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Abstract
The Winograd Schema Challenge (WSC), pro-
posed by Levesque et al. (2011) as an alter-
native to the Turing Test, was originally de-
signed as a pronoun resolution problem that
cannot be solved based on statistical patterns
in large text corpora. However, recent studies
suggest that current WSC datasets, even when
composed carefully by experts, are still prone
to such biases that statistical methods can ex-
ploit. We introduce WINOGRANDE, a new
collection of WSC problems that are adver-
sarially constructed to be robust against spuri-
ous statistical biases. While the original WSC
dataset provided only 273 instances, WINO-
GRANDE includes 43,985 instances, half of
which are determined as adversarial. Key to
our approach is a novel adversarial filtering
algorithm AFLITE for systematic bias reduc-
tion, combined with a careful crowdsourcing
design. Despite the significant increase in
training data, the performance of existing state-
of-the-art methods remains modest (61.6%)
and contrasts with high human performance
(90.8%) for the binary questions. In addition,
WINOGRANDE allows us to use transfer learn-
ing for achieving new state-of-the-art results
on the original WSC and related datasets. Fi-
nally, we discuss how biases lead to overesti-
mating the true capabilities of machine com-
monsense.

1 Introduction

Commonsense reasoning capability is one of the
key differences between human intelligence and
modern AI. Most successful modern AI systems
rely primarily on statistical patterns without acquir-
ing rich background knowledge about the physical
and social world we live in. Thus far, such systems
are not robust when given examples that fall out-
side the data distribution that they were trained on
(Gordon and Van Durme, 2013; Davis and Marcus,
2015; Schubert, 2015).

The Winograd Schema Challenge (WSC), pro-
posed by Levesque et al. (2011) as an alternative
to the Turing Test (Turing, 1950), was designed to
challenge the dominant paradigm of AI systems
that rely on statistical patterns without deep under-
standing about how the world works. Concretely,
Levesque et al. (2011) introduced simple pronoun
resolution problems that are trivial for humans but
hard for machines by crafting problems not to be
easily solvable based on frequent patterns in lan-
guage. The WSC problems are defined to be a pair
(called twin) of questions with two answer choices.
Here is an example:

1a. Pete envies Martin because he is successful.
1b. Pete envies Martin although he is successful.
Question: Is he Pete or Martin?
Answers: 1a - Martin, 1b - Pete

These twin questions consist of a pair of nearly
identical sentences that include trigger word(s) that
flips the correct answer.

Although WSC questions are carefully crafted
by experts, recent studies have shown that they
are still prone to incidental biases that statistical
methods can exploit. These biases are roughly
of two types: (a) language-based and (b) dataset-
specific biases. Language-based bias, or word as-
sociation bias (Trichelair et al. (2018)), refers to
the case where the correct answer aligns with more
frequent patterns in natural language, thus can be
easily solved by neural language models trained
over large corpora (Table 1 (3) and (4)).

Dataset-specific bias, on the other hand, is the
case of annotation artifacts or spurious correlation
that several recent studies have reported on crowd-
sourced datasets (Gururangan et al., 2018; Poliak
et al., 2018; Tsuchiya, 2018). Importantly, even
when an individual instance of a WSC problem is
free of language-based bias that the original design-
ers of the WSC intended to avoid, a collection of
WSC instances can still contain spurious patterns
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Twin sentences Options (answer)

3 (1)
a The trophy doesn’t fit into the brown suitcase because it’s too large. trophy / suitcase

b The trophy doesn’t fit into the brown suitcase because it’s too small. trophy / suitcase

3 (2)
a Ann asked Mary what time the library closes, because she had forgotten. Ann / Mary

b Ann asked Mary what time the library closes, but she had forgotten. Ann / Mary

7 (3)
a The tree fell down and crashed through the roof of my house. Now, I have to get it removed. tree / roof

b The tree fell down and crashed through the roof of my house. Now, I have to get it repaired. tree / roof

7 (4)
a The lions ate the zebras because they are predators. lions / zebras

b The lions ate the zebras because they are meaty. lions / zebras

Table 1: WSC examples: (1)-(3) from WSC (Levesque et al., 2011) and (4) from DPR (Rahman and Ng, 2012)).
Examples marked with 7 have language-based bias that today’s language models can easily detect.

that can be exploited by statistical models. This
type of bias gets introduced as problem authors sub-
consciously repeat similar problem-crafting strate-
gies, which reveal how particular trigger words,
sentence structure, or positive/negative sentiment
correlate with the correct answers.

We introduce WINOGRANDE,1 a new collec-
tion of WSC problems that are constructed to be
robust against both types of biases discussed above.
Compared to the original WSC and the variants
(§2), WINOGRANDE presents problems that are
more challenging by reducing such biases, while
also scaling to a significantly larger number of prob-
lems (273 to 44k) by crowdsourcing.

