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OntoAgent is an environment that supports the cognitive modeling of societies of intelligent
agents that emulate human beings. Like traditional intelligent agents, OntoAgent agents exe-
cute the core functionalities of perception, reasoning and action. Unlikemost traditional agents,
they engage in extensive \translation" functions in order to render perceived inputs into the
unambiguous, ontologically-grounded knowledge representation language (KRL) that is used to
model their knowledge, memory and reasoning. This paper describes the KRL of OntoAgent
with a special focus on the many runtime functions used to translate between perceived inputs
and the KRL, as well as to manipulate KRL structures for reasoning and simulation.

Keywords: Knowledge representation; simulation; natural language processing; computational
semantics.

1. Introduction

The ultimate goal of agent modeling is to contribute to attaining the original goal of
research in arti¯cial intelligence: developing automatic intelligent agent systems that
will be able !!! individually and in teams consisting of other such agents and
people !!! to perform tasks that, at present, can be performed only by people.
Consider some of the core tasks of a simulated, embodied, language-enabled intel-
ligent agent: behaving in a physiologically realistic manner; experiencing, inter-
preting and remembering its own mental and physical states; communicating with
people in natural language; learning through experience, communication and
reasoning; managing its memory, including forgetting, memory consolidation, etc.;
making decisions to further the plans that will ful¯ll its goals; and collaborating with
human and intelligent-agent colleagues. In order to minimize development e®ort,
maximize resource reuse and avoid knowledge incompatibilities, all of these processes
should be supported by an integrated knowledge substrate and a single knowledge
representation language (KRL).
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This paper describes the KRL that supports all of these processes in the
OntoAgent environment. Special attention is devoted to the functions that translate
various modes of agent perception into interpreted KRL structures and use KRL
structures to support agent reasoning and action.

An Introductory Example. Before proceeding to an overview of OntoAgent
and the speci¯c KRL phenomena to be discussed, let us begin with an example that
illustrates the OntoAgent KRL. The following is a representation of the meaning
Pirates hijacked a ship on March 3, 2009. As will be described in more detail
below, the elements of the meaning representation are language-independent onto-
logical concepts that look like English words simply for the bene¯t of knowledge
engineers. Each frame (here, HIJACK-1, PIRATE-1, SHIP-1) is headed by an OBJECT or
EVENT instance, described using ontologically de¯ned RELATIONs (such as AGENT) and
ATTRIBUTEs (such as ABSOLUTE-DAY). The indices are used to distinguish among
instances since there could be, for example, more than one instance of hijacking
reported in a language input or remembered in an agent's memory.

HIJACK-1
AGENT PIRATE-1
THEME SHIP-1
ABSOLUTE-MONTH MARCH

ABSOLUTE-DAY 3
ABSOLUTE-YEAR 2009

PIRATE-1
AGENT-OF HIJACK-1

SHIP-1
THEME-OF HIJACK-1

The representation of this meaning will be the same (apart from some details of
indexing) whether it is located in the agent's persistent memory, whether it is derived
from the semantic interpretation of a new textual input, whether it is derived from
agent reasoning about other known facts, or !!! in a future implementation !!!
whether it is derived from the agent's interpretation of simulated vision. In short, all
meaning that an OntoAgent agent stores and manipulates is rendered in the same,
unambiguous, ontologically-grounded KRL, and it is the agent's responsibility to
translate into, translate out of, and manipulate structures in this KRL in order to
carry out high-level reasoning and naturally interface with the outside world.

A Sample Application of OntoAgent. In the upcoming discussion of KRL-
related phenomena, it will be useful to cite examples from an actual application
con¯gured in the OntoAgent environment. The application used for this purpose is
Maryland Virtual Patient (MVP), a simulation and tutoring system developed to
support training cognitive decision making in clinical medicine [9!11, 18!20]. MVP
is implemented as a society of agents, with one role !!! that of the trainee !!! played
by a human and other roles played by arti¯cial intelligent agents. At the core of this
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network is the virtual patient (VP) !!! a knowledge-based model and simulation of a
person su®ering from one or more diseases. The virtual patient is a \double agent" in
that it models and simulates both the physiological and the cognitive functionality of
a human. Physiologically, it undergoes both normal and pathological processes in
response to internal and external stimuli. Cognitively, it is implemented as a col-
lection of knowledge-based models of simulated human-like perception, reasoning
and action processes. Figure 1 shows a high-level view of the agent network in MVP.

Human users of MVP can carry out all actions expected of a physician: interview
the VP, teach it about its condition, suggest tests and treatments, try to convince the
VP to agree to them if the VP is not immediately amenable, receive the results of
tests, observe the results of treatments, follow a patient over a long period of
simulated time, optionally receive help from an automatic mentor, and optionally
rerun a given patient any number of times to practice di®erent management
strategies.

A Summary of the Content and Organization of the Paper. Figure 2
shows the architecture of an agent !!! its knowledge resources as well as its per-
ception, reasoning and action capabilities. The ¯gure provides a visual anchor for
each of the eight KRL-oriented phenomena to be discussed in the subsections below.
The short descriptions of each phenomenon point to respective nodes in the ¯gure,
with terms used in the latter indicated by italics.

(1) The OntoAgent KRL is the unambiguous, formal metalanguage in which all of
the agent's semantically interpreted Knowledge Resources are stored: the
ontology (the memory of types), the fact repository (the memory of tokens) and
the semantic interpretation of words stored in the sem-struc zone of lexicon
entries. We begin with an overview of these resources and a more detailed
description of the KRL than was provided in the brief pirates example above.

