by the concept #EXISTS, which involves 
an object and a time. This is necessary for objects which can be created 
and destroyed, as in “Was there a stack . . .?“. 

The other meanings of “be” involve intensive clauses which contain an 
object and a complement. One definition checks for COMPQ questions 
like “What color is the block?“, to generate a PLANNER expression 
(#COLOR :BLOCK $?Xl). If the complement is a definite NG, as in 
“Is the green block the biggest object?” or “What is the biggest object?“, 
the referent will have already been determined, and is inserted in a 
PLANNER expression (THAMONG *** (QUOTE( :OBJ) ) ), where 
:OBJ is the referent. This can function in two ways. If the subject is also 
definite, as in the first example, the * * * will be replaced by its referent, 
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and the statement will succeed only if the two are identical. If the subject 
is indefinite, the THAMONG statement will cause it to be assigned to 
the same referent as the complement. 

If the complement is a PREPG or a complex ADJG, like ‘bigger than 
a breadbox”, “be” is only serving as a place-holder which can accept a 
time reference. The semantic interpreter in dealing with a phrase like 
“on the table” in “Is the block on the table?” has already set up a reIation 
of the form ( #ON :BLOCK :TABLE ) which includes the appropriate 
time reference. In this case, the “be” program simply takes the RSS 
produced for the complement, and uses it as the semantic interpretation 
of the clause. 

The other possibilities for the compIement are an indefinite NC, a 
simple ADJG (e.g., a single adjective), or a new word. In the case of a 
NC, the complement NG contains additional information to be ascribed 
to the subject, as in “a large object which is a red block”. The PLANNER 
description of the complement is stripped from its OSS, and appended 
to the PLANNER description of the subject. If the subject is definite, 
as in “Is the biggest thing a red block?“, the referent is known, and can 
be plugged into the PLANNER description of the complement to see if 
the description applies. 

If the complement is a simple AD JG, the ADJG semantic specialist 
creates its OSS by taking the OSS for the subject, stripping away the 
PLANNER description, and using the rest as a skeleton on which to place 
the PLANNER expression produced by the adjective. Once this is done, 
it can be treated exactly like an indefinite NG. 

Finally, if the subject or complement is a new word (as in “A frobs is a 
big red cube.” or “A big red cube is a frob.“) a new definition is created 
as described in 8.1.7. 

Have. The definition of “have” is also used to handle the possessive. For 
the limited subject matter (and for much of English) this is a good 
approximation. There are cases where it does not apply-“the painting 
which John has” is not necessarily the same as “John’s painting.” The 
preposition “of” also makes use of the same definition. A more complete 
treatment would distinguish between the three, and this would involve 
only simple changes to the semantic programs. 

The interesting thing about “have” is that it is not used to indicate a 
few different relationships, but is a place-marker used to create relation- 
ships dependent on the semantic types of the objects involved. “Sam has 
a mother.” can be represented (##MOTHER-OF X SAM), “Sam has a 
friend.” is ( #FRIEND X SAM), “Sam has a car.” is ( #OWN SAM 
CAR), “Sam has support.” is (,#SUPPORT X SAM), “Sam has a hand.” 
is (#PART SAM HAND), etc. The definition of ‘<have” (or the pos- 
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sessive, or “of”) does not include within itself all of these different 
relations. A few interpretations (like have-as-part, owning, or having in 
physical possession) can be reasonably considered distinct meanings of 
“have”, and are included in its definition. The others, such as “mother” 
and “support” really are determined by the subject and object. Some 
systems use this fact to find the meaning of special phrases like “client’s 
lawyer” without doing syntactic analysis. Our system uses a different 
method, allowing a word to be defined as a #ROLE. “Mother” might 
be defined as: 

(NMEANS( ( #PERSON #ROLE) 
((#PERSON ***) 

( #MOTHER-OF *** ?) 
( #ROLE( ( #PERSON) ) ( #MOTHER-OF 

#1 #2>)> 
There are two new things in this definition. First, the semantic marker 

*#ROLE is added to indicate the type of definition. Second, a role 
definition is included. It contains a semantic filter for objects which can 
be used in the relation (in this case those which could have a mother), 
and a PLANNER statement indicating the relation (in the same syntax 
used by CMEANS). If the word “mother” is used in a phrase like 
“Carol’s mother” or “Carol has a mother” or “the mother of Carol”, the 
system will insert the right OSS to produce the PLANNER description 
(#MOTHER-OF $?Xl CAROL) If “mother” appears in any other form, 
the OSS will contain (#MOTHER-OF $?Xl 2) which uses the PLAN- 
NER symbol ‘?“, which matches anything. This goal will be satisfied if 
Xl is the mother of anyone at all. 

Through the ##ROLE mechanism, various arbitrary relationships can 
be expressed with “have” (or “of”, or possessives). There could be more 
than one #ROLE assigned to a word as well. For example “painting” 
would involve different roles for “Rembrandt’s painting” “George Wash- 
ington’s painting by Stuart”, “the Modern Museum’s painting.“, etc. 

8.1.12 Additional Semantic Information 

Using Clauses as Objects. In order to interpret a sentence like “Find 
a block which is taller than the one I told you to pick up.” the system 
must use a clause (“you to pick up”) as the object of a verb (“tell”). 
It generates a pseudo-object of the type #EVENT, and creates an OSS 
for that object. In the example mentioned, the clause “you to pick up” 
would have produced the RSS in Fig. 57. 

NGl is an OSS describing the object “the one”, which the system has 
set up as the object of the clause, and has interpreted as “block”. The 
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( (NGl ( #PICKUP NGl ( (PAST) NIL NIL NIL)) NIL) (0) ) 
rel PLANNER expression neg markers 

Figure 57-R% for “you to pick up” 

program SMCL4 takes this structure and produces a corresponding OSS 
shown in Fig. 58. 

A variable is generated for the event, of the form EV‘Xn, and a new 
PLANNER expression for the event is generated, including the event 
name as the second element. In the expression, the name of the OSS is 
replaced with its associated variable (in this case $?Xl) since the new 
structure will be used as part of the description of that object. The rec- 
ommendation list includes a theorem added by the system which deals 
with expressions involving time and event-names. The resultant OSS 
can be used just like any other OSS, as an object of a verb, preposition, 
etc. When PLANNER evaluates the expression, it may have the event 
already stored away, or it may have to deduce it from other events, using 
the theorem TCTE-PICKUP. The name of the resultant event is assigned 
to the variable EVXl. 

Types of Modification. There are a variety of ways in which a modifier 
can affect the meaning of the phrase or clause it modifies. A time modifier 
like “now” or “then” will modify the Time Semantic Structure associated 
with the clause; an adverb like “quickly” may set up a new relation such 
as (#SPEED $?EVl #FAST) using the name of the event; others may 
change the relation being constructed, using arbitrary functions, suiting 
the meanings of the modifiers. One special facility exists for making 
substitutions within an expression. If the PLANNER expression of a 
CMEANS or NMEANS definition is of the form (#SUBST al a2 bl 
b2 . . .), the effect will be to modify the existing semantic structure by 
substituting the atom a2 for al, b2 for bl, etc. No new expression is 
added to the PLANNER description. The word “move” might be defined 
using: 

(CMEANS( ( ( ( #ANIMATE) ) ( (##MANIP) ) ) 
(#PUT #2 LOC *TIME) (#MOVE)) ) 

( ( ( ( EVXl) 0 (THGOAL ( #PICKUP $?EVXI $?XI ( (PAST) NIL NIL 
NIL)) 

(THUSE TCTE-PICKUP) ) ) 
(0 #EVENT #THING) 
( #THING 1) 

EVXl 
(1 INDEF NIL) 
NIL) 

Figure 58-OSS for “you to pick up” 
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This indicates that moving is done by an animate object to a manipulable 
object, and involves putting it at the place “LOC.” The atom LOC 
would be given a 0% indicating an unknown place. The resulting RSS 
has the semantic marker ,#MOVE. The sentence “Move a block.” would 
create a goal ( #PUT NGl LOC), where NGl is a description of “a 
block”. The theorem for #PUT could then choose a block and place. If 
the sentence is “Move a block into the box.“, the final result should be 
(#PUTIN NGl :BOX). Th e modifying phrase makes a major change 
in the internal representation of the meaning. This can be done by defin- 
ing “into” to include among its meanings: 

(CMEANS( ( ( ( #MOVE) ) ( ( #BOX) ) ) ( #SUBST #PUTIN 
#MOVE #2 LOC) NIL) ) 

If a PREPG with the preposition “into” modifies a clause with the 
semantic marker ##MOVE, and the object of the preposition has the 
marker #BOX, then the definition applies. The RSS for the clause is 
changed by substituting #PUTIN for #MOVE, and the object of the 
preposition for #LOC. The special symbols ,#l, #2, #3, ***, and 
*TIME are treated as they would be in a normal CMEANS or NMEANS 
definition, being replaced by the appropriate object. 