Crowdsourcing a large-scale dataset of WSC
examples has been considered infeasible primar-
ily due to the pre-requisite knowledge about lin-
guistics and the structural constraints of twin sen-
tences.(Trichelair et al., 2018; Talmor et al., 2018)
One novelty of our work is that we demonstrate a
method to collect WSC problems at scale through
crowdsourcing. We show that the crowdsourced
examples maintain the characteristics of WSC; they
are easy for humans to answer (above 90% accu-
racy) but very challenging for state-of-the-art deep
neural models. Specifically, we introduce a strate-
gic crowdsourcing design to diversify the context
of the problems (§3), followed by introducing a
variant of adversarial filtering algorithm (Zellers
et al., 2018), AFLITE, for systematically reduc-
ing spurious patterns that state-of-the-art statistical
approaches can exploit (§4).

While we show that WINOGRANDE is consider-
ably challenging for existing state-of-the-art meth-
ods based on pre-trained language models such as
BERT Devlin et al. (2018) (§5), we also present that

1The data and codebase are available at https://
mosaic.allenai.org/projects/winogrande

WINOGRANDE provides powerful transfer learn-
ing ability to other existing commonsense bench-
marks (§6), reporting new state-of-the-art results
across several benchmarks, including the original
WSC (Levesque et al., 2011) (72.2% → 77.6%),
PDP (Morgenstern et al., 2016) (70.0%→ 75.0%)
DPR (Rahman and Ng, 2012) (76.4%→ 86.9%),
and COPA (Roemmele et al., 2011) (71.2% →
81.0%). On the Winogender (Rudinger et al., 2018)
dataset – which quantifies the gender bias in a
trained model – we show that a model trained on
WINOGRANDE has significantly lower bias com-
pared to other rule-based and neural models.

Although a substantial increase of the state-of-
the-art over multiple challenging benchmarks is
exciting, we cautiously argue that these positive re-
sults must be taken with a grain of salt. The result
might also indicate the extent to which spurious
effects are prevalent in existing datasets, which run
the risk of overestimating the true capabilities of
machine intelligence on commonsense reasoning.
We leave it as a future research question to deter-
mine how much of our improvements indicate a
true stride in machine commonsense as opposed to
a more effective exploitation of biases in datasets.

2 Existing WSC-style datasets

We briefly describe existing WSC-style datasets.
Table 2 summarizes them and provides additional
statistics about the size, the average token length
per sentence and the size of their vocabulary.
WSC (Levesque et al., 2011) This is the original
Winograd Schema Challenge dataset, which con-
sisits of 273 problems. The problems are manually
crafted by the authors by avoiding word association
bias as much as possible (e.g., using the number of
search results by Google), although Trichelair et al.
(2018) later report that 13.5% of the questions have

https://mosaic.allenai.org/projects/winogrande
https://mosaic.allenai.org/projects/winogrande


Dataset #Probs Avg Len #Vocab
WSC 273 19.1 919
DPR 1,886 15.9 4,127
PDP 80 39.5 594
COPA 1,000 13.3 3,369
Winogender 720 15.6 523
WinoBias 3,168 13.9 1640
SuperGLUE-WSC 804 28.4 1711
WINOGRANDE-debiased 25,680 20.9 14,622
WINOGRANDE-full 43,985 20.7 17,468

Table 2: Existing WSC-style datasets (§2) and rele-
vant statistics (the number of problems, the average sen-
tence length by tokens, and the size of vocabulary). We
propose WINOGRANDE described in §3 and 4.

word-association bias.
DPR (Rahman and Ng, 2012) DPR (Definite
Pronoun Resolution Dataset) introduces 1, 886 ad-
ditional WSC-style problems authored by 30 under-
graduate students. Trichelair et al. (2018) point out
that this dataset is overall less challenging than the
original WSC due to an increased level of language-
based or dataset-specific biases.
PDP (Morgenstern et al., 2016) PDP (Pronoun
Disambiguation Problems) dataset is closely re-
lated to the original WSC, and used in the 2016
running of the Winograd Schema Challenge. The
dataset consists of 80 pronoun disambiguation
problems. It is formulated as a multiple choice
task, in which a pronoun must be resolved to one
of up to 5 (but mostly binary) possible antecedents.

In addition to the datasets above, there are some
other WSC-style datasets that have slightly differ-
ent formats but share a similar spirit with WSC.
COPA (Roemmele et al., 2011) This dataset in-
troduces 1, 000 problems that share the same mo-
tivation as that of WSC in terms of evaluating ma-
chine commonsense reasoning, but focus instead
on script knowledge. Each problem in this dataset
is formulated as a binary choice about cause and
effect of given premises, which is not structurally
constrained as twins in WSC.

Premise: The man broke his toe.
Question: What was the CAUSE of this?
Hypothesis1: He got a hole in his sock.
Hypothesis2: He dropped a hammer on his foot.