Fig. 1. The network of agents in MVP.
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(2) When an agent receives natural language input (Perception: Language Analyzer),
it interprets it, translating it into the unambiguous KRL before remembering it as
New Facts in its persistent memory. This process of translation — which is not
attempted by most agents and natural language processing systems— involves a
large suite of NLP resources and processors.

(3) Memory management (Mental Action: Updating Memory) involves linking new
memories to existing memories, which can involve the interpretation of KRL
paraphrases.

(4) The simulation of the physiological side an agent — in our example, the virtual
patient (VP Physiological Agent Simulation) — is carried out using ontologically
recorded scripts written in the same KRL as all other OntoAgent knowledge.

(5) When an agent experiences interoception (Perception: Interoception Engine),
it must interpret what it is experiencing, which is modeled as translating from
the KRL-encoded expert model that drives the simulation into a \naïve" KRL
interpretation that is understandable by the agent.

(6) Agents carry out plan- and goal-style decision making (Reasoning: Goal/plan
Management, Decision Making), which is modeled using decision functions that
take as input ontologically recorded property values expressed in the KRL.

Fig. 2. The architecture of an agent.
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(7) As shown in (2), when agents receive natural language (NL) input, they must
carry out NL! KRL translation in order to remember and subsequently employ
the meaning of that input. Similarly, when interfacing with the world as
language producers (Verbal Action: Text & Dialog Generation), they must carry
out KRL ! NL translation before generating a Dialog Turn.

(8) When agents decide to take physical actions, they make the decision using
decision functions in the KRL, then translate the KRL output of those decisions
into simulation action (Physical Action (Simulated)).

To summarize, this paper describes all of these di®erent manifestations of KRL in the
OntoAgent environment and suggests that taking a uni¯ed approach to modeling
such diverse agent functionalities will lead to signi¯cant bene¯ts in modeling multi-
functional agent systems that can be in¯nitely extended (we anticipate no ceiling of
results associated with our approach) and ported across domains and applications.

2. KRL as Manifest in Knowledge Resources

The OntoAgent ontology is a formal model of the world encoded in an unambiguous
KRL. A description of, and rationale for, the form and content of the ontology is
available in [21], Sec. 7.1; an axiomatic de¯nition is presented in Sec. 7.1.6 of that
work; and additional theoretical and practical issues are discussed in [12], in prep-
aration. Here, we present some highlights for purposes of orientation.

The ontology is organized as a multiple-inheritance hierarchical collection of
frames headed by concepts that are named using language-independent labels. It
currently contains approximately 9000 concepts, most of which belong to the general
domain. The number of concepts in the ontology, currently around 8000, is far fewer
than the number of words or phrases in any language for several reasons: (1) Syno-
nyms and hyponyms are mapped to the same ontological concept, with semantic
nuances recorded in the corresponding lexical entries. (2) Many lexical items are
described using a combination of concepts. (3) Lexical items that represent a real or
abstract point of a scale all point to a single property that represents that scale.
(4) Concepts are intended to be cross-linguistically and cross-culturally relevant so
we tend not to introduce concepts for notions like recall in the sense of a recalling a
purchased good because it is highly unlikely that all languages/cultures use this
concept. Instead, we describe the meaning of such words compositionally in the
lexicons of those languages that do use it. (For further discussion of the lexicon/
ontology split, see [13].)

Concepts divide up into events, objects and properties. Properties are primitives,
which means that their meaning is grounded in the real world with no further
ontological decomposition. The expressive power of the ontology is enhanced by
multivalued ¯llers for properties, implemented using facets. Facets permit the
ontology to include information such as \the most typical colors of a car are white,
black, silver and gray; other normal, but less common, colors are red, blue, brown
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and yellow; rare colors are gold and purple." The inventory of facets includes: default,
which represents the most restricted, highly typical subset of ¯llers; sem, which
represents typical selectional restrictions; relaxable-to, which represents what is, in
principle, possible but is not typical; and value, which represents not a constraint but
an actual, non-overridable value. Select properties from the ontological frames for
the event DRUG-DEALING illustrates the use of facets.

DRUG-DEALING

IS-A value CRIMINAL-ACTIVITY

AGENT default CRIMINAL, DRUG-CARTEL

sem HUMAN

relaxable-to SOCIAL-OBJECT

THEME default ILLEGAL-DRUG

INSTRUMENT sem MONEY

HAS-EVENT-AS-PART sem BUY, SELL

LOCATION default CITY

sem PLACE

relaxable-to PHYSICAL-OBJECT

. . .

Objects and events are de¯ned using an average of 16 properties each, many of whose
¯llers are inherited rather than locally speci¯ed. In short, the meaning of an object
or event is the set of its property-facet-value triples. Unlike most ontologies, the
OntoAgent ontology includes complex events, otherwise known as scripts (cf. [29]),
that support both simulation and reasoning about language and the world.

The main bene¯ts of writing an ontology in a KRL rather than an NL are the
absence of ambiguity in KRL and its potential reuse across all natural languages. Cut
to twenty years from now, when the OntoAgent ontology should contain tens of
thousands of well-described concepts, thousands of scripts, and reasoners that can
leverage both of these to support the work of intelligent agents. Since the ontology is
language independent, this knowledge infrastructure will be accessible to intelligent
agents that communicate in any language, as long as a compatible lexicon for that
language has been developed.