Using Evaluation in CMEANS and NMEANS. Although every 
definition has the power to use programs, definitions using the standard 
forms CMEANS and NMEANS are forced into a rather rigid syntax 
which does not have a procedural character. To give them more flexible 
possibilities, there is an extra level of evaluation. If the PLANNER 
portion of a definition is of the form (#EVAL S) where S is any LISP 
atom or list structure, the form will be evaluated by LISP before the 
description is used in the definition, and its value used instead. This 
value will undergo the usual substitutions for #l, ,#2, *TIME, etc. This 
feature is of particular use in capturing the semantic regularities of the 
language by using auxiliary functions in defining words. For example, 
color adjectives like “red” and “blue” share most of their characteristics. 
They apply to physical objects, involve a relation with ,#COLOR, etc. 
Rather than define them separately, we would like a single function 
#COLOR which needs only to have the exact color specified. The 
dictionary definition of blue would then be ( #COLOR #BLUE). The 
function #COLOR can be defined in LISP: 

(DEFUN <#COLOR FEXPR (A) 
(NMEANS( (#PHYSOB) 

( #EVAL ( LIST( LIST (QUOTE #COLOR) 
(QUOTE ***) 
(CAR A))))))) 

When (#COLOR #BLUE) is evaluated, the #EVAL will produce 
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the form ( (#COLOR *** #BLUE) ), which will then be used by 
NMEANS in the usual way. 

As another example, the word “grasp” can be used to mean 
#GRASPING ( an object being held) or #GRASP (the action of closing 
the fingers around it). The difference depends on whether the VG is 
progressive or not. The function (PROGRESSIVE) finds out whether 
the clause is progressive, by looking at the verb and the tense, The 
definition of “grasp” can be: 

(CMEANS( ( ( (,#ANIMATE) ) ( ( #MANIP) ) ) 
( #EVAL (COND ( (PROGRESSIVE) (QUOTE 

( #GRASPING #2 ‘TIME) ) ) 
(T (QUOTE (#GRASP #2 

*TIME))))) NIL)) 

8.1.13 Some Interesting Problems 

There are many areas in which the semantic analysis needs to be 
refined and expanded. The system primarily illustrates how a number 
of aspects of semantics could be handled. This section describes a few 
places where modification might begin. 

Definite Determiners. In our system, a definite noun phrase is inter- 
preted as referring to a unique object or set of objects known to the 
hearer. In more general language use, definiteness is often used to convey 
new information. The phrase “my brother who lives in Chicago” can be 
said to someone who is not aware I have a brother, and the effect is to 
inform him that indeed I do, and to teIl him where this brother lives. 
Other nouns can describe “functions”, so that “the title of his new book,” 
or “my address”, are allowable even if the hearer has not heard the 
title or address, since he knows that every book has a unique title, and 
every person an address. Superlative phrases like “the tallest elephant 
in Indiana” also refer to a unique object, even though the hearer may not 
have seen or heard of this object before. 

Cases such as these can lead to problems of referential opacity. If 
your name is “Seymour”, and I say “Excuse me, I’ve never heard your 
name.“, it does not imply that I have never heard the name Seymour. 
The sentence “I want to own the fastest car in the world.” does not have 
the same meaning if we replace the NG with its current referent-I don’t 
want whichever car it is that happens to be fastest right now. 

Verb Tenses. The current system implements only a few of the pos- 
sible tenses-PRESENT, PAST, PRESENT IN PRESENT, PRESENT 
IN PAST, PAST IN PAST, and an elementary form of the MODAL 
“can,” A deeper analysis is needed to account for interactions between 
the order-of phrases and the possibilities for time reference. The medals, 
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conditionals, subjunctives, etc. need to be handled. This may demand a 
version of PLANNER which can temporarily move into a hypothetical 
world, or which has more power to analyze its own theorems to answer 
questions involving modals like “can” and “must”. 

Conjunction. Only the most elementary problems in conjunction are 
dealt with in the current system. For example, it does not know that 
“and” can be used to indicate temporal sequence (“We went to the 
circus and came home.“) causality (“We saw him and understood.“), as 
a type of conditional (“Do that again and I’ll clobber you!“), how to do 
something (“Be a friend and help me.“), etc. These uses relate to the 
discourse problem of the ordering of sentences. For example, “The light 
is on. He’s there.” indicates a chain of reasoning. 

In addition, no attempt has been made to disambiguate nested 
structures like “A and B or c”, or “the old men and women.” Syntactic 
criteria are not sufficient for these distinctions, and a more powerful 
semantic program will be required for such cases. 

Nonqntactic Relations. There are some places in English where the 
relation between a set of words is not indicated by syntactic clues, but 
is largely based on semantics. One example is chain of classifiers before 
a noun. In “strict gun law”, the law is strict, but in “stolen gun law”, the 
gun is stolen. It is possible to combine long strings like “an aluminum 
soup pot cover clearance sale”, in which a large amount of semantic 
information must be combined with the ordering to find the correct 
interpretation. The current system handles classifiers by assuming that 
they all separately modify the head. This needs to be changed, to use 
both the semantic markers and complex deductions to find the real 
relationships. 

8.2 The Semantics of Discourse 

In Section 1.6, we discussed the different types of context which can 
affect the way a sentence is interpreted. This section describes the 
mechanisms used by our program to include context in its interpretation 
of language. We have concentrated on the “local discourse context,” and 
the ways in which parts of the meaning of a sentence can be referred 
to by elements of the next sentence. For example, pronouns like “it” and 
“they” can refer to objects which have been previously mentioned or 
to an entire event, as in “Why did you do it?‘. The words “then” and 
“there” refer back to a previous time and place, and words like “that” 
can be used to mean “the one most recently mentioned,” as in “Explain 
that sentence.” 

In addition to referring back to a particular object, we can refer back 
to a description in order to avoid repeating it, We can say: “Is there a 
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small grey elephant from Zanzibar next to a big one?“. Sometimes instead 
of using “one” to avoid repetition, we simply omit part of a phrase or 
sentence. We can reply to “Would you like a corned-beef sandwich?” 
with “Bring me two.” or we can respond to almost anything with “Why?” 
In these examples, the second sentence includes by implication a part 
of the first. 

These features can appear just as well in a single sentence. In fact, 
some sentences would be difficult to express without these mechanisms, 
for example: “Find a block which is bigger than anything which supports 
it.” These mechanisms can refer back to anything mentioned previously, 
whether in an earlier sentence of the speaker, a reply, or something 
earlier in the same utterance. 

8.2.1 Pronouns 

First we will look at the use of pronouns to refer back to objects. Our 
robot has no trouble with the pronouns “‘you” and “I”, which always 
refer to the two objects :SHRDLU and :FRIEND. A more general 
program would keep track of who was talking to the computer in order 
to find the referent of “I”. 

When the NG program used by the parser finds a NG consisting of a 
pronoun, it calls the program which is the definition of that pronoun. The 
definitions of “it” and “they” use a special heuristic program called SMIT, 
which looks into the discourse for all of the different things they might 
refer to, and assigns a plausibility value to each interpretation, according 
to factors such as its position in the syntactic structure, and the form 
of its determiner. If more than one is possible, they are carried along 
simultaneously through the rest of the sentence, and the ambiguity 
mechanism decides at the end which is better, including the last-resort 
effort of printing out a message asking for clarification. If SMIT finds 
two different interpretations, and one is chosen because of a higher 
plausibility, the system types out a message to inform us of the assump- 
tion made in choosing one interpretation, as in Sentence 3 of Section 1.3, 
we get: 

BY “IT”, I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER 
THAN THE ONE I AM HOLDING. 

If a response from the user is needed, the request is typed in the same 
format as the message used for other ambiguities, as described in 
Section 8.3.1. 

In our discussion of pronouns, we will use “it” as typical. In most 
cases, “they” (or “them”) is treated identically except for checking for 
agreement with plural rather than singular. “He” and “she” never occur 
in our limited subject matter, but they would be treated exactly like “it”, 
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except for an extra check that their referent is animate and of the right 
gender. 