Winogender (Rudinger et al., 2018) This
dataset introduces 720 problems focusing on pro-
nouns whose antecedents are either a person re-
ferred to by their occupation (e.g., “the doctor”)
or a secondary participant (e.g., “a patient”). The
goal of this dataset is to uncover gender bias in

coreference resolution systems.
WinoBias (Zhao et al., 2018) This is a concur-
rent work with Winogender, aimed at diagnosing
gender bias in coreference resolution systems. Al-
though the size is larger than Winogender, Wino-
Bias is evaluated by F-scores (i.e., detecting the
span) as a coreference resolution task (Pradhan
et al., 2014) instead of the binary choice accuracy
as in WSC.
SuperGLUE (Wang et al., 2019) SuperGLUE
contains multiple datasets for universal benchmark-
ing across different tasks – one of them is a modi-
fied version of WSC. We refer to it as SuperGLUE-
WSC to differentiate it from the original WSC.
SuperGLUE-WSC aggregates the original WSC,
PDP and additional PDP-style examples, and re-
casts them into True/False binary problems, where
a sentence with the target pronoun and an answer
candidate is given (e.g., “Pete envies Martin be-
cause he is very successful.” Q: Does he refer
to Martin? A: True). Therefore, the number of
problems are roughly doubled from WSC and PDP,
although the size is still relatively small.

3 Crowdsourcing Twins at Scale

The original WSC problems in Levesque et al.
(2011) were carefully crafted by experts in the field
of knowledge representation and reasoning, who
ensured that the problems were trivial for humans
yet hard for AI systems. WSC problems have been
considered challenging to crowdsource due to the
structural constraints of twins and the requirement
of linguistic knowledge – but, contrary to this be-
lief, we present an effective approach to create a
large-scale dataset (WINOGRANDE) of WSC prob-
lems while maintaining its original properties. Our
approach consists of a carefully designed crowd-
sourcing task followed by a novel adversarial fil-
tering algorithm (§4) that systematically removes
biases in the data.
Enhancing Crowd Creativity Creating twin
sentences from scratch puts a high cognitive load
on crowd workers who subconsciously resort to
writing pairs that are lexically and stylistically
repetitive. To encourage creativity and reduce
cognitive load, we employed creativity from con-
straints (Stokes, 2005) – a psychological notion
which suggests that appropriate constraints can
help structure and drive creativity. In practice,
crowd workers are primed by a randomly chosen
topic as a suggestive context (details below), while



they are asked to follow precise guidelines on the
structure of the curated data.

Crowdsourcing Task We collect WINO-
GRANDE problems via crowdsourcing on Amazon
Mechanical Turk (AMT).2 To prime crowd
workers, they were instructed to randomly pick
an anchor word(s) from a randomly assigned
WikiHow article3 and to ensure that the twin sen-
tences contain the anchor word, which remarkably
improves diversity of topics in the collected data.
Additionally, workers were instructed to keep twin
sentence length in between 15 and 30 words while
maintaining at least 70% word overlap between
a pair of twins.4 Following the original WSC
design, we aimed to collect twins in two different
domains – (i) social commonsense: a situation
involving two same gender people with contrasting
attributes, emotions, social roles, etc., and (ii)
physical commonsense: a context involving two
physical objects with contrasting properties, usage,
locations, etc. In both cases, workers are instructed
to avoid language-based bias (word association)
as much as possible. In total, we collected 56k
questions (i.e., 28k twins).

Data Validation We validated the collected ques-
tions, because crowdsourced data often contains
noisy results. Each questions is validated by a dis-
tinct set of three crowd workers. A question is
determined valid if (1) all three workers choose the
correct answer option, (2) all three workers agree
that the two answer options are not equally plausi-
ble and (3) the question cannot be answered just by
word association in which local context around the
target pronoun is given (e.g., “because it was going
so fast.“ (race car / school bus)).5 As a result, 90%
of the questions (50k) are deemed valid and we
discarded the invalid (6k) questions.

While our crowdsourcing procedure addresses
instance-level biases, it is still possible that the
constructed dataset has dataset-specific biases – es-
pecially after it has been scaled up. To address this
challenge, we propose a method for systematic bias
reduction in datasets.

2Our crowdsourcing interface is available at https://
mosaic.allenai.org/projects/winogrande.

3https://www.wikihow.com/Special:
Randomizer

4All the workers met minimum qualification in AMT: 99%
approval rate, 5k approvals, and either US, Canada, UK, Aus-
tralia, or New Zealand as location. The reward was set to be
$0.4 per twin sentences.

5For each sentence validation, workers were paid $0.03.

4 Systematic Data Bias Reduction

Bias from annotation artifacts Several recent
studies (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018) have reported the presence
of annotation artifacts in large-scale (often crowd-
sourced) datasets. Annotation artifacts are unin-
tentional patterns in the data that leak information
about the target label in an undesired way. Ma-
chine learning models can exploit such artifacts to
solve instances in a dataset by taking a virtual short-
cut. While dataset creators can tackle biases that
they can identify – e.g. point-wise mutual infor-
mation (PMI) or conditional probability between a
word and an inference class in the Stanford Natural
Language Inference (SNLI) corpus (Gururangan
et al., 2018; Poliak et al., 2018) – and account for
them, these approaches assume that the bias ex-
ists in a lexical level. However, it does not deny
the existence of other biases derived from struc-
tural patterns. Modern machine learning models
are endowed with high capacity and also tend to
be opaque (often called black boxes), which make
identifying the source of bias even more challeng-
ing. To tackle these biases that are hard to observe
manually, we propose AFLITE – a lightweight al-
gorithmic solution for data bias reduction.
Light-weight adversarial filtering Our ap-
proach builds upon the adversarial filtering (AF)
algorithm proposed by Zellers et al. (2018), but
makes two key improvements: (1) AFLITE is much
more broadly applicable (by not requiring over gen-
eration of data instances) and (2) it is considerably
more lightweight (not requiring re-training a model
at each iteration of AF). Overgenerating machine
text from a language model to use in test instances
runs the risk of distributional bias where a discrim-
inator can learn to distinguish between machine
generated instances and human-generated ones. In
addition, AF depends on training a model at each
iteration, which comes at extremely high compu-
tation cost when being adversarial to a model like
BERT.