Since the ontology is language independent, its link to a natural language must be
mediated by a lexicon. Semantically, each lexical sense speci¯es what concept,
concepts, property or properties of concepts de¯ned in the ontology must be
instantiated in the text-meaning representation to account for the meaning of a given
lexical unit of input. For example, the English lexicon indicates that the one sense of
dogmaps to the concept DOG (a type of CANINE); another sense maps to HUMAN, further
speci¯ed to indicate a negative evaluative modality (e.g. a woman can call her
cheating ex-boyfriend a dog); and yet another sense maps to the event PURSUE. Senses
for argument-taking words and modi¯ers are encoded along with their typical
syntactic con¯gurations, such that word in the con¯guration is described both
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syntactically and semantically. Take, for example, the adverbial sense of overboard,
shown below. It says that, syntactically, this adverb modi¯es a verb (indicated by the
variable $var1) and, semantically, that the verb it modi¯es must be a MOTION-EVENT.
The meaning it adds to the is that the SOURCE of the given MOTION-EVENT is a SURFACE-
WATER-VEHICLE and its DESTINATION is a BODY-OF-WATER.

(overboard-adv1
(def \indicates that the source of the motion is a boat and the destination is a
body of water")
(ex \They threw the rotten food overboard. He jumped overboard.")

(syn-struc
((root $var1) (cat v)
(mods ((root $var0) (cat adv) (type post-verb-clause)))))

(sem-struc
(^$var1 (sem MOTION-EVENT)
(SOURCE SURFACE-WATER-VEHICLE)
(DESTINATION BODY-OF-WATER))))

This example highlights several aspects of the OntoAgent lexicon. First, it supports
the combined syntactic and semantic analysis of texts. Second, the descriptions in
the sem-struc zones of its entries are, in terms of format and primitives used, the
same as one would ¯nd in the ontology. And third, the sem-strucs (and often the
associated syn-strucs as well) from the lexicon for one language can very often be
ported into the lexicon of another language with little or no modi¯cations, which
greatly enhances the multi-lingual applicability of the OntoAgent suite of resources.
For discussion of the cross-lingual use of OntoAgent lexicons, see [13].

Whereas the ontology contains ontological concepts, like CITY and WAR, the fact
repository contains remembered instances of those concepts, like London (say,
CITY-84) and World War II (say, WAR-4). For example, at a given time during the life
of an agent, its fact repository might contain the following information about
London; of course, vastly more could be added from processing encyclopedic texts
about the city, current events that have happened there over the centuries, etc. In
fact, a \walking encyclopedia" intelligent agent could have a fact repository in which
every fact ever known about London would be linked to this FR anchor called
CITY-84, with time stamps and attributions for all of the information, as property
values can change over time.

CITY-84 ; the 84th instance of city in this FR
LOCATION value NATION-2 ; Great Britain
CAPITAL-OF value NATION-2
LOCATION-OF value WEDDING-16 ; Prince William/Kate

Middleton royal wedding
value MEETING-76
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value LECTURE-12
(and possibly hundreds or thousands of other events,
each of which will be described with all of the relevant
properties and values)

LOCATION-OF value TOWER-1 ; Tower of London
. . .

Every agent in an agent network can have its own ontology, lexicon and fact
repository, all of which can be augmented during its simulated life through learning
and experience.

3. Natural Language ! KRL Translation During Language Processing

Although agent reasoning is most e®ectively carried out in a knowledge represen-
tation language (KRL), natural language (NL) is the ideal medium of communi-
cation with people. An intelligent agent with NL capabilities will not only
communicate, it will also be able to convert vast amounts of knowledge available in
NL into KRL, store it and use it for further reasoning about language and the world.
In order to achieve this best of both worlds scenario !!! permitting intelligent agents
to reason in KRL but having them communicate with people, and create knowledge
bases from NL sources !!! it is important both to establish the formal relationship
between NL and KRL and to provide intelligent agents with the facility to translate
between them. An important issue in designing KRLs is how to make them as close as
possible to NL, so as to facilitate the NL-KRL translation. Before describing
NL ! KRL translation in OntoAgent, let us ¯rst consider the bigger picture of the
KRL vs. NL debate in AI-NLP.

The relationship between the ¯elds of NLP and automatic reasoning has his-
torically not been tightly interwoven. Core research on reasoning has not tra-
ditionally concentrated on NL issues. Conversely, though the kind of NLP that is
required to build an intelligent agent must itself involve reasoning, the bulk of system
building in NLP and computational linguistic research has concentrated on issues
other than text meaning. Finally, reasoning in most systems that did treat meaning
in NL used methods di®erent from those employed for general reasoning. This div-
ision between NLP and reasoning was recognized already in the 1950s by Bar Hillel:

\...The evaluation of arguments presented in a natural language should have
been one of the major worries of logic since its beginnings. However, [...] the
actual development of formal logic took a di®erent course. It seems that [...]
the almost general attitude of all formal logicians was to regard such an
evaluation process as a two-stage a®air. In the ¯rst stage, the original
language formulation had to be rephrased, without loss, in a normalized
idiom, while in the second stage, these normalized formulations would be
put through the grindstone of the formal logic evaluator. [...] Without
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substantial progress in the ¯rst stage even the incredible progress made by
mathematical logic in our time will not help us much in solving our total
problem." (quoted from [1], pp. 202!203).

Once one substitutes \knowledge representation language" (KRL) for \normalized
idiom" and \reasoner" for \formal logic evaluator," it becomes clear that the current
state of a®airs is quite similar to that of half a century ago.

