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The last chapter introduced some of the ways in which NLU is fostered by its integration 
in a comprehensive agent environment. In fact, it would be impossible to fully appreciate 
the need for ontologically grounded language understanding without taking into consid-
eration the full scope of interrelated functionalities that will be required by human-level 
intelligent agents. All these functionalities rely on the availability of high-quality, machine-
tractable knowledge, and this reality dwarfs the oft-repeated cost-oriented argument against 
knowledge-based NLU: that building the knowledge is too expensive. The fact is that 
agents need the knowledge anyway.

The second, equally compelling rationale for developing integrated, knowledge-based 
systems is that they will enable agents to explain their decisions in human terms, whether 
they are tasked with teaching, collaborating, or giving advice in domains as critical as 
defense, medicine, and finance. In fact, explainable AI has recently been identified as an 
important area of research. However, given that almost all recent work in AI has been sta-
tistically oriented, the question most often asked has been to what extent statistical sys-
tems can in principle explain their results to the human users who will ultimately be held 
responsible for the decision-making.

This chapter describes application areas that have served as a substrate for our program 
of work in developing LEIAs. As with the language-oriented chapters, the description is 
primarily conceptual, since specific system implementation details become ever more obso-
lete with each passing day. The goal of the chapter is to contextualize NLU in overall 
LEIA modeling without the discussion snowballing into a fundamental treatment of every 
aspect of cognitive systems.

8.1  The Maryland Virtual Patient System

Maryland Virtual Patient (MVP) is a prototype agent system that provides simulation-based 
experience for clinicians in training. Specifically, it would allow medical trainees to develop 
clinical decision-making skills by managing a cohort of highly differentiated virtual 
patients in dynamic simulations, with the optional assistance of a virtual tutor.
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302	 Chapter 8

The benefits of simulation-based training are well-known: it offers users the opportu-
nity to gain extensive practical experience in a short time and without risk. For example, 
“The evaluation of SHERLOCK II showed that technicians learned more about electron-
ics troubleshooting [for US Airforce aircraft] from using this system for 24 hr than from 
4 years of informal learning in the field” (Evens & Michael, 2006, p. 375).

Development of MVP followed the demand-side approach to system building, by which 
a problem is externally identified and then solved using whatever methods can be brought 
to bear. This stands in contrast to the currently more popular supply-side approach, in which 
the choice of a method—these days, almost always machine learning using big data—is 
predetermined, and R&D objectives are shaped to suit.

The physician-educators who conceived of MVP set down the following requirements:

1.	 It must expose students to virtual patients that demonstrate sophisticated, realistic 
behaviors, thus allowing the students to suspend their disbelief and interact naturally 
with them.

2.	 It must allow for open-ended, trial-and-error investigation—that is, learning through 
self-discovery—with the virtual patient’s anatomy and physiology realistically adjust-
ing to both expected and unexpected interventions.

3.	 It must offer a large population of virtual patients suffering from each disease, with 
each patient displaying clinically relevant variations on the disease theme; these can 
involve the path or speed of disease progression, the profile and severity of symptoms, 
responses to treatments, and secondary diseases or disorders that affect treatment 
choices.

4.	 It must be built on models with the following characteristics:

a.	 They must be explanatory. Explanatory models provide transparency to the med-
ical community who must endorse the system. They also provide the foundation 
for tutoring, since they make clear both the what and the why of the simulation.

b.	 They must integrate well-understood biomechanisms with clinical knowledge 
(population-level observations, statistical evidence) that bridges the gaps when 
causal explanations are not available.

c.	 They must allow these nonexplanatory clinical bridges to be replaced by biome-
chanical causal chains if they are discovered, without perturbation to the rest of 
the model.

d.	 They must be sufficient to support automatic function and realism, but they need 
not include every physiological mechanism known to medicine. That is, creating 
useful applications does not impose the impossible precondition of creating full-
blown virtual humans.

5.	 It must cover diseases that are both chronic and acute and both well and poorly under-
stood by the medical community.
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6.	 It must allow students to have control of the clock—that is, to advance the simulation 
to the next phase of patient management at will, thus simulating the doctor’s choices 
about when a patient is to come for a follow-up visit.

7.	 It must offer optional tutoring support that can be parameterized to suit student 
preferences.

8.	 It must allow virtual patients to make all kinds of decisions that real patients do, such 
as when to see the doctor, whether to agree to tests and interventions, and whether to 
comply with the treatment protocol.

The virtual patients in MVP are double agents in that they display both physiological and 
cognitive function, as shown by the high-level system architecture in figure 8.1.1 Physiologi-
cally, they undergo both normal and pathological processes in response to internal and 
external stimuli, and they show realistic responses to both expected and unexpected inter-
ventions. Cognitively, they experience symptoms, have lifestyle preferences, can communi-
cate with the human user in natural language, have memories of language interactions and 
simulated experiences, and can make decisions (based on their knowledge of the world, their 
physical, mental, and emotional states, and their current goals and plans). An optional tutor-
ing agent provides advice and feedback during the simulation. The other medical personnel 
include the agents that carry out tests and procedures and report their results.