Instead of manually identified lexical features,
we adopt a dense representation of instances using
their pre-computed neural network embeddings.
In this work, we use BERT (Devlin et al., 2018)
fine-tuned on a small subset of the dataset. Con-
cretely, we use 6k instances (5k for training and
1k for validation) from the dataset (containing 50k
instances in total) to fine-tune BERT (referred to as
BERTembed). We use BERTembed to pre-compute

https://mosaic.allenai.org/projects/winogrande
https://mosaic.allenai.org/projects/winogrande
https://www.wikihow.com/Special:Randomizer
https://www.wikihow.com/Special:Randomizer


Algorithm 1: AFLITE

Input: dataset D = (X,y), ensemble size n, training
set size m, cutoff size k, filtering threshold τ

Output: dataset D′

1 D′ = D
2 while |D′| > m do

// Filtering phase
3 forall e ∈ D′ do
4 Initialize the ensemble predictions E(e) = ∅
5 for iteration i : 1..n do
6 Random partition (Ti,Vi) of D′ s.t. |Ti| = m
7 Train a linear classifier L on Ti
8 forall e = (x, y) ∈ Vi do
9 Add L(x) to E(e)

10 forall e = (x, y) ∈ D′ do
11 score(e) = |{p∈E(e) s.t. p=y}|

|E(e)|
12 Select the top-k elements S in D′ s.t. score(e) ≥ τ
13 D′ = D′ \ S
14 if |S| < k then
15 break
16 return D′

the embeddings for the rest of the instances (44k) as
the input for AFLITE. We discard the 6k instances
from the final dataset.

Next, we use an ensemble of linear classifiers (lo-
gistic regressions) trained on random subsets of the
data to determine whether the representation used
in BERTembed is strongly indicative of the correct
answer option. If so, we discard the corresponding
instances and proceed iteratively.

Algorithm 1 provides the implementation of
AFLITE. The algorithm takes as input the pre-
computed embeddings X and labels y, along with
the size n of the ensemble, the training size m for
the classifiers in the ensemble, the size k of the fil-
tering cutoff, and the filtering threshold τ . At each
filtering phase, we train n linear classifiers on dif-
ferent random partitions of the data and we collect
their prediction on their corresponding validation
set. For each instance, we compute its score as the
ratio of correct predictions over the total number
of predictions. We rank the instances according to
their score and remove the top-k instances whose
score is above threshold τ . We repeat this pro-
cess until we remove fewer than k instances in a
filtering phase or there are fewer than m remain-
ing instances. When applying AFLITE to WINO-
GRANDE, we set m = 15, 000, n = 64, k = 500,
and τ = 0.75.

This approach is also reminiscent of recent work
in NLP on adversarial learning (Chen and Cardie,
2018; Belinkov and Bisk, 2018; Elazar and Gold-
berg, 2018). Belinkov et al. (2019) propose an
adversarial removal technique for NLI which en-

courages models to learn representations that are
free of hypothesis-only biases. When proposing a
new benchmark, however, we cannot enforce that
any future model will purposefully avoid learning
spurious correlations in the data. In addition, while
the hypothesis-only bias is an insightful bias in
NLI, we make no assumption about the possible
sources of bias in WINOGRANDE. Instead, we
adopt a more proactive form of bias reduction by
relying on state-of-the-art (statistical) methods to
uncover undesirable dataset shortcuts.
Assessment of AFLITE We assess the impact
of AFLITE relative to two baselines: random data
reduction and PMI-based filtering. In random data
reduction, we randomly subsample the dataset to
evaluate how a decrease in dataset size affects the
bias. In PMI-based filtering, we first compute the
difference (f ) of PMIs for each twin (t) as follows:

ft(t1, t2) =
∑
w∈t1

PMI(y;w)−
∑
w∈t2

PMI(y;w).

Then, we select twins in increasing order of ft,
assuming that higher values of ft lead to less chal-
lenging twin instances.6

Figure 1 plots BERT pre-computed embeddings
whose dimension is reduced to 2D (top) and
1D (bottom) using Principal Component Analy-
sis (PCA). We observe that WINOGRANDEall and
the two baselines exhibit distinct components be-
tween the two correct answer options (i.e., y ∈
1, 2), whereas such distinction disappears in WINO-
GRANDEdebiased, which implies that AFLITE suc-
cessfully reduces the spurious correlation in the
dataset (between instances and labels). To quan-
tify the effect, we compute the KL divergence be-
tween the samples with answer options. We find
that the random data reduction does not reduce the
KL divergence (0.66→ 0.65). It is interesting to
see that PMI-filtering marginally reduces the KL
divergence (0.66→ 0.46), although the principal
component analysis on the PMI-filtered subset still
leads to a significant separation between the la-
bels. On the other hand, in WINOGRANDEdebiased,
AFLITE reduces the KL divergence dramatically
(0.66 → 0.02) which suggests that this debiased
dataset should be challenging for statistical models
that solely rely on spurious correlation.