The automatic creation, from NL text, of realistically broad-coverage knowledge
bases that can adequately support reasoning has not become a central concern of
NLP, in part, probably, because this task is AI-complete. Instead, most NLP work in
the past 15 years or so has concentrated on so-called \knowledge-lean" methods,
which aim at broad coverage but accept limited-quality results as long as some
quanti¯ed progress can be demonstrated over time. Experimental accountability is
undoubtedly a very desirable goal but there remains the issue of whether the cur-
rently dominant knowledge-lean methods are pursuing local maxima, and whether
high-quality results in high-end applications !!! such as developing intelligent
agents !!! are attainable by these methods even in principle. Our own work in
ontological semantics [21] di®ers from most of the current work in NLP in that, while
making use of stochastic techniques, it concentrates on knowledge-based methods in
its pursuit of the long-term goal of building high-end applications that interleave
NLP and reasoning. The translation between unconstrained NL and a KRL is a core
area of this research.

Table 1 summarizes approaches and opinions about the relationship between NL
and KRL encountered in the ¯eld. In OntoAgent, we take the NL-KRL-NL trans-
lation approach, which requires the most development e®ort but also promises, we
believe, the biggest returns. The other approaches seek to obviate the need for this
translation or at least to alleviate its complexity. We consider these other approaches
in turn before describing our e®orts to operationalize the NL-KRL-NL option.

\Pure" NL-as-KRL means using natural language directly as input to auto-
matic reasoners. The NL-as-KRL movement among computational logicians and
proponents of controlled languages is relatively recent and has been formulated as a
research program: how to make KRL more NL-like. At least one AI/NLP researcher,
Yorick Wilks, believes that KRL is already, in the ¯nal analysis, NL. Wilks has
consistently argued (e.g. [33, 35] where this position is further claimed to ascend back
to [36]) that any knowledge representations that are meaningful are by nature
ambiguous and vague, and that it is, in principle, impossible to eliminate such
\language-like features" as ambiguity from ontologies and conceptual structures.
This position, clearly, sounds the death knell for standard automatic reasoning
techniques because it essentially states that any automatic reasoning will be inde-
terminate.

At the same time, Wilks claims, and rightfully so, that ambiguous, incomplete
and inconsistent knowledge resources can be and are still useful for NLP (he inevi-
tably cites WordNet [15], a lexical resource widely used by corpus-based NLP
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practitioners, though demonstrably incomplete and °awed when used as a knowl-
edge base for NLP [23]). The catch is that the types of applications Wilks has in
mind rely only partially on addressing issues of text meaning. Take the example of a
personal conversational assistant [34] which can, to a degree, fake understanding
and, when needed, can change the subject to lead the conversation to a topic
where its ability to hold up its end of the conversation is more secure. This is an
admirable sleight-of-hand strategy that works in an application where the
main purpose of communication is phatic. Strategically similar approaches can
alleviate the complexity of automatic text meaning extraction and manipulation in
situations when responsibility for understanding can be passed to the human
interlocutor, as when interpreting noisy output from machine translation or sum-
marization systems. However, such detour strategies will not work when under-
standing by the intelligent agent is crucial. We have commented in detail on the NL-
is-KRL opinion in [22] and [17], and here will limit our remarks to a few relevant
methodological points.

Table 1. Summary of approaches to and opinions about the relationship between NL and KRL.

Approach Advantages Di±culties

NL-KRL-NL translation NL input/output readable by people. Needs expressive, NL-in°uenced
KRL.KRL readable by trained people.
Need large, high-quality KBs.NL knowledge bases available.
Need high-quality analyzer.KRL suitable for reasoners.
Need reasoners about language and
the world.

Multi-lingual: same KRL/
reasoners for all languages.

\pure" NL-as-KRL Easy to use for people. NL knowledge
bases (e.g. encyclopedias, diction-
aries, gazetteers, etc.) available.

Impractical: engines for reasoning
directly in NL do not exist and
may never exist.

Controlled NL-as-KRL Controlled NL automatically trans-
latable without loss into KRL.

Impractical in the general case of
deriving knowledge from text.

Practical in a subset of applications. Quality depends on lack of
ambiguity.
Di±cult to impose at the lexical
level (users have to become lexicon
acquirers).

\pure" KRL-as-NL Easy to use for reasoners. Impractical: too heavy a burden on
people to learn/use the KRL.
KRL knowledge bases unavailable.
NL knowledge bases unusable.

KRL-is-NL Provides justi¯cation for modest
goals of incremental,
knowledge-lean R&D.

As a theoretical stance, does not
allow for any constructive
proposals about the NL-KRL
connection.

NL-NLc-KRL-NLc Controlled NL (NLcÞ automatically
translatable without loss into KRL.

Requires manual translation into
the controlled language.