The first thing checked by SMIT is whether “it” has already appeared 
in the same sentence. We seldom use the same pronoun to refer to two 
different objects in the same sentence, so it is generally safe to adopt 
the same interpretation we did the first time. If there were several POS- 

sible interpretations, the system is careful not to match up one inter- 
pretation from one occurrence of “it” with a different one from another 
occurrence in building an overall interpretation of the sentence. 

Similarly, if “it” was used in the previous sentence, it is likely that if 
used again it will refer to the same thing. In either of these cases, SMIT 
simply adopts the previous interpretation. 

Next, a pronoun may be inside a complex syntactic construction such 
as “a block which is bigger than anything which supports it.” English 
uses the reflexive pronouns, like “itself” to refer back to an object in the 
same sentence. However, if it is necessary to pass through another NG 
node in going from the pronoun to the referent on the parsing tree, an 
ordinary pronoun like “it” is used, since “itself” would refer to the inter- 
mediate NG. Notice that if we replaced “it” by “itself” in our sentence, 
it would no longer refer to the block, but to “anything”. 

SMIT looks for this case and other related ones. When such a situation 
exists, the program must work differently. Ordinarily, when we refer 
to “it” we have already finished finding the referent of the NC being 
referred back to, and “it” can adopt this referent. In this case, we have 
a circle, where “it” is part of the definition of the object it is referring to. 
The part of the program which does variable binding in relating objects 
and clauses recognizes this, and uses the same variable for “a block” 
and “it”. 

The pronoun may also refer to an object in an embedded clause 
appearing earlier in the same clause, as in “Before you pick up the red 
cube, clear it off.” SMIT looks through the sentence for objects in such 
acceptable places to which “it” might refer. If it doesn’t find them there, 
it begins to look at the previous sentence. The pronoun may refer to any 
object in the sentence, and we cannot eliminate any possibilities on 
syntactic grounds. Some may be more plausible, however. For example, 
in Section 8.1.5 we discussed the importance of a “focus” element in a 
clause. We assume that “it” is more likely to refer to the previous focus 
than to other elements of the clause. Similarly, the subject is a more 
likely candidate than an object, and both are more likely than a NG 
appearing embedded in a PREPG or a secondary clause. 

The system keeps a list of all of the objects referred to in the previous 
sentence, as well as the entire parsing tree. By using PROGRAMMAR’S 
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functions for exploring a parsing tree, SMIT is able to find the syntactic 
position of all the possible references and to assign each a plausibility, 
using a fairly arbitrary but hopefully useful set of values. To keep the list 
of the objects in the last sentence, the semantic system has to do a 
certain amount of extra work. If we ask the question: “Is any block sup- 
ported by three pyramids?“, the PLANNER expression produced is: 

(THFIND ALL $?Xl (Xl) 
(THGOAL( #IS $?Xl ##BLOCK) ) 
(THFIND 3 $?X2 (X.2) 

(THGOAL( .#IS $?X2 #PYRAMID) ) 
(THGOAL( #SUPPORT $?X2 $?Xl) ) ) ) 

Once this is evaluated, it returns a list of all the blocks satisfying the 
description, but no record of what pyramids supported them. If the next 
sentence asked “Are they tall?“, we would have no objects for “they” 
to refer to. Special instructions are inserted into our PLANNER 
descriptions which cause lists like this to be saved. The actual PLANNER 
expression produced would be: 

(THPU’I’PROP (QUOTE Xl) 
(THFIND ALL $?Xl (Xl) 

(THGOAL (#IS $?Xl #BLOCK) ) 
(THPUTPROP (QUOTE X2) 

(THFIND 3 $?X2 (X2) 
(THGOAL( #IS $?X2 

#PYRAMID) ) 
(THGOAL( #SUPPORT $?X2 

$?Xl) > 
(QUOTE BIND) ) ) 

(QUOTE BIND) ) 

This only occurs when the system is handling discourse. 
Finally, “it” can be used in a phrase like “Do it!” to refer to the entire 

main event of the last sentence. This LASTEVENT is saved, and SMIT 
can use it to replace the entire meaning of “do it” with the description 
generated earlier for the event. 

When “that” is used in a phrase like “do that”, it is handled in a 
similar way, but with an interesting difference. If we have the sequence 
“Why did you pick up the ball?” “To build a stack.” “How did you do 
it?“, the phrase “do it” refers to “Pick up a ball”. But if we had asked 
“How did you do that?“, it would refer to building a stack. The heuristic 
is that ‘that” refers to the event most recently mentioned by anyone, 
while “it” refers to the event most recently mentioned by the speaker. 

In addition to remembering the participants and main event of the 
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previous sentence, the system also remembers those in its own responses 
so that it can use them when they are called for by pronouns. It also 
remembers the last time reference, (LASTTIME) SO the word “then” 
can refer back to the time of the previous sentence. 

Special uses of “it” (as in “It is raining.“) are not handled, but could 
easily be added as further possibilities to the SMIT program. 

8.2.2 Substitutes and Incompletes 

The next group of things the system needs to interpret involves the 
use of substitute nouns like “one”, and incomplete noun groups like “Buy 
me tu;o.” Here we cannot look back for a particular object, but must 
look for a description. SMIT looks through a list of particular objects for 
its meaning. SMONE (the program used for “one”) looks back into the 
input sentence instead, to recover the English description. “One” can be 
used to stand for part or all of that description. 

As with “it”, “one” can refer back to something in a previous sentence, 
the previous reply, or earlier in the same sentence. Here though, there 
are no restrictions about where in the parsing tree the description can be. 
“One” depends more on surface characteristics than on structural differ- 
ences. For example, it cannot refer back to a NG which is a pronoun or 
uses a TPRON like “anything”. Our program for “one” is not as complex 
as the one for “it”. It is primarily based on the heuristic of “contrast”. 
People often use “one” to contrast two characteristics of basically similar 
objects, for example, “the big red block and the little one.” The program 
must understand these contrasts to know that “the little one” means “the 
little red block”, not “the little big red block” or “the little block”. To do 
this, the system has as part of its semantic knowledge a list of contrasting 
adjectives. This information is used not only to decide how much of the 
description is to be borrowed by “one”, but also to decide which de- 
scription in a sentence “one” is referring to. If we say “The green block 
supports the big pyramid but not the little one.” it is fairly clear that 
“one” refers to “pyramid”. But if we say “The big block supports the 
green pyramid but not the little one.“, then “one” might refer to “block”. 
The only difference is the change of adjectives-“big” and “little” 
contrast, but “green” and “little” do not. The program looks for such 
contrasts, and if it finds one, it assumes the most recent contrasting 
description is the referent. If there is no contrast between the phrase 
being analyzed and any NG in the same sentence, previous answer, or 
previous sentence, it then looks for the most recent NG which contains 
a noun. 

It is interesting to note that SMONE causes the system to do a 
simplified parse of some of its own output. In order to use the fragment of 



162 TERRY WINOGRAD 

a NG it finds, SMONE must know which elements it can use (such as 
noun, adjective, and classifier) and which it cannot (such as number 
and determiner). For the noun groups in previous inputs, the parsing 
is available, but for the reply, only the actual words are available and 
parsing is necessary. 

An incomplete NG, containing only a number or quantifier, is used 
in much the same way as “one”, In fact, if we look at the series “Buy me 
three.” “ Buy me two.” “Buy me one.“, we see they are nearly identical, 
and the program handles such noun groups accordingly. 

8.23 Overall Discourse Context 

One way of using overall discourse context is to keep track of what 
has been mentioned earlier in the discourse. This is not the same as 
looking back in the previous sentence for pronoun references, as it may 
involve objects several sentences back or occurring in separate sentences. 
If there are many blocks are on the table, we can have a conversation: 
“What is in the box?” “A block and a pyramid.” “What is behind it?” “A 
red block and another box.” “What color is the box?” “Green.” “Pick 
up the two blocks.” 

The phrase “the two blocks” is to be interpreted as a particular pair 
of blocks, but there may be others in the scene, and nowhere in the 
dialog were two blocks mentioned together. The system needs to keep 
track of when things were mentioned, in order to interpret “the” as “the 
most recently mentioned” in cases like this. To do so, we use PLAN- 
NER’S facility for giving properties to assertions. When we mention 
a “green block”, the semantic system builds a PLANNER description 
which includes the expressions : 

(THGOAL( .#IS $?Xl ,#BLOCK) ) 
(THGOAL( #COLOR $?Xl .#GREEN) ) 

After the sentence containing this phrase has been interpreted, the system 
goes back to the PLANNER descriptions and marks all of the assertions 
which were used, by putting the current sentence number on their 
property lists. This is also done for the assertions used in generating the 
descriptions of objects in the answer. 