6We also evaluated other variations of PMI-filtering
such as the absolute difference (|f |), maximum PMI
(= max(maxw∈t1 PMI(y;w),maxw∈t2 PMI(y;w))), and
second-order PMI(y;w1, w2 ∈ t), but we did not observe
a significant difference.
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Figure 1: The effect of debiasing by AFLITE. BERT pre-computed embeddings (applied PCA for dimension re-
duction) are shown in 2D-histograms (top row) and 1D-histograms (bottom row) for WINOGRANDEall, the random
samples, PMI-filtered subset, and AFLITE-filtered subset. Data points are colored depending on the label (i.e., the
answer y is option 1 (blue) or 2 (red)). In the 1D representation, we show the KL-divergence between p(d1, y=1)
and q(d1, y=2).

Twin sentences Options (answer)

7
The rock kept its balance on the mountain but the log tumbled down, because it was better situated for stability. rock / log

The rock kept its balance on the mountain but the log tumbled down, because it was poorly situated for stability. rock / log

7
Nick did not enjoy watching golf as much as Randy because he never played the game. Nick / Randy

Nick did not enjoy watching golf as much as Randy because he often played the game. Nick / Randy

3
The pizza was warmer than the hot dog because it was in the oven for a longer amount of time. pizza / hot dog

The pizza was warmer than the hot dog because it was in the oven for a shorter amount of time. pizza / hot dog

3
Sarah accused Katrina of cheating by looking at her cards, because she kept losing the game. Sarah / Katrina

Sarah accused Katrina of cheating by looking at her cards, because she kept winning the game. Sarah / Katrina

Table 3: Examples that have dataset-specific bias detected by AFLITE (marked with 7). The words that include
(dataset-specific) polarity bias (§4) are highlighted (positive and negative). For comparison, we show examples
selected from WINOGRANDEdebiased (marked with 3).

What bias has been actually detected by
AFLITE? Is the bias really spurious and unde-
sirable according to the original WSC’s goal? Ta-
ble 3 presents examples of structural biases (i.e.,
spurious relation) that AFLITE has detected as a
dataset-specific bias. We see a structural pattern
in the first two twins, where the local context (or
sentiment) between the answer option and the tar-
get pronoun are highly correlated. In other words,
these problems can be easily answered by simply
looking at the surrounding context and the polarity
of the sentiment (positive or negative). Importantly,
this dataset-specific bias is structural rather than
at the token level, contrasting with the biases that
have been identified in the NLI literature (Gururan-
gan et al., 2018; Poliak et al., 2018), and it is hard
to detect these biases using heuristics such as PMI-
filtering. Instead of depending on such heuristics,

AFLITE is able to detect samples that potentially
have such biases algorithmically.

After applying the AFLITE algorithm, we obtain
a debiased dataset of 25, 680 instances split into
training (18, 538), development (2, 863), and test
(4, 279) sets.

5 Experimental Analysis
5.1 Benchmark Models
We evaluate the WINOGRANDEdebiased on meth-
ods/models that have been effective on the original
WSC.
Wino Knowledge Hunting Wino Knowledge
Hunting (WKH) by Emami et al. (2018) is based
on an information retrieval approach, where the
sentence is parsed into a set of queries and then the
model looks for evidence for each answer candidate
from the search result snippets. This IR-oriented



approach comes from an important line of work
in coreference resolution (Kobdani et al., 2011;
Ratinov and Roth, 2012; Bansal and Klein, 2012;
Zheng et al., 2013; Peng et al., 2015; Sharma et al.,
2015).
Ensemble Neural LMs Trinh and Le (2018) is
one of the first attempts to apply a neural language
model which is pre-trained on a very large corpora
(including LM-1-Billion, CommonCrawl, SQuAD,
and Gutenberg Books). In this approach, the task
is treated as fill-in-the-blank question with binary
choice. The target pronoun in the sentence is re-
placed by each answer candidate and the neural
language model provides the likelihood of the two
resulting sentences. This simple yet effective ap-
proach outperforms previous IR-based methods.
OpenAI-GPT OpenAI-GPT (Radford et al.,
2018) is one of the earliest methods that uses large-
scale pre-trained neural language modeling. While
the first version of OpenAI-GPT did not report its
performance on WSC,7 the updated model (Rad-
ford et al., 2019) reports 70.7% on the original
WSC.
BERT BERT (Devlin et al., 2018) is another pre-
trained neural model which has bidirectional paths
and consecutive sentence representations in hid-
den layers. We use three different BERT-related
models: 1) BERT masked-LM (BERT-lm), 2)
BERT-single-finetuning (BERT-ft), and 3) BERT-
sequential-finetuning (BERT-seqft). For BERT-
lm, we use the pre-trained BERT-large model
as a language model by comparing the likeli-
hood of each candidate answer. For BERT-ft,
we split the sentence into context and option us-
ing the candidate answer as delimiter. The in-
put format becomes [CLS] context [SEP]
option [SEP]; e.g., The trophy doesn’t fit into
the brown suitcase because the [SEP] is
too large [SEP] (The blank is filled with
either option 1 or 2). For BERT-seqft, we first
finetune BERT-large on an auxiliary dataset (DPR
in our case), and then fine-tune the resulting pre-
trained model on the target dataset. We used
grid-search for hyper-parameter tuning: learning
rate {1e− 5, 3e− 5, 10e− 5}, number of epochs
{3, 4, 5, 10}, batch-size {4, 8, 16}.
Word association baseline Using BERT-seqft,
we also run the word association baseline (local-