Practical in a subset of applications.
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It is noteworthy that while Wilks cited the extraction and manipulation of text
meaning as the major scienti¯c objective, ambiguity of representation was not a
central issue for him. The desire to nudge the evaluation results of systems like word
sense disambiguation engines into the 90% range (cf. [6]) led him to claim that, for
NLP, only word sense distinctions at the coarse-grained level of homographs are
important.a Such a claim may work in the world of Semeval and other similar
competitions but, in reality, the situation with sense delimitation is much murkier.
For example, the English word operation has 11 senses in the American Heritage
dictionary and (so far) 3 senses in the OntoSem semantic lexicon (roughly, military
operation, surgery and general state of functioning). Di®erent structures/concepts
correspond to these meanings in the metalanguage, each with its own set of prop-
erties and value sets. If this three-way ambiguity is retained in the representation,
then, to gain more information about the operation, the reasoner will not know
whether to ask \Was general anaesthesia administered?" or \Was a general in
command?" It is, however, entirely possible that at any given time in the continuous
process of knowledge acquisition for NLP/reasoning (that is, knowledge to support
an intelligent agent) a subset of distinctions that are necessary to avoid confusing the
reasoning engine have not yet been introduced. It follows that if certain distinctions
are not required for any reasoning purposes, such \benign" ambiguities may be
retained in the representation. This is clearly an operational, application-oriented
approach but we have to live with it because the ¯eld has not yet come up with a
universal theoretical criterion for sense delimitation.

Today it is reasonable to hope that the balance between short-term and long-term
research in NLP and reasoning is on the road to being restored. Even in the
empiricist research paradigm, currently dominant in NLP, researchers recognize that
the core prerequisite for the improvement of their application systems (which cur-
rently achieve only modest results) is not developing better machine learning
algorithms that operate on larger sets of training data, but rather enhancing the
types of knowledge used in the processing (the terminology they prefer is judicious
selection of distinguishing features on which to base the comparisons and classi¯-
cations of texts). As [7] notes, \[i]n the context of language, doing `feature engin-
eering' is otherwise known as doing linguistics. . . [T]he space of interesting and useful
features that one could extract is usually e®ectively unbounded. All one needs is
enough linguistic insight and time to build those features. . ." These features are, in
practice, elements of the metalanguage of representation of text meaning and,
therefore, of KRL.

Controlled NL (NLc) as KRL. The notion of controlled languages ascends at
least to the \basic English" of Ogden (1930). These are languages with a restricted

aThe psycholinguistic evidence that Wilks and Ide cite to support this position is irrelevant because
systems do not operate the way people do. In fact, Wilks' own famous \theorem" to the e®ect that there is
no linguistic theory, however bizarre, that cannot be made the basis of a successful NLP system (Wilks
actually said, MT system) seems to argue for discounting psycholinguistic evidence for NLP.
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lexicon, syntax and semantics. Dozens of controlled languages, deriving from many
natural languages, have been developed over the years to serve computer appli-
cations. A typical application is using a controlled language to write a document (e.g.
a product manual) in order to facilitate automatic translation of the text into other
languages; presumably, the controlled-language text will contain fewer lexical,
grammatical, semantic and other ambiguities capable of causing translation systems
to make mistakes. Controlled languages are usually discussed together with
authoring tools of various kinds (spelling checkers, grammar checkers, terminology
checkers, style checkers, etc.) that alleviate the di±culties that authors face in
conforming to the controlled language in their writing. Controlled languages can also
be used as programming languages: according to [30, 31], COBOL is a controlled
English. The controlled languages especially relevant to this paper are computer
processable controlled languages (CPCLs, [32]), modeled after [28] Computer Pro-
cessable English. The de¯ning constraint of a CPCL is \to be capable of being
completely syntactically and semantically analyzed by a language processing sys-
tem" [28]. Work in this area involves building tools to facilitate two aspects of the
process: authoring texts in the controlled language and carrying out specialized types
of knowledge acquisition !!! for example, compiling NL-NLc dictionaries that pro-
vide a speci¯cation of the particular senses of NL words that are included in NLc.
One bene¯t of this approach is that such dictionaries can, if desired, be completely
user-dependent, which means that di®erent kinds of reasoning will be supported by
the same general apparatus using these \idiolects" of NLc.

A large number of CPCLs have been proposed in the last decade, among them the

language used in the KANT/KANTOO MT project [24], Boeing's Computer Pro-
cessable Language [4], Processable English [27], the Controlled English to Logic
Translation (CELT) language (e.g. [26]), SUMO [16], Common Logic Controlled

English [30, 31] and Attempto [5]. While there are di®erences between them, stra-
tegically all of them conform to the methodology of using people, not machines, to

disambiguate text. This disambiguated text can be represented in a variant of
FOL!!! possibly with some extensions!!! and used as input to reasoning engines. To
our knowledge, only CELT and KANT attempt to ground their symbols in an

ontology. The other approaches keep their ontological commitment to a minimum.
Having no ontological commitment broadens the opportunity for user-de¯ned
applications that can bypass the automatic analysis of open text. However, the

research and development devoted to the use of controlled languages, in our opinion,
contributes little to the long-term goal of creating truly automatic intelligent agents,
which is predicated on the capability of understanding unconstrained language.

Pure KRL-as-NL refers to having human users interact with a system directly
using a KRL, which !!! although in some senses ideal for system development and
arti¯cial agent functioning !!! puts such a high cognitive load on users as to make it
infeasible in all but the most constrained of domains and tasks.
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KRL-is-NL represents a philosophical view ultimately ascending to [36]. It
maintains, roughly, that the symbols used inKRLs are ultimately taken fromNLs and
cannot be taken from anywhere else; as a result, KRLs retain NL-like features, such as
ambiguity and vagueness, no matter how carefully researchers may design them. In
practice, this opinion can be used to justify knowledge-lean NLP and reasoning on the
grounds of the philosophical impossibility of attaining better results.