When the semantic programs find a definite NG like “the two red 
blocks”, the second NG specialist (SMNG2) uses PLANNER to make a 
list of all of the objects which fit the description. If there are the right 
number for the NG, these are listed as the referents of the NG, and the 
interpretation of that NG is finished. If there are fewer than called for 
by the determiners and numbers, SMNG2 makes a note of the English 
phrase which was used to build the description, and returns a message 
to the parser that something has gone wrong. If the parser manages to 
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parse the sentence differently, all is well. If not, the system assumes that 
the NG interpretation was the reason for the failure, and the system uses 
the stored phrase to print out a message, “I don’t understand what you 
mean by . . .” 

However, if there are too many objects which match the description, 
SMNGB tries to find out which were mentioned most recently. If an 
appropriate number cannot be found by looking farther and farther 
back in the discourse, a message of failure is returned to the parser as 
before, but a marker is set so that in case the sentence cannot be under- 
stood, the message returned is “I don’t know which . . . you mean.” 

8.3 Generation of Responses 

In this section we will describe how our language understanding 
system generates its linguistic responses. The system is not a general 
theory of discourse generation. The programs produce simple behavior 
which seems reasonable for carrying on a dialog about the robot world. 
In particular we dealt with four aspects of discourse production-pat- 
terned responses, appropriate answers to questions, generating descrip- 
tions of objects and events, and the production of fluent discourse. 

8.3.1 Patterned Responses 

The easiest way to get language behavior from a computer program 
is to include a set of fixed responses which are appropriate for the 
situations it will encounter. These responses can be made as complex and 
varied as we want, since they are created by the programmer, and the 
program only repeats them. Many language systems make heavy use 
of these fixed responses, and they are useful when the program has to 
indicate that something has happened, or that it has reached a certain 
point in its analysis. 

Our system uses several types of patterned response. First there is a 
set of simple responses for specific situations, e.g., “ok.” when a command 
is carried out, and “I understand.” when a declarative sentence is 
analyzed. A slightly more complex type of response involves “filling in 
the blank” with a phrase borrowed from the input. The simplest example 
in our system is “sorry, I don’t know the word . . .“. Slightly more 
complex types of response involve manipulating the determiners of the 
phrase which was input. For example, if the user types something like 
“the three green pyramids”, and the system cannot figure out what he 
is referring to, it types “I don’t know which three green pyramids you 
mean.” It has simply replaced “the” with “which” before filling the blank. 
The “I assume” mechanism does the opposite, replacing an indefinite 
determiner or quantifier with “the”. If we talk about “some green 
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pyramid” or “a green pyramid”, then later refer to that pyramid as “it”, 
the system can notify us of its interpretation of “it” by saying “by ‘it’ I 
assume you mean the green pyramid.” 

Our most complex “blank-filling” response is the one which handles 
ambiguity. It uses parts of the input sentence and pieces of the definitions 
of words stored in the dictionary. In the response to the sentence, "HOW 

many things are on top of green cubes?” the system typed: 
I’M NOT SURE WHAT YOU MEAN BY “ON TOP OF” IN THE 

PHRASE “ON TOP OF GREEN CUBES”. 
1 - DIRECTLY ON THE SURFACE 
2 - ANYWHERE ON TOP OF? 
The two phrases “on top of” and “on top of green cubes” were taken 

directly from the input, and the paraphrases “directly on the surface” 
and “anywhere on top of” were part of the dictionary definition provided 
for “on”. If the ambiguity is caused by multiple interpretations for a 
pronoun, the English phrases originally used to refer to the objects are 
used in the response choices. 

8.32 Answering Questions 

In order to carry on a discourse, we need to know what types of 
responses people expect to different types of questions. In Section 3.1 
we classified various types of questions syntactically, and we can use 
this classification to select appropriate answers. No attempt is made to 
produce full sentences, since in fact people rarely answer questions with 
sentences. The natural response to “Which block is in the box?” is “the 
red block”, or “the red one”, certainly not “The red block is in the box.” 

The first case is the WH- question, and within that class, the NGQ 
(see Section 3.1), involving a question NOUN GROUP, such as “which 
block”, “who”, “how many pyramids”, or “what”. We can divide these 
into three classes-‘how many”, “vague”, and “specific”. If asked “What 
is in the box?“, we can answer “a blue block and a pyramid” without 
being more specific at identifying them. If instead we are asked “Which 
block is in the box?” we must use a more specific description like “the 
large blue cube which supports a pyramid.” The program, which must 
generate both definite and indefinite English descriptions of particular 
objects, is described in the next section. The use of its results is straight- 
forward for NGQ questions. If the NG is “what”, we generate indefinite 
descriptions of the object or objects. If it is “which . . .“, we generate a 
definite description. “Who” is never a problem, since the system only 
knows of two people, “you”, and “I”. There are also default responses, 
so that a question like “Which block supports the table?” can be an- 
swered with “none of them.” 
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HOWMANY questions are answered with the number of appropriate 
objects, followed by “of them” to make the discourse smoother. 

The next type of question is the QADJ. The only three which have 
been implemented so far are “why” “when”, and “how”, but the others 
could be done in an analogous fashion. A “why” question is answered 
using the system’s memory of the subgoals it used in achieving its goals. 
If we can decide what event is being referred to in the question, we can 
see what goal called it as a subgoal, and answer by describing the higher 
goal in English. If the event was itself a top-level goal, it must have been 
requested as a command, then the response is “because you asked me 
to.“. “How” questions are answered using a program, described below, 
that creates an English description of an event from its PLANNER 
description. In general, it describes all of the events which were sub- 
goals used in achieving the event mentioned. It says “by , . .“, then lists 
each event in an “ing” form, as in: “by picking up a red block and 
putting it in the box.” 

“When” questions are answered similarly. In general, a time is specified 
by describing the top-level goal which was being carried out at the time, 
saying “while I was . . .” and using the “ing” form to describe the event. 

Finally we come to YES-NO questions which, paradoxically, are the 
most complicated. A one word answer is often impossible and rarely the 
best way to respond. If we ask “Does the block support three pyramids?“, 
and in fact it supports four, what is the correct answer? The system 
could ask for clarification of the implicit ambiguity between “at least 
three” and “exactly three”, then answer “yes” or “no”. But it is more 
efficient and helpful to answer “four of them”, leaving the speaker to 
interpret his own question. If there were only two pyramids, the system 
could respond “no”, but it would be more informative to say ‘<no, only 
two of them”. In any of these cases, we might be even more complete, 
and say something like “four of them: a blue one, two red ones, and 
a large green one.” 

There are three parts we can include in the answer-*‘yes” or “no”, a 
number, and a description of the objects. Remember that whenever pas- 
sible a YES-NO question is treated like a NC’ question by looking for a 
focus element (an indefinite NG in the question). A question like 
“Does the pyramid support a block?” is treated logically like the question 
“Which block does the pyramid support?“, or “How many blocks does 
the pyramid support ?” All three send a THFIND ALL request to 
PLANNER, asking for all of the objects fitting the description: 

(THPROG (X) 
(THGOAL ( #IS $?X #BLOCK)) 
(THGOAL ( #SUPPORT :BS $?X) ) ) 
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where :B5 is the system’s internal name for the pyramid being referred 
to by “the pyramid” (this would be determined in separate calls to 
PLANNER). In the case of the HOWMANY question we answer with 
the number of objects found. For the “which” question, we name the 
objects. In the case of a YES-NO question, we answer with all three 
kinds of information, saying “yes, two of them: a large red one and the 
green one.” 

The first element is “yes” if the answer is clearly yes (for example if 
the number is matched exactly, or the number in the original question 
was indefinite as in this example), ‘no” if it is cIearIy no (for example if 
there are fewer than requested, none at all, or the request was of a form 
“exactly . . .” “at least . . .” “more than . . .” etc. and was not met), and 
is omitted if there is a question about its interpretation (as described 
above). 

The second eIement, the number, is omitted if the number found 
matches the request (For example, “Are there three blocks?” is not 
answered redundantly, “yes, three of them: a green one and two large 
red ones.“). The phrase “of them” following the number is changed to 
“things” if the focus contains a TPRON like “anything”, or “something”. 
If the number found is less than that in the focus, it is preceded by 
“only . . .“, so the answer comes out “no, only two of them: . . .“) 

At the end of a response, we put the description of the objects found, 
unless the request used a special number format such as “exactly . . .“, 
“at least . . .” etc. in which case the system assumes the number is more 
important than the specific objects. We use the object-naming program 
in its indefinite mode. If the focus originally appeared as the object of 
a preposition, we repeat that preposition before the description to clarify 
the answer. Thus, “Is the pyramid on a block?” is answered “yes, on a 
large green one.” The unknown agent of a passive like “Is it supported?” 
is implicitly the object of “by”, so the answer is “yes, by the table.” If 
a YES-NO question contains no possible focus since all of its noun 
groups are definite, as in “Does the table support the box?“, the system 
answers simply “yes” or “no”. 