7Instead, the model was evaluated on the WNLI dataset
from the GLUE benchmark, although it did not perform as
well as the baseline.

Methods dev acc. (%) test acc.(%)

Random 50.0 50.0
WKH 50.8 50.1
Ensemble LMs 53.0 50.9
OpenAI-GPT 61.6 50.7
BERT-lm 53.5 51.8
BERT-ft 53.0 52.3
BERT-seqft 63.5 61.6

local context (seqftrandom) 56.1 54.1
local context (seqftdebiased) 57.0 55.4

Human Perf. 92.0 90.8

Table 4: Performance of several baseline systems on
WINOGRANDEdebiased. The best performing model
(BERT-seqft) is over 28 percentage points below hu-
man performance.

context-only) to check if the dataset can be solved
by language-based bias. In this baseline, the model
is trained with only local contexts (wt−2:EOS) sur-
rounding the blank to be filled (wt). This is analo-
gous to the hypothesis-only baseline in NLI (Poliak
et al., 2018), where the task (dataset) does not re-
quire the full context to achieve high performance.
In order to see if there is an effect of AFLITE

for language-based bias, we fine-tune BERT with
either randomly selected samples (25k) or debi-
ased samples (25k), subsequently referred to as
seqftrandom and seqftdebiased, respectively.
Human evaluation In addition to the methods
described above, we compute human performance
as the majority vote of three crowd workers for
each question. We find that AFLITE does not ad-
versely effect the quality of the dataset as humans
are still able to achieve over 90% accuracy, sig-
nificantly higher than the performance of the best
model (62%).

5.2 Results
Table 4 shows the results. Most baselines
only achieve chance-performance, while the best
model, BERT-seqft achieves 61.6% test-set accu-
racy. Crowd workers achieve 90.8% test-set accu-
racy, indicating that the WINOGRANDEdebiased is
still easy for humans to answer as desired. The
large gap between the performance of the best
model and that of humans provides significant
scope of improvements for future research. Addi-
tionally, word association (i.e., local context) base-
lines (seqftrandom and seqftdebiased) achieve close to
chance-level performance, illustrating that WINO-
GRANDEdebiased cannot be answered by the local
context only. It is interesting to see that there
is no performance gap between seqftrandom and



WSC (Levesque et al., 2011)

Liu et al. (2016) 52.8
WKH (Emami et al., 2018) 57.1
Ensemble LMs (Trinh and Le, 2018) 63.8
GPT2 (Radford et al., 2019) 70.7
BERT-ft (Kocijan et al., 2019) 72.2
This work 77.6
Humans (Bender, 2015) 92.1
Humans* 96.5

PDP (Morgenstern et al., 2016)

Liu et al. (2016) 61.7
Trinh and Le (2018) 70.0
This work 75.0
Humans (Davis et al., 2016) 90.9
Humans* 92.5

DPR (Rahman and Ng, 2012)

Rahman and Ng (2012) 73.0
Peng et al. (2015) 76.4
This work 86.9
Humans* 95.2

COPA (Roemmele et al., 2011)

Gordon et al. (2011) 65.4
Sasaki et al. (2017) 76.4
This work 81.0
Humans (Gordon et al., 2012) 99.0

Table 5: Accuracy (%) on existing WSC-related tasks.
We ran human evaluation with our crowd worker pool
(indicated by *).

seqftdebiased. This indicates that the word associ-
ation bias has already been removed during the
data validation process (§3).