NL-NLc-KRL-NLc is a multi-step translation method favored by some prac-
titioners of approaches based on ¯rst-order logic (FOL). The goal is to constrain NL
to whatever can be automatically translated into FOL. So, the process involves
human translation from NL to a controlled NL (NLcÞ, for which a parser into KRL is
available. As such, having a controlled NL and its associated parser becomes
equivalent to having a KRL (e.g., [5, 26, 32, 8, 28]). It is assumed that system output
in a controlled language will pose no problems for people.

NL-KRL-NL Translation. As mentioned above, in OntoAgent we believe that
NL-KRL-NL translation is mandatory for sophisticated, reasoning-oriented appli-
cations. The NL!KRL translation is carried out by the OntoSem text analyzer,
which is a semantically-oriented text analysis system that has been in development
for over 20 years [21, 2, 3; and others]. The results of text processing are text meaning
representations (TMRs), which are disambiguated representations of text meaning
written in the same knowledge representation language that is used in the ontology,
the sem-struc of the lexicon and the fact repository. (See [21], Chapter 6, for
motivation for the structure and content of TMRs; see [12] for practical details and
examples.) TMRs represent propositions connected by discourse relations. Prop-
ositions are headed by instances of ontological concepts, parametrized for modality,
aspect, proposition time, overall TMR time, and style. Each proposition is related to
other instantiated concepts using ontologically de¯ned relations (which include case
roles and many others) and attributes. Coreference links form an additional layer of
linking between instantiated concepts. Figure 3 shows the architecture of the
OntoAgent text analysis system.

If the analyzer receives the input Charlie watched the baseball game, it will use
disambiguation techniques to determine that the ¯rst verbal sense of watch (watch-
v1) should be selected.

(watch-v1
(def \voluntary visual event")(ex \John was watching a movie.")
(syn-struc

((subject ((root $var1) (cat n)))
(root $var0) (cat v)
(directobject ((root $var2) (cat n) (opt þ)))))

(sem-struc
(VOLUNTARY-VISUAL-EVENT(AGENT (value ^$var1)) (THEME (value ^$var2)))))
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It will then assign the semantic analysis of Charlie to $var1 and the semantic analysis
of the baseball game to $var2, leading to the output TMR shown below. Comments
indicate the word in the text that instantiates each concept as well as the lexical
senses selected.

VOLUNTARY-VISUAL-EVENT-1 ; \watched"; uses watch-v1
AGENT HUMAN-1
THEME BASEBALL-GAME-1
TIME (< ¯nd-anchor-time) ; indicates past tense

HUMAN-1 ; \Charlie"; uses
*personal-name* processing

AGENT-OF VOLUNTARY-VISUAL-EVENT-1
HAS-PERSONAL-NAME \Charlie"

BASEBALL-GAME-1 ; \baseball game"
; uses baseball game-n1

THEME-OF VOLUNTARY-VISUAL-EVENT-1

It can be seen that the presentation format of TMRs, shown above, reads rather
easily and is quite natural-language like. In addition, the OntoAgent environment

Fig. 3. The OntoAgent text analysis system.

16 M. McShane & S. Nirenburg



has a DEKADE toolset that supports graphical viewing of TMRs as well as pre-¯nal
stages of text analysis (http://www.trulysmartagents.org/dekade.php).

4. Updating Memory: Paraphrase Interpretation

In order for language-endowed agents to operate intelligently !!! as when answering
questions posed by a human user or learning new facts !!! they must be able to
interpret language input, remember the content of that input, and attempt to
match/link that content with memories already stored in their fact repository.
Linking new information to oldmemories is a standing goal of all intelligent agents, and
a core capability enabling such linking is the recognition and resolution of paraphrase.

Having generated a meaning representation (MR) from input !!! be that input
language, experience, etc.!!! the intelligent agent must consider at least the following
potential eventualities in deciding on how to remember the content of this input.
(1) The new MR is identical to a stored memory. (2) The new MR is identical to a
stored memory except for metadata values: the identity of the speaker, the time
stamp, etc. (3) The new MR contains a subset or a superset of properties of a stored
memory. (4) The newMR is similar to a storedmemory but one or more properties has
a di®erent value. (5) The new MR !!! or a component of it !!! is related to a stored
memory via ontological subsumption, meronymy or location. (6) The new MR is
related to a stored memory as the latter's precondition or e®ect. (7) The new MR
is related to a stored memory via \ontological paraphrase." (8) The new MR is not
related to any storedmemory because di®erent concepts are used, there are con°icting
property values, etc. The ¯rst two eventualities, which are simple to detect, represent
con¯rmations of existing memories; the rest require reasoning to determine whether or
not the memories match. [14] presents algorithms for analyzing correspondences of
types (5)!(7): e.g. it explains how a virtual patient in the MVP environment can
match the question Do you have any discomfort in your esophagus? with a memory
that is stored in the fact repository as (SYMPTOM-1 (LOCATION CHEST-1) (EXPERIENCER
HUMAN-1)), which can be glossed as \the person has a symptom in his chest".

The main point to understand is that using a KRL does not free us from issues of
paraphrase because there are so many di®erent ways of thinking about a given
phenomenon and carving out the world, and these can be realized by di®erent KRL
structures. As in our example above, one person can talk about \discomfort in the
esophagus", which is realized in KRL as DISCOMFORT (LOCATION ESOPHAGUS) and another
person can refer to \a symptom in the chest", realized in KRL as SYMPTOM (LOCATION

CHEST) and they can actually be talking about the same thing. This is not a °aw in the
KRL; it is a re°ection of the complexity of the world and the way we choose to think
and talk about it.