8.3.3 Naming Objects and Events 

The previous section covers the questions the system can handle, and 
the types of phrases it uses in response. We have not yet explained how 
it names an object or describes an event. This is done with a set of 
PLANNER and LISP functions which examine the data base and find 
relevant information about objects. These programs are limited. A de- 
scription should depend on what the person being spoken to is interested 
in and what he already knows. In the present system, however, certain 



UNDERSTANDING NATURAL LANGUAGE 167 

features of objects, such as their color and size, are used in all contexts. 
First we need to know how the object is basically classified. In the 

BLOCKS world, the concept #IS represents this, as in (#IS :HAND 
#HAND), (#IS :Bl #BLOCK), and (.#IS ‘#BLUE #COLOR). 
The naming program for objects first checks for the unique objects in 
its world, “I”, “you”, “the table ” “the box”, and “the hand”. If the object , 
is one of these, these names are used. Next it checks to see if it is a color 
or shape, in which case the English name is simply the concept name 
without the “#“. The question “What shape is the pyramid?” is answered 
“pointed.” since it has the shape #POINTED. If the object is not one 
of these and is not a #BLOCK, #BALL, or a #PYRAMID the program 
gives up. If it is one of those three, the correct noun is used (including a 
special check of dimensions to see if a #BLOCK is a “cube”), and a de- 
scription is built of its color and size. As it is built, the description is 
checked to see if it refers uniquely to the object being described. If so, 
the determiner “the” is put on, and the description is used without 
further addition. If there is only one ball in the scene, it will always be 
referred to as “the ball”. 

If the description includes color and size, but still fits more than the 
desired object, the outcome depends on whether a specific description 
or a nonspecific one is called for. If it is nonspecific, the program puts 
the indefinite pronoun “a” or “an” on the beginning and produces some- 
thing like “a large green cube”. If it is specific, more information is 
needed. If the object supports anything, the program adds the phrase 
“which supports . . .” then includes the English descriptions (indefinite) 
of all the objects it supports. If the object supports nothing, the program 
adds “Which is to the right of . . .” and names all of the objects to the 
left of the desired one. This still may not characterize the object uniquely 
in some situations, but the system assumes that it does. If at any 
point in the dialog, an object is given a proper name, it is referred to 
using only the noun and the phrase “named . . .“, as in “The block 
named superblock.” 

Naming events is relatively straightforward. With each event type 

(such as #PUTON or #STACKUP) we associate a small program 
which generates an English name for the event and combines it properly 
with the names of the objects involved. For example, the definition for 
#PUTON is: 

(APPEND (VBFIX (QUOTE PUT) ) 
OBJl (QUOTE (ON) ) OBJZ) 

VBFIX is a program which puts the verb into the right form for the kind 
of clause needed to answer the question (for example, “-ing” for answer- 
ing “how”, or infinitive for answering “why”). It takes into account the 
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changes in spelling involved in adding endings. OBJl and OBJ2 are 
bound by the system to the English names of the objects involved in the 
event, using the object-naming program described above. APPEND is 
the LISP function which puts together the four ingredients end to end. 
We therefore get descriptions like “by putting a large red cube on the 
table”. There is a special check for the order of particles and objects, 
so that we output “to pick up the small blue pyramid.“, but, “to pick 
it up” rather than, “to pick up it”. 

8.34 Generating Discourse 

The previous sections described a generating capability which can 
produce reasonable English answers to different types of questions, 
but used by themselves, the features described would produce awkward 
and stilted responses which would at times be incomprehensible. Even 
though we have mentioned some discourse-like patterns (like “. . . of 
them” following a number), we have not yet discussed the real problems 
of discourse. The system uses three different discourse devices in produc- 
ing its answers. These are much more limited than the range of discourse 
features it can understand, but they are sufficient to produce fluent 
dialog. 

The first problem involves lists of objects. Our initial way of naming 
more than one object is to simply string the descriptions together with 
commas and “and”. We might end up with an answer like “yes, four of 
them: a large blue block, a small red cube, a small red cube, and a small 
red cube.” To avoid this redundancy, the object-namer looks for identical 
descriptions and combines them with the appropriate number to get “a 
large blue block and three small red cubes.” (Note that it also must 
change the noun to plural). 

The next problem is the use of substitute nouns. We would like to 
respond to “Is there a red cube which supports a pyramid?” by “yes, 
a large one.” instead of “yes, a large red cube.” By comparing the 
English descriptions of the objects with the wording of the focus in the 
input sentence, we can omit those nouns and adjectives they share and 
replace them by “one”. 

The third problem is more serious, as ignoring it can lead to in- 
comprehensible responses. Consider the answer to question 36 in the 
dialog (“How did you do it?“). If we did not use the pronoun “it” or the 
determiner “that”, the response would be: 

By putting a large red block on the table, then letting go of a large 
red block, then putting a large green cube on a large red block, then 
letting go of a large green cube, then putting the red cube on a large 
green cube, then letting go of the red cube. 
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How many different blocks and cubes are involved? In describing events, 
we must have some way to indicate that we are referring to the same 
object more than once. We can do this using “it” and “that”, and at the 
same time can use these words to improve the smoothness of the dis- 
course in other ways. The system has heuristics which lead it to use “it” 
to refer to an object in an event it is describing whenever: (1) the same 
object was called “it” in the question; (2) the object was called “it” in 
the question preceding the current one, and “it” was not used in the 
current one; (3) the object has already been named in the current 
answer, and was the first object in the answer; or (4) no objects have 
yet been named in the current answer, and the object was the only one 
named in the previous answer. 

To refer to an object already named in the current answer, other than 
the first, the program applies the determiner “that” to the appropriate 
noun, to get a phrase like “by putting a green block on a red cube then 
putting that cube in the box.” 
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Appendix A 

INDEX OF SYNTACTIC FEATURES 
Italicized number indicates primary reference for that feature. 

-OB, 71 
-0B2, 71 
ACTV, 54, 55, 65 
ADJ, 56, 62,, 66 
ADJG, 57, 61-62, 66 
ADJQ, 48, 49 
ADJREL, 48, 51, 53 
ADJUNCT, 48, 50, 60, 61, 62 
ADV, 66 
ADVADV, 66 
ADVMEASQ, 48, 49 
ADVMEASREL, 48, 51 
AGENT, 54, 56, 60, 61 
AND, 72 
AS, 61, 62 
AUX, 70, 71 
BE, 54, 70 
BINDER, 66 
BOTH, 72 
BOUND, 48, 50 
BUTNOT, 72 
CLASF, 56, 57, 66-67 
CLAUSE, 4756, 57, 70, 71 
CLAUSEADV, 66 
COMP, 48, 49, 54, 55, 58, 60, 61 
COMPAR, 57, 61, 66 
COMPONENT, 72 
COMPOUND, 71-73 
COMPQ, 48, 49 
COMPREL, 48, 51, 53 
DANGLING, 48, 49, 51, 53,61 
DECLARATIVE, 48, 67, 68 
DEF, 58, 67 
DEFPOSS, 58, 60, 69 
DEM, 58, 68, 69 
DET, 56, 57, 58, 67-68 
DOWNQ, 48, 50 
DOWNREL, 48, 52, 53 
DPRT, 54, 55 
EN, 48, 51, 64, 65, 70 
FINITE, 64, 65 
FUTURE, 62, 63 
IMPERATIVE, 47, 48, 65 
INCOM, 58, 59, 68 