6 Using WINOGRANDE as a Resource

WINOGRANDE contains a large number of WSC
style questions. In addition to serving as a bench-
mark dataset, we use WINOGRANDEall as a re-
source – we apply transfer learning by first fine-
tuning a model on our dataset and evaluating its
performance on related datasets: WSC, PDP, DPR,
COPA, and Winogender). We establish state-of-the-
art results across several of these existing bench-
mark datasets.
Experimental Setup Our model is based on
BERT finetuned with WINOGRANDEall and the
hyper-parameters are determined by the following.
For WSC, we used PDP as the dev set to choose the
best hyper-parameter set, and vice versa (i.e., WSC
as the dev set for PDP). Since DPR and COPA

Winogender (Rudinger et al., 2018)

Gotcha Female Male |∆F| |∆M|

RULE
No 38.3 51.7 28.3 14.2Yes 10.0 37.5

STATS
No 50.8 61.7 5.0 21.7Yes 45.8 40.0

NEURAL
No 50.8 49.2 14.1 2.5Yes 36.7 46.7

BERTWSC
No 44.2 64.2 17.5 19.2Yes 61.7 45.0

BERTDPR
No 58.3 44.2 13.3 16.6Yes 45.0 60.8

BERTWG-deb
No 69.2 65.0 4.2 3.3Yes 65.0 68.3

BERTWG-all
No 83.3 76.7 6.6 4.1Yes 76.7 80.8

Table 6: Accuracy (%) and gender bias on Winogender
dataset. “Gotcha” indicates whether the target gender
pronoun (e.g., she) is minority in the correct answer
option (e.g., doctor). |∆F| and |∆M| show the system
performance gap between “Gotcha“ and “non-Gotcha“
for each gender (lower the better). The first three base-
lines are adopted from Rudinger et al. (2018); RULE is
Lee et al. (2011), STATS is Durrett and Klein (2013),
and NEURAL is Clark and Manning (2016). BERTX
corresponds to the BERT-large model fine-tuned on X,
where X is either WSC, DPR, WINOGRANDEdebiased,
or WINOGRANDEall.

provide training set, we used it as a dev set to de-
termine the hyper parameter set to evaluate the test
set. For hyper parameter search, we use the same
grid search strategy as in §5. Winogender dataset
provides a test set only, and we use the WINO-
GRANDEall dev set as a proxy.
Additional Human Evaluation We also report
human performance for WSC, PDP, and DPR to
check the quality of our crowd worker pool as well
as supporting previous findings. To our knowledge,
this is the first work to report human performance
on DPR dataset.8

Results The results are shown in Table 5 and
Table 6. Overall, BERT finetuned with WINO-
GRANDEall helps improve the accuracy of all the re-
lated tasks (Table 5). At first glance, these improve-
ments may not seem surprising because WINO-
GRANDEall can be regarded as additional training
data for each dataset (particularly WSC, PDP, and
DPR). However, the improvement on the COPA

8We didn’t run human evaluation on COPA and Winogen-
der because they have slightly different question formats from
WSC, PDP, DPR, and WINOGRANDE.



dataset (76.4%→ 81.0%) is not explained by the
same logic, because the COPA task is not a pronoun
resolution task like the Winograd Schema Chal-
lenge. This indicates that our WINOGRANDEall
can serve as a resource to support commonsense
knowledge transfer.
Important Implications We consider that while
these positive results over multiple challenging
benchmarks are highly encouraging, they may need
to be taken with a grain of salt. In particular, these
results might also indicate the extent to which spuri-
ous dataset biases are prevalent in existing datasets,
which runs the risk of overestimating the true capa-
bilities of machine intelligence on commonsense
reasoning.

Our results and analysis indicate the importance
of continued research on debiasing benchmarks
and the increasing need for algorithmic approaches
for systematic bias reduction, which allows for the
benchmarks to evolve together with evolving state
of the art. We leave it as a future research ques-
tion to further investigate how much of our im-
provements are due to dataset biases of the existing
benchmarks as opposed to true strides in improving
commonsense intelligence.
Diagnostics for Gender Bias Winogender is de-
signed as diagnostics for checking whether a model
(and/or training corpora) suffers from gender bias.
The bias is measured by the difference in accu-
racy between the cases where the pronoun gender
matches the occupation’s majority gender (called
“non-gotcha”) or not (“gotcha”). Formally, it is
computed as follows :

∆F = Acc(Female, Non-gotcha) − Acc(Female, Gotcha)

∆M = Acc(Male, Non-gotcha) − Acc(Male, Gotcha)

for female and male cases respectively.
If ∆F or ∆M is large, it indicates that the model

is highly gender-biased, whereas |∆F | = |∆M | =
0 (with high accuracy) is the ideal scenario. In ad-
dition, if ∆F or ∆M is largely negative, it implies
that the model is biased in the other way around.

The result of the gender-bias diagnostics is
shown in Table 6. We find that the BERT model
trained on WINOGRANDE (BERTWG-debiased,
BERTWG-full) both demonstrate considerably
smaller gender-bias (|∆F | and |∆M |) compared
to the BERT trained on other datasets. It is im-
portant to note that the difference comes purely
from dataset but not the model structure with pre-
training. Does the data size correlate with the reduc-

tion of gender gap? This may be true but is not al-
ways the case. The gender gap in BERTWG-debiased
(25k) is smaller than that in BERTWG-full (44k),
which indicates a possibility that AFLITE can re-
duce undesirable gender bias in the dataset in addi-
tion to reducing structural biases (§4).

7 Conclusions

We introduce WINOGRANDE, a new collection of
WSC problems that is significantly larger than ex-
isting variants of the WSC dataset. WINOGRANDE

consists of 44k instances, half of which determined
adversarial. To create a dataset that is robust against
spurious statistical biases, we also present AFLITE

– a novel light-weight adversarial filtering algorithm.
The resulting dataset is significantly more challeng-
ing for existing state-of-the-art models while being
trivially easy for humans.