5. KRL-Recorded Scripts to Support Physiological Simulation

The physiological side of the agents in the OntoSem environment is modeled as a set
of interconnected ontological objects representing human anatomy. Each object is

KRL for NLP, Simulation and Reasoning 17



described by a set of ontological properties and their associated value sets. Crucial
among the properties are those that link the objects to typical events in which they
participate. These events are usually complex !!! that is, they include other, possibly
also complex, events as their components. Following [29], we call these complex events
scripts, and we encode them in the ontology using the property HAS-EVENT-AS-PART.

Physiological modeling covers both normal and pathological processes. As an
example, let us consider disease models used in MVP, which are ontologically
encoded cognitive models of diseases that re°ect the mental models of practicing
physicians. Disease models break down into two major classes based on whether or
not the physiological causal chains underlying the disease are well understood. In
cases in which physiological causal chains are relatively poorly understood, the
simulation is primarily driven by temporal causal chains. Each disease is divided into
conceptual stages, with each stage being associated with clinically observed phys-
iological changes and symptom pro¯les. As simulated time passes, the patient's state
changes incrementally, calculated using an interpolation function that incorporates
the start value of each property at the beginning of the disease and the end value for
each conceptual stage. The other class of diseases modeled in the system are those for
which physiological causal chains are quite well understood. Such diseases are par-
ticularly interesting because they can be spontaneously generated or cured based on
the physiological preconditions being ful¯lled. For example (and to simplify the state
of a®airs for exposition), if a person's lower esophageal sphincter (the sphincter
between the esophagus and the stomach) is hypotensive (too loose), he will develop
gastroesophageal re°ux disease, GERD. So if a user wants to give a healthy virtual
patient GERD, all he has to do is carry out a surgical procedure to cut the lower
esophageal sphincter and render it hypotensive.

Returning to issues of KRL, all of these simulation-supporting scripts are
written in the same ontological metalanguage as the rest of the ontology. (See [9, 10]
for more in-depth descriptions of the physiological models.) Furthermore, they are
not only used to support simulation but are also used to support the reasoning virtual
tutors and advisors. For example, if a physician-in-training using the MVP system
wants to know what events occur during the progression of a disease, what paths the
disease can take, etc., the tutor has the answer to these questions because the tutor's
ontological knowledge is the same expert knowledge that drives the simulation.
Implementing this question-answering capability in MVP is on our agenda.

6. PhysiologicalAgent ! CognitiveAgent Paraphrase
During Interoception

Interoception is the perception of physiological phenomena. It is a feature of intel-
ligent agents that have both physiological and cognitive aspects. The source of
interoception is physiological phenomena, like symptoms of a disease, hunger and
sleepiness. Memories of interoceptive experiences are stored using the same onto-
logically grounded metalanguage as memories gleaned from language processing

18 M. McShane & S. Nirenburg



(recall that these are the two channels of perception for our agents at this time). And
there is another key similarity between the knowledge gleaned from language per-
ception and interoception: in both cases, paraphrase processing can be required to
link the new KRL structures to agent memories. Section 4 illustrated this for
language perception, we now brie°y review it with respect to interoception.

Physiological simulations are driven by ontological scripts that record expert
models. As such, they employ such concepts as DYSPHAGIA (di±culty swallowing),
PERISTALSIS (wave-like contractions of a series of muscles), and BOLUS (the contents of
a single swallow !!! a chewed piece of food or a gulp of liquid). When a non-physician
agent experiences something like \di±culty swallowing", or it swallows \some food",
or the food \doesn't go down right", it is certainly not remembering these things
using concepts like DYSPHAGIA, BOLUS and PERISTALSIS. Instead, it uses whatever
concepts it has available in its ontology. As a modeling strategy aimed at creating
verisimilitude in our agents, we automatically translate from the expert model to a
form interpretable by the agent itself using a method we call Physiological-
Agent ! CognitiveAgent Paraphrase.

Let us consider the example of DYSPHAGIA in a bit more detail. Whereas the Phy-
siologicalAgent that drives the simulation tracks the INTENSITY of the concept DYS-

PHAGIA over time, the CognitiveAgent most likely does not know about such a concept,
andmight not even recognize di±culty swallowing as a di®erentiated symptomat all, it
might perceive it as a vague discomfort after swallowing. Therefore, when the Phy-
siologicalAgent generates a symptom, the CognitiveAgent must interpret it using
ontological primitives that it understands. The translation from the Physiological-
Agent's ontological representation to the CognitiveAgent's ontological representation
can yield di®erent paraphrases for di®erent patients, though we expect each patient to
use just one paraphrase consistently when remembering a given type of symptom.The
types of knowledge that are used to automatically generate \agent-interpretable"
paraphrases are ontological properties like subsumption and meronomy. For example,
DYSPHAGIA is a child of SYMPTOM in the expert ontology; so when the PhysiologicalAgent
generates an instance of DYSPHAGIA, the CognitiveAgent can interpret it using the
parent concept, SYMPTOM, along with any of a number of di®erent property-value pairs,
such as [CAUSED-BY SWALLOW]. We must emphasize that this type of paraphrase rep-
resents a modeling strategy deriving from our symbolic approach to generating cog-
nitive simulations; we are not suggesting that humans require such a facility.
[18] further describes the automatic process of paraphrasing for agent interoception.