INDEF, 58, 59, 68 
ING, 48, 50, 51, 52, 64, 65, 70 
INGOB2, 70 
INT, 54,71 
IT, 54, 56 
ITRNS, 54,70,71 
ITRNSL, 54, 55, 70, 71 
ITSUBJ, 48, 53, 56 
LIST, 72 
LISTA, 72 
LOBJ, 48, 55, 60, 61 
LOBJQ, 48 
LOB JREL, 48 
MAJOR, 48, 49 
MASS, 68 
MEASQ, 48, 50 
MEASREL, 48, 51 
MODAL, 62, 63, 64, 70, 71 
NDET, 58 
NEEDB, 69 
NEG, 58, 65, 68 
NFS, 58, 60, 69 
NG, 56-60, 61, 62 
NGQ, 48, 49 
NGREL, 48 
NONUM, 68 
NOR, 72 
NOUN, 56, 57, 68-69 
NPL, 58, 60, 68, 69, 70 
NS, 58, 60, 68, 69, 70 
NUM, 56, 57, 69 
NUMD, 58, 59, 69 
NUMDALONE, 69 
NUMDAN, 69 
NUMDAS, 69 
NUMDAT, 69 
NUMD, 58, 59 
OBJ, 48, 58, 59 
OBJl, 48, 53, 55, 58 
OBJlQ, 48, 50 
OBJlREL, 48, 51 
OB JlUPREL, 53 
OBJ2, 48, 58 
OBJZQ, 48, 50 
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OBJSREL, 48, 51 

OBJQ, 48 
OBJREL, 48 
OF, 58, 59, 60, 61 
OFD, 68 
OFOBJ, 58, 59 
OR, 72 
ORD, 56, 57, d9 
PAST, 62, 63, 64, 71 
PASV, 54, 55, 64, 65 
POSES, 58, 59 
POSS, 58, 59 
PREP, 60, 69 
PREP2, 69 
PREPADV, 66 
PREPG, 57, 60-61 
PREPOBJ, 48, 52,58,59, 60 
PREPQ, 48, 49 
PREPREL, 48, 51, 53, 61 
PRESENT, 62, 63, 64 
PRON, 69 
PRONG, 58, 59, 60 
PRONREL, 69 
PROPN, 70 
PROPNG, 58, 59 
PRT, 54, 55, 70 
Q, 56, 57, 60, 61 

QADJ, 70 
QAUX, 70, 71 
QDET, 67 
QNTFR, 58, 59, 67, 68 
QUEST, 58, 61, 69 
QUESTION, 48, 49, 70, ‘71 
RELDEL, 48, 52 
RELPREPG, 60, 61 
REPOB, 71 
REPORT, 48, 52, 71 
RSNG, 48,50,52,56, 60,71 
RSQ, 48, 51, 57 
SEC, 48 
SHORT, 48, 49, 61 
SHORTREL, 51, 53 

SUBING, 48, 52, 71 
SUBJ, 48, 52, 54, 58, 59 
SUBJFORK, 73 
SUBJQ, 48, 49 
SUBJREL, 48, 51 
SUBJT, 54, 58 
SUBJTQ, 48, 49 
SUBJTREL, 48, 51, 53 
SUBQ, 48 
SUBREL, 48 
SUBTO, 48, 52, 71 
SUBTOB, 71 
SUP, 57, 66 
THAN, 62, 63 
THAT, 48, 52 
THERE, 49, 54 
TIMl, 66 
TIME, 58, 59, 66 
TIMEQ, 48, 50 
TIMEPEL, 48, 52 
TO, 48, 50, 51, 52, 53, 65, 7 1 
TODEL, 65 
TPRON, 57, 70 
TPRONG, 57, 58 
TRANS, 54, 55, 71 
TRANSB, 54, 71 
TRANS2TOQ, 48, 50 
TRANS2TOREL, 48, 51, 52 
TRANSL, 54, 55 
UPQUEST, 61 
UPREL, 48, 53, 61 
V3PS, 70 
VB, 70-71 
VBAD, 66 
VBFORK, 73 
VFS, 70 
VG, 62-65, 71 
VPRT, 71 
WH-, 48, 49, 51 
WHRS, 48, 51 
WORD, 66-71 
YES-NO, 48 
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Appendix 3 - Sample Yarsings 

((( HOir NANX EGGS ijOULD YOU HAVE BEE# GOIKG TO USE IN THE 

CAKE IF YOU HADN'T LEARWED XOUfi MOTPER'S RECIPE YAS 

YRONGl 

(CLAUSE MAJOR QUEST NGQUES POLRL ACT\ OBJlQ TRANS) 

it (HGY ~'IANY EGGS) 

(NG QUEST HOWMANX NGEF NPL DET) 

((b,OW (QCET)) (IIAN!! IQDET)) (EGGS (NOUN NPL)l)i 

(WOULD cva RUX NODAL PRUX)) 

((YOU) (NC SUBJ DEF NS NPL) ((YOU (kItON NPL NS SUBJ OEJ)))) 

((HAVE BEEN GOIIU'G TO USE) (VC RODAL NAGR (FUT PAST ROEAL)) 

((YOULD (VB AUX MCEAL QAUXl) 

(HAVE (HAVE VB AUX INF TRANSil 

(BEEH (RUX VB BE EN)) 

(GOING (VB ITRLS ING)) 

t IT0 (TO)). 

(USE (VB INF TRAliS MVB)))) 

((IN THE CAKE) (PREPC) 

((IN (PLACE PREP PLACE11 

((THE CAKE) 

(NC OBJ DET NS DEF) 

((THE (DET NPL NS LEFII (CAKE (NOUh KS)))))) 

((IF YOU HADN'T LEARNED YOUR HOTHER'S RECIPE WAS WRONG) 

(CLAUSE BOUND DECLAR ACTV TRANS) 

((IF (BINDER)) 

((YOU) (NC SUBJ DEF NS NPLI ((YOU iPRON NPL NS SUBJ OBJ))1) 
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(tt!ADN*T LEARNED) 

(VC VPL'v3PS NEC (PAST PAST)) 

I(HADw'T (RAVE vB AUX TRANS PAST VPL 113~s VFS NEGII 

(LEARNED (VB TRANS REPOB PAST fw MVBJFJF 

((YOUR MOTHER'S RECIPE WAS WRONG1 

(CLAUSE RSNC REPORT OBJ OBJl DECLAR BE INTI 

(((YOUR MOTHER'S RECIPE) 

(NC SUBJ NS DEF DET POSES) 

(((YOUR IIOTHER'S) 

ING SUBJ NS DEF DET POSES POSS) 

(((YOUR) (NC SUBJ POSS) 

((YOUR lPRON NPL NS SUBJ OBJ POSS)kb) 

(PIoTHER'S (NOUN WS POSSIIFF 

(RECIPE (NOUN NS)))F 

((WAS) (VC V3PS VFS (PAST)) 

((WAS (AUX VB BE V3PS VFS PAST MVBF))) 

,ttw~oNc) (ADJG Q COMP) ((WRONG (ADJ)I))I))))~)) 
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PICK ltP ANYTHING GREEN, AT LEAST THREE OF THE BLOCKS, AND 

EITHER A BOX OR A SPHERE kHICH IS 6ICCtR THAN ANY BRICK ON THE 

TABLE. 

ft(PIch UP ANYTHING GREEN /, AT LEAST IHREE CF THE BLOCKS /, ANL 

EITHER A BOX OR A SPHERE tiHICti IS EICGER TtiAN ANY BRICK ON 

THE TABLE) 

(CLAUSE MAJOR IHPER ACTV TRAHS) 

(((PICK) fVC IMPERI ((PICK (VPRT VE iNF TARNS MVBI))) 

(UP (PRTtI 

((ANYTHING GREEN /, AT LEAST THREE OF THE ELOCKS /, AND 

EITHER A BOX OR A SPHERE iHICti IS iiIl;iER THAN ANY 

BRICK ON THE TABLE) 

(NC OBJ OBJl EiTHER COMPOtiND LIST NS) 

(((ANYTHINS GREENI ING OBJ OBJi TFRONt 

((ANYTHING (NS TPRO!i:t {GREEN (ADJllIt 

((AT LEAST THREE OF THE BLOCKS) 

(h-6 OBJ OBJI COMPONENT NUMD NUM HPL DET OF) 

((AT (AT)) 

(LEAST (NUtID NUMCAT)) 

(THREE (NUM)) 

((OF THE BLOCKS) 

(PREPC OF) 

((OF (PREP)) 

((THE BLOCKS) 

(NG OBJ DET NPL DEFt 

((THE (DET NPL NS LEF)) (BLOCKS (NC;IN NPL)))I)II) 
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((A 60x OR A SPHERE ‘VIHICH IS bICGER THAN ANY BRICK ON THE 

TABLE) 

(NC OBJ OBJl COHPONENT OR COI?POUND BOTH h's) 

(tfil BOX) ING OBJ OBJl COI"IPONENT 3ET RS INDEF) 

ItA (DET NS INDEF)) (BOX (NOUN NSI))) 

((A SPHERE LlHICti IS BIGGER THAN ANY BRICK ON THE TABLE) 

(NG OBJ OaJl COIIPONENT DET NS INDEF) 

t(A (DET NS INDEF)) 