Using WINOGRANDE as a resource, we demon-
strate effective transfer learning and achieve state-
of-the-art results on several WSC-style benchmark
datasets. While this is an exciting result, we also
discuss the risk of overestimating the performance
of the existing state-of-the-art methods on the ex-
isting commonsense benchmarks. There is a possi-
bility that they contain spurious statistical patterns
(annotation artifacts) that leak information about
the target label in an undesirable way.

We advocate for a new perspective for designing
benchmarks for measuring progress in AI. Unlike
past decades where the community constructed a
static benchmark dataset to work on for the next
decade or two, we propose that future benchmarks
should dynamically evolves together with the evolv-
ing state-of-the-art.
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Montréal, Canada. Association for Computational
Linguistics.

Andrew S. Gordon, Cosmin Adrian Bejan, and Kenji
Sagae. 2011. Commonsense causal reasoning using
millions of personal stories. In AAAI.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 Workshop on Automated Knowledge
Base Construction, AKBC ’13, pages 25–30, New
York, NY, USA. ACM.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Hamidreza Kobdani, Hinrich Schuetze, Michael
Schiehlen, and Hans Kamp. 2011. Bootstrapping
coreference resolution using word associations. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 783–792, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu,
Yordan Yordanov, and Thomas Lukasiewicz. 2019.
A surprisingly robust trick for the winograd schema
challenge. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28 - August 2, 2019.
Association for Computational Linguistics.

Heeyoung Lee, Yves Peirsman, Angel Chang,
Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. 2011. Stanford’s multi-pass sieve corefer-
ence resolution system at the CoNLL-2011 shared
task. In Proceedings of the Fifteenth Conference
on Computational Natural Language Learning:
Shared Task, pages 28–34, Portland, Oregon, USA.
Association for Computational Linguistics.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Quan Liu, Hui Jiang, Zhen-Hua Ling, Xiaodan Zhu,
Si Wei, and Yu Hu. 2016. Commonsense knowledge
enhanced embeddings for solving pronoun disam-
biguation problems in winograd schema challenge.
arXiv preprint arXiv:1611.04146.

Leora Morgenstern, Ernest Davis, and Charles L Ortiz.
2016. Planning, executing, and evaluating the wino-
grad schema challenge. AI Magazine, 37(1):50–54.

Haoruo Peng, Daniel Khashabi, and Dan Roth. 2015.
Solving hard coreference problems. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 809–
819, Denver, Colorado. Association for Computa-
tional Linguistics.



Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted men-
tions: A reference implementation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 30–35, Baltimore, Maryland. Associa-
tion for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1:8.

Altaf Rahman and Vincent Ng. 2012. Resolving
complex cases of definite pronouns: The winograd
schema challenge. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 777–789, Jeju Island, Korea.
Association for Computational Linguistics.

Lev Ratinov and Dan Roth. 2012. Learning-based
multi-sieve co-reference resolution with knowledge.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 1234–1244, Jeju Island, Korea. Association
for Computational Linguistics.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alterna-
tives: An evaluation of commonsense causal reason-
ing. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning, pages 90–95.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association
for Computational Linguistics.

Shota Sasaki, Sho Takase, Naoya Inoue, Naoaki
Okazaki, and Kentaro Inui. 2017. Handling multi-
word expressions in causality estimation. In IWCS.

Lenhart K Schubert. 2015. What kinds of knowledge
are needed for genuine understanding. In IJCAI
2015 Workshop on Cognitive Knowledge Acquisition
and Applications (Cognitum 2015).

Arpit Sharma, Nguyen H. Vo, Somak Aditya, and
Chitta Baral. 2015. Towards addressing the wino-
grad schema challenge: Building and using a se-
mantic parser and a knowledge hunting module. In
Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, pages 1319–1325.
AAAI Press.

Patricia D Stokes. 2005. Creativity from constraints:
The psychology of breakthrough. Springer Publish-
ing Company.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. arXiv preprint arXiv:1811.00937.

Paul Trichelair, Ali Emami, Jackie Chi Kit Cheung,
Adam Trischler, Kaheer Suleman, and Fernando
Diaz. 2018. On the evaluation of common-sense
reasoning in natural language understanding. arXiv
preprint arXiv:1811.01778.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Masatoshi Tsuchiya. 2018. Performance impact
caused by hidden bias of training data for recogniz-
ing textual entailment. In Proceedings of the 11th
Language Resources and Evaluation Conference,
Miyazaki, Japan. European Language Resource As-
sociation.

Alan M Turing. 1950. Computing machinery and intel-
ligence. Mind, 59(236):433–433.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. Swag: A large-scale adversarial dataset
for grounded commonsense inference. In EMNLP.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Jiaping Zheng, Luke Vilnis, Sameer Singh, Jinho D.
Choi, and Andrew McCallum. 2013. Dynamic
knowledge-base alignment for coreference resolu-
tion. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learn-
ing, pages 153–162, Sofia, Bulgaria. Association for
Computational Linguistics.