7. KRL-Recorded Knowledge to Support Plan- and Goal-Style
Decision Making

All agents in the OntoAgent environment carry out dynamic decision making that in
style, albeit not complexity, approximates human decision making. For example,
whenever a decision needs to be made, an agent ¯rst determines whether it
has su±cient information to make the decision, an assessment that is based on a
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combination of what it actually knows, what it believes to be necessary for making a
good decision, and its personality traits. If it lacks some decision-making knowledge,
it can posit the goal of obtaining this knowledge, which is a metacognitive behavior
that leads to learning (see [26] for more on metacognition in the OntoAgent
environment). Formally speaking, a goal is an ontological instance of a property
whose domain and range are speci¯ed.

Let us consider the fundamentals of planning and decision-making using the speci¯c
example of a virtual patient (VP) in the MVP application. The main goal pursued by
all VPs is: (BE-HEALTHY-1 (DOMAIN HUMAN-1) (RANGE 1)). This means that for the
ontologically de¯ned property BE-HEALTHY applied to the agent itself (HUMAN-1), the
range is the highest possible value !!! here, 1 on the abstract scale f0; 1g. We assume
that this is a universal goal of all humans and, in cases in which it seems that a person is
not ful¯lling this goal, he is simply prioritizing another goal, like EXPERIENCE-PLEASURE.

In MVP, when a VP begins to detect symptoms, the goal instance BE-HEALTHY-1 is
put on the goal and plan agenda. It remains on the agenda and is reevaluated when:
(a) its intensity or frequency (depending on the symptom) reaches a certain level;
(b) a new symptom arises; or (c) a certain amount of time has passed since the
patient's last evaluation of its current state of health, given that the patient has an
ongoing or recurring symptom or set of symptoms: e.g. \I've had this mild symptom
for too long, I should see the doctor." At each evaluation of its state of health, the VP
can either do nothing or go to see the doctor !!! a decision that is made based on an
inventory of VP character traits, the current and recent disease state and, if appli-
cable, previous doctor's orders (cf. next section). If it decides to see the doctor
(ontologically, SEE-MD), that plan is put on the agenda. All subgoals toward achieving
the goal BE-HEALTHY-1 and their associated plans are put on and taken o® the agenda
based on VP decision functions that are triggered by changes in its physical and
mental states throughout the simulation. So when the doctor suggests having a test
(goal: HAVE-DIAGNOSIS-1) and the patient agrees, having the test (a plan toward the
above goal) is put on the agenda; and so on.

Now let us shift to decision functions as such. Say the medical trainee suggests that
the VP have the endoscopic procedure called pneumatic dilation, which the VP has
never heard of. If the VP is very trusting it might agree to the procedure then ask what
it is, or it might agree to it and wait to see if the doctor provides any information about
it. If, by contrast, the VP is not very trusting, or if it is trusting but just very curious, it
might ask questions before agreeing. The function that determines its behavior relies
on the ontologically grounded features of the VP recorded in its pro¯le, some of which
are persistent (e.g. trust) and some of which are situation-dependent (e.g. anxiety).
Several decision-making functions of VPs are detailed in [18].

8. KRL ! NL Translation for Language Generation

The input to the language generator in OntoAgent is content speci¯cation expressed
in the KRL. Among the sources of content are decision-making, such as the decision
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to ask a question before agreeing to a medical procedure, and other mental
actions, such as searching memory for the answer to a question. The format of these
KRL structures are identical to the TMRs discussed above. Currently, we use a
template-style NL generator, as language generation has not been a recent focus of
development.

9. KRL ! Simulation for Simulated Physical Action

The simulated physical action referred to in this section is agentive, non-verbal
action !!! for example, an agent makes a doctor's appointment, takes its medicine,
drinks co®ee, and so on. These actions are instantiated as goal-directed plans, and
they are triggered by decision functions of the type described in Sec. 7. For example,
when a VP's symptoms persist for long enough, it puts an instance of the plan
SEE-MD-1 on its agenda, and that plan stays there until its e®ects are posted !!! i.e.
the action has been carried out. These actions are remembered in the same way as
verbal input, interoception, and the results of agent reasoning, and they are subject
to the same types of memory management (memory consolidation, forgetting, etc.)
as memories from those sources.

10. Final Thoughts

The view of the nature and role of KRL promulgated and tested in OntoAgent can be
summarized as follows. The KRL for the support of communicating intelligent agents
is symbolic and serves the needs of describing world models (ontologies) as well as
meanings of elements of communication (texts, dialog turns, etc.). The lexis of this
language is drawn from an ontology and the syntax follows a set of format con-
ventions that can, in fact, change between applications. The KRL also provides the
formalism for encoding the outputs of the various modules of natural language
analysis systems and inputs to a subset of modules of language generation systems.
Text meaning representations consist of instances of ontological concepts and may be
stored in the agent's fact repository. The fact repository, together with the ontology
and other knowledge resources, make up a model of the agent's memory. New facts to
be stored in the fact repository may be created through the operation of the per-
ception modules available to the agent (in addition to text understanding, perception
may cover visual, tactile, non-language auditory, olfactory and interoceptive
signals). They may also be generated as a result of the agent's mental actions !!!
making and remembering new knowledge on the basis of the current content of its
memory.

The salient point here is that facts in the fact repository are recorded using the
same KRL. In general, the applicability of the same KRL for various perception,
reasoning and action tasks is a worthy desideratum. Not only does such a KRL
obviate the need for multiple intellectually boring format conversion tasks, it also
signi¯cantly simpli¯es the learning curve for knowledge acquirers, system builders,
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evaluators and end users. Though this latter consideration is not theoretical, it is
crucially important for system builders.
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