(SPHERE (NOUN NS)I 

((WHICH IS BIGGER THAN ANY BRICK ON THE TABLE) 

lCLAJSE RSQ SUBREL BE I.YT) 

(((WHICH) (NC RELtiD DEF NPL) (('k;HICH lNPL)))l 

((ISI (VG V3PS (PRES)) 

((Is (Aux VB BE v3Ps FRES wa)))) 

((BIGGER THAN AhY BRICK ON THE TABLE1 

(ADJG Q COIP COIIPAR THfiN) 

[(BIGGER (ADJ COIlPAR)) 

(THAN (THAN)) 

((ANY BRICK ON THE TABLE) 

(NC SUBJ COnPRR DET HS GNTFRI 

((ANY (DET NS NPL QNTFR)) 

(BRICK (NOUN NS)) 

((ON THE TABLE) 

(PREPG Q) 

(ION (PREP PLACE)) 

I (THE TABLE) 

(NG OBJ DET NS DEF) 

((THE (DET NPL Ns DEF)) 

(TABLE (NOUN NS))))))))))))))))))))) 
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kppendix C - Sample BLOCKS Theorems 

IDEFTHEOREPI TA-CONTAIN 

(THANTE (X Y 21 

[#AT S?X ?I 

ITHGOAL (#hANIP $?Xb) 

(THGOAL (#SUPPORT $?Y $?X)I 

(THOR fTHAND (THCOAL (#IS $?Y #BOX)) 

(THVStTQ $-Z S?Y)I 

(THGOAL (#CONTAXI $?Z !j?Y))) 

(THRSSERT I&CONTAIN $?Z $?X)b), 
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(DEFTHEOREM TC:MAKESPAcE 

(THCONSE (SURF SIZE OaJ SFACE X (Ir'HY lEV)I EVI 

(#FINDSPACE STSURF STSIZE STOBJ SZSPACE~ 

(TtiNoT (THGOAL (#IS S?SURF ~BOX))) 

(MEHORY) 

TAG 

ITHAND lTHCOA1 (rlSiJPPORT S?SURF $-Xl) 

(THGOAL (#GET-RID-OF $?X, 

(TtiUSE TC-GET-RID-OF))) 

(THOR (THGOAL (#FINDSPACE s?SURF 

S?SLZE 

S?OBJ 

STSPACE) 

(THUSE TC-FINDSPACEI) 

(THGO TAG11 

(REMOREND (#MAKESPACE S?EV STSURFII)) 

(DEFTHEOREM TC-EORE 

(THCONSE (MEASURE X Yl 

(#MORE $?MEASURE $?X S?Y) 

(THVSETQ S~MEASURE 

(GET S?I'lEASURE (QUOTE HEASFNI)) 

(CFEATERF (S?MEASlJRE $?XI 

($?REASURE $?Y)))1 
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(DEFTWEORE!! TCtON 

(THCONSE (X Y Zl 

(#CN $?X S?Y) 

(TFiOR (THCOAL I#StiFPI)RT $?Y $?X,, 

(THAND (TEASVAL $?X) 

(THGUAL (#SUPPORT S-2 S?X,i 

(THGOAL (#ON S?Z $?Y1 

(THUSF TC-ONI)))l) 

(DEFThEOREk TC-PICKUP 

(THCONSE (X (WHY (EV)) EV) 

(#PICKUP S?XI 

(tlEWORY~ 

(TRGOAL (#CRRSP S?X) (THUSE TC-GRASP)) 

(THCOAL (1RAISEHANDI 

(THNOCB) 

(THUSE TC-RAISEHAND)) 

(~~E~IORENL (*PICKUP $?EV s?x,),, 

(DEFTHEORER TCT-PICKUP 

(THCONSE (X EV TIME) 

(#PICKUP S?X $?tIYIEI 

(THOR (THAND (TEGOAL (dPICKUPS?EV S?Xll 

(TIMtCHK S?EV S?TIJE)) 

(THGOAL (#FlCKUP S?EV S?X S?TInE, 

(THUSE TCTE-PICKUP))))) 
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(DEFTHEOREM TCTE-PICKUP 

(TtiCONSE OI EV EVENT TIHE) 

(#PICKUP $?EV $?X $?TItlEb 

(THOR (THAND (THGCIAL (#PICKUP S?EV $?Xlt 

(TIMECHK $?EV S?TIME))) 

(THSUCCEEDII 

(THAISONG S?EVENT EvEKTLISTF 

(MEMQ (GET S?EVENT (2UOPE TYPEI) 

(QUOTE (#PUTON #GET-kLD-OF))) 

(TIMECHK S?EVENT $?~IflEb 

(THOR (THGOAL (#PUTON S?EVENT $?X ?I) 

ITHGOAL (#GET-RID-OF S?EVENT S?Xl)) 

(TFiVSETQ $-EV (RRKESYI? (QUOTE EFI) 

(AND (PUTPROP $?EV 

(PUTPROF $?tv 

(GET $?EVENT (QUOTE END)) 

(CUOTE START)) 

(QUOTE END)) 

(PUTPROP $?EV (QUOTE #PICKUP) (QUOTE TYPE)) 

IPUTPROP ;?Ev $?EvENT (QUOTE vtliY)I 

(SETQ EVENTLIST (CONS S?EV EVENTLIST)b 

(ThASSEkT (CPICKUP $?CV $?Xtl)) 

(DEFTHEORER TE-CONTAIK lTHEPASING (X Y: 

(kAT S?X 7) 

LTHGGAI, (rtCONTAIN S-Y $?A11 
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Appendix D - Sample PROGEAMHAR Program 

Excerpt from Noun Group Parser 

CETl 

(COND l(ISQ H NSl fFQ NS)) (1' (FG NPL)I) 

(OF. NN IAND (Fj LURBER) IGO INCOM~~I 

NL'K:EIER 

(FQ ?ZE?) 

((Kc! OF) OF ADJ) 

CNUM 

((152 k NOhUM) OF NIL) 

((ANC (PARSE NU?ll (FQ N'j!+l)) NIL OF1 

((COND (IEC tSl'l H) 1) IF.ND IC: NS) (3u NPL))I 

(LIZ;: NPL) (RQ NS))I 

NIL 

(NUMD) 

IticOM~ 

((EL (CADOR (NB HI1 (r; NO)! ADJ NIL) 

OF 

IfPNC INQ OF) (PARSE PREPC OF)) SMOF Nii) 

tfti2 (CADDR (~6 HI) (Q NONE)) INCOM ACJ) 

SMOF 

(FQ OF) 

(IOR SEN lSMNG0Fl (NOT (POP!)) RETS:! INCON) 

RDJ 

f(YhHSE ADJ) ADJ ICLASF NILt 

EPR 

((CR (1SQ H SUP) (ISQ H COMPARL) NIL RCDIJC) 
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(FQ ADJ) 

(AND (EQ (CADDAR Nl (Q c;F)) 

(PARSE PREPG OF) 

(CR SHN (SHNGOF) (AND (ERT NOUN SHNCOF3) (CO FAIL))) 

(FQ OF1 

ICO RETSH)) 

(CO INCOM) 

CLASF 

((GR (PARSE VB IN6 ICLASF)) (PARSE VB EN (CLASF)) (PARSE CLASF)) 

CLASF 

NIL 

REDUC) 

NOUN 

((PARSE NOUN) NIL REDZI 

((AND (CQ TIME) (NOT (ISQ H TIM1111 RED1 NIL) 

(SET2 T1 FE) 

(COND (IAND [ISQ H MASS1 (OR (CQ PART) (NOT (CQ DET))L) 

(FQ NASS))) 

(COND ((NOT CISQ H NPLI) (RQ NPL PART111 

fCONC ((NOT (ISQ H NS)) (RQ NSI)) 

lC@ND ((AND (NOT (CQ DETI) (NOT (CC NUHD))) (* H) 

(TRNSF NPL MASS))) 

((FEET FE (Q (NS NPL PART flASS11) NIL kEDQ) 

S?ING 

((OR (NOT (CQ OFOBJ)) (CQ DETFF NIL FAIL) 

(OR SHN (SHNCl) (AND (ERT NOUN SMNG~) (CO FAIL))) 

((NOT (ISQ H POSti)) NIL POSS RETS!'ll 
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IfAND INEXTW TOI 

(MEET FE (Q fCOMP SIJBJII) 

(PARSE CLAUSE RSQ TO) 

(OR SMN (SHRSQ (SM H) SH, fG0 POPRET))) 

RLTSM 

NIL) 

f(RNC (OR fNEXTW AS) fNi) COIlPAR)) 

IPRRSE ADJC THANNEED) 

(OR SMN 

fANI) (NULL N) 

ICQ SUBJI 

(ISQ f* C PV) AUXI 

fISL! PT BE) 

IGO POPBET)) 

(SMPREP (QUOTE ADJII 

(GO POPRETIIL 

RETSR 

NIL) 
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Appenjix E - Salpie Dictionary Entries 

Syntactic Definitions 

(DEFLIST n’OR3 

(LITTLE (ADJ)) 

(LD?IC (ADJ) 1 

(!lAKE IVB INF FRANS)) 

(lOYE (Vtl INF TRANS)) 

(NAME (NOUY NS V3 INF TRANS )) 

(Z(ARR3U lADJ)I 

UICE(ADJb) 

(3BJECT (NOUN NS)) 

IJFF (PRTI) 

(3UT (PRT)) 

(Pxcic ( VPRT va INF TRANS) 1 

( PtiT (INF PAST VB TRANSL VPRT)) 

(POINTED IRDJbl 

(PYRA3ID (NOUN NSI) 

(RED (ADJ)) 

(RELEASE (VB TRANS INF.) b 

(RIGHT (NOUN NS)l 

(ROdND (ADJIb) 

f DZFLIST YORDL 

(6ECAN (BEGIN (PAST) (INF))) 

[CAVE (GIVE (PPST) (INF))) 

t;Rrr’ (SEE IPAST) (INF))) 

(l.O:D (TELL (PAST) 1INFl))) 
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Semantic Definitions 
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(DEFLIST SMNTC 

(A ((DET T))) 

(ABOVE ((PREP ((T f#LOC dABOVt: T)))))) 

(AFTER ((BINDER (END NIL)))) 

IALL (IDE? (COND ((C1, OF) (Q ALL)) 

I(flEET (Q (NIJH DEF)l FZ) (Q DEF)) 

(IQ NDErl))))) 

(BALL ((NOUN (NMEANS ((#!lR.YIP t)ROJND) 

((#IS *** #BALLI)))))) 

LBIC ((ZEASIJRE ((#SIZE (#PHYSOa) T))) 

iADJ (NEIEANS ((#PHYSOB XdIZ) 

((#;1SRE #SIZE *** (200 200 

200)))))))) 

IBLACK ((AD.J (#COLOR #BLACK)))) 

IBLOCK (INOUN (NREANS ((II5RNIP #RECTANCJLARI 

ILkIS *** S3LO;K)))b)tl 

(BLUE ((ADJ (#CaLOR &BLUE)))) 

cay ((PREP (I? lCI1EANS ((LI1PHLSOB)! (l#PHYSOB))l 

<#NEXT0 Ul #2 *l'II?Eb 

NILl)))))) 

(CCLOR :ih‘OUh' (N!lEA#S (I#CGLoF,) lidIS *** #COLOR))))))) 

(:ONTA:N (LVB ((TRANS (CYEANS (I(trlBOX)! f(#PHYSOB:)l 

(#CONIAX.i bi tli 'Tl?lEi 
.I;ILl 
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[((t#CONSFRUCT)F 

((#THIN;))) 

(#PART #2 Cl *TIME) 

NIL)I)))IF 

(CUBE ((NOUN (NIlEANS t(W!lANIP #RECTANGULAR) 

((#IS *** #BLOCK) 

ItlEQDIR ***)))Fb)) 

(EVERYTHING ((TPRON (QUOTE ALL)))) 

(FEdER IINU3D (LIST tQ ~1 NUI1)))) 

(FOUR ((NUI 411) 

(FRIEND ((NOUN (NHEANS ((#PERSON), 

fiRIS *** BPERS3Nl))b))) 

(CRAB ((VB ((TRANS (#GRASP)))))) 

(GRASP ((V8 lfTRANS (#GRASP)))))) 

(1 ((RRON (SETQ Sil (Q (FRIEND)))))) 

(IT ((PRON (SFIIT (Q IT))))) 

(NICE (IADJ (NXANS ((dTHIXCF 

((ALIKE :FRIEND **k')lFF))\ 

(VOd ((ADV (OR (EQ (CADR (ASSU (QJOTE TIME) FE)) 

(QUOTE :NDtil) 

(ERT NOlJ DEFIYITION))Il) 

(THE ((DET T))) 

(THEY [(PRON (SMIT (Q THEY))))) 

(THICK (IADJ INHEANS ((IIPHYSDB) ((RRORE #TdICKNESS 

*** 

to 200 0)))))) 

(HEASIJRE ((BTHICKXESS (:IPZfSOB) T)))lf 
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i THIN (( AD.J f NfiEANS (f YPHYSOB 1 (L #aORE #THICKNESS 

(0 200 01 

***)1)1) 

(FlEASURE JfdTdICKNESS IdPdYSOB) NIL)l))) 

I rHINU fi NOUN (NflEANS (idTHING rtVAGUE ifPHYSOBl 

((#IS ***- ?))))))) 

(WHO [(PRONREL [SETQ SM (QUOTE IANII'lATE)II) 

(PRON (SETQ S!l (QUOTE tANIF!A~E))II)l 

(wHx ((QADJ (Fp d~f)b))) 

189 
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ApPendix F - PLANRER Data for Dialog in Section 1.3 

tt1s :Bl #BLOCK) 

(#IS :b2 kPYRAMID1 

fit15 :B3 bFLOCK) 

(#IS :B4 bPYRARID1 

(#IS :B5 kpYRA?lIDl 

(#IS :66 #BLOCK) 

(bIS :b7 bBLOCK) 

(WI5 :blO n6LOCKl 

fUIS #RED #COLOR) 

(#IS #BLUE #COLOR) 

(#IS btREEh #COLOR) 

(#IS n+,HITE bCOLOR1 

(#IS XBLACK bCOLCR1 

(#IS bhECTAhCULAR bSHhPE) 

(#IS bROUND YSHAPE) 

(bIS #FOIhTED #SHAPE) 

(#IS :SRRDLU dROEOT) 

(UIS :FRIEND bPERSOH1 

(#IS :hAND bHAND1 

f U&T :Bl (100 100 iIll 

I #AT :L2 (100 100 1001) 

(#AT :B3 (400 0 011 

IXPT :B4 (640 640 1)) 

(#kT r64 (5GO 1oc 2COl) 

(#AT :rJ6 (0 300 0)) 

(b!?AhIP :a61 

(#MAhIP : 07) 

(dnAhx~ :aiot 

(bSUPPORT -TABLE :BlI 

(#SUPPORT :TABLE :B31 

(bSUPPORT :BOX :84) 

(CSJPPORT :TABLE :BiO) 

(bSUPPOfiT :TABLE :bbl 

(#SUPPORT :TABLE :BOX) 

(#AT :80X (600 600 0)) 

(bIS :BOX #50X1 

(AIS :TABLE #TABLE) 

IbCOhTAIh :BOX :B41 

(PSHAPE :bl #kECTANCULARI 

(#SHAPE :63 akECTkNGl!LAR) 

(b!ihAYE L B2 bPtiIhTED1 

(bS!lAPE :B? 9POIHTEDl 

(bSHAt=E :B5 UPOINTEPI 

(USHAPE :Bb dhE'IANGULAR1 c 

fUL;iiFir-E :B7 bRtCIhNGULA4) 

(#SHAPE :BiS RiiECIJ,NCULAhl 

(#COLOR :Gl bREDi 

(#CiJLOR : 22 #:;FEE,vl 

(#CCLOR :d? nCREENl 

(bCOLCR :B4 s2LUt) 
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(IAT :a7 (0 243 300)) (#COLOR :BS *RED) 

(#iiT :a10 i 300 640 01) 

~PSUPPORT :a1 :a21 

(#SUPPORT :B3 ~85) 

IttSUPPGRT :a6 ~87) 

I#CLEARTOp :B2) 

(#CLEARTOP :B4) 

IdCLZARTOP :BS) 

(1CLZARTOP :B7) 

(#CLEARTOP :BlO) 

(#MAdIP :Bl) 

frlfl?AXIP :a21 

I#IANIP ~83) 

(#'IAXIP :B4) 

I#?lANIP :BS) 

t#CJLOR -86 #aED) 

1 #COLOR : 37 ti,REEN) 

1 kCOL3H :a10 #BLUE) 

IrlCOLOR ; aox ~;<HIFX) 

(#COLOR :TABLE rtBLlCK) 

(#CALL :SrlRDLU SHR3LU) 

(#CALL :FRIEND YrJU) 

191 