It is noteworthy that the MVP vision and modeling strategy not only fulfill the desid-
erata for virtual patient models detailed in the National Research Council’s 2009 joint report 
(Stead & Lin, 2009), but they were developed before that report was published. A short 
excerpt illustrates the overlap:

In the committee’s vision of patient-centered cognitive support, the clinician inter-
acts with models and abstractions of the patient that place the raw data in context and 
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Figure 8.1
The Maryland Virtual Patient (MVP) architecture.
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synthesize them with medical knowledge in ways that make clinical sense for that 
patient. … These virtual patient models are the computational counterparts of the cli-
nician’s conceptual model of a patient. They depict and simulate a theory about inter-
actions going on in the patient and enable patient-specific parameterization and 
multicomponent alerts. They build on submodels of biological and physiological sys-
tems and also of epidemiology that take into account, for example, the local preva-
lence of diseases. (p. 8)

MVP is a prototype system whose knowledge bases, software, and core theoretical and 
methodological foundations were developed from approximately 2005 to 2013 (e.g., 
McShane, Fantry, et al., 2007; McShane, Nirenburg, et al., 2007; McShane, Jarrell, et al., 
2008; McShane, Nirenburg, & Jarrell, 2013; Nirenburg, McShane, & Beale, 2008a, 2008b, 
2010a, 2010b). The system that was demonstrated throughout that period has not been main-
tained, but the knowledge bases, algorithms, methodology, and code remain available for 
reimplementation and enhancement. We refer to the system using the present tense to focus 
on the continued availability of the conceptual substrate and resources.

The obvious question is, Why hasn’t the work on MVP continued? The reason is logisti-
cal: For a pedagogical system to be adopted by the medical community, large-scale 
evaluations—even of the prototype—are needed, and this is difficult to accomplish given 
the levels of funding typically available for research-oriented work. And without a formal 
evaluation of the prototype, it proved difficult to sustain sufficient funding to expand it 
into a deployed system. We still believe that MVP maps out an exciting and necessary path 
toward developing sophisticated, high-confidence, explanatory AI.

The description of MVP below includes the modeling of the virtual patient’s physiol-
ogy and cognition, a sample system run, the under-the-hood traces of system functioning, 
and a discussion of the extent to which such models can be automatically learned from the 
literature and extracted from domain experts. The descriptions attempt to convey the nature 
and scope of the work, without excessive detail that would be of interest only to experts in 
the medical domain.

Of course, ideally, system descriptions are preceded by demos—of which we had many 
during the period of development. In lieu of that, readers might find it useful to first skim 
through the system run described in section 8.1.4.

8.1.1  Modeling Physiology

The model of the virtual patient’s physiology was developed in-house using the same ontol-
ogy and metalanguage of knowledge representation as are used for NLU. Diseases are 
modeled as sequences of changes, over time, in the values of ontological properties repre-
senting aspects of human anatomy, physiology, and pathology. For each disease, some num-
ber of conceptual stages is established, and typical values (or ranges of values) for each 
property are associated with each stage. Values at the start or end of each stage are recorded 
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explicitly, with values between stages being interpolated. Disease models include a com-
bination of fixed and variable features. For example, although the number of stages for a 
given disease is fixed, the duration of each stage is variable. Similarly, although the values 
for some physiological properties undergo fixed changes across patients (to ensure that the 
disease manifests appropriately), the values for other physiological properties are variable 
within a specified range to allow for different instances of virtual patients to differ in clini-
cally relevant ways.

Roughly speaking, diseases fall into two classes: those for which the key causal chains 
are well understood and can drive the simulation, and those for which the key causal 
chains are not known. The models for the latter types of diseases rely on clinical observa-
tions about what happens and when (but not why). Most disease models integrate both kinds 
of modeling strategies in different proportions.

To develop computational cognitive models that are sufficient to support realistic patient 
simulations in MVP, a knowledge engineer leads physician-informants through the process 
of distilling their extensive and tightly coupled physiological and clinical knowledge into 
the most relevant subset and expressing it in the most concrete terms. Not infrequently, spe-
cialists are also called on to hypothesize about the unknowable, such as the preclinical (i.e., 
presymptomatic) stage of a disease and the values of physiological properties between the 
times when tests are run to measure them. Such hypotheses are, by nature, imprecise. How-
ever, rather than permit this imprecision to grind agent building to a halt, we proceed in the 
same way as live clinicians do: by developing a model that is reasonable and useful, with no 
claims that it is the only model possible or that it precisely replicates human functioning.2

The selection of properties to be included in a disease model is guided by practical consid-
erations. Properties are included if (a) they can be measured by tests, (b) they can be affected 
by medications or treatments, and/or (c) they are central to a physician’s mental model of the 
disease. In addition to using directly measurable properties, we also include abstract proper-
ties that foster the creation of a compact, comprehensible model. For example, when the prop-
erty PRECLINICAL-IRRITATION-PERCENTAGE is used in scripts describing esophageal diseases, 
it captures how irritated a person’s esophagus is before the person starts to experience symp-
toms. Preclinical disease states are not measured because people do not go to the doctor 
before they have symptoms. However, physicians know that each disease process has a pre-
clinical stage, which must be accounted for in an end-to-end, simulation-supporting model. 
Inventing useful, appropriate abstract properties reflects one of the creative aspects of com-
putational modeling.3

Once an approach to modeling a disease has been devised and all requisite details have 
been elicited from the experts, the disease-related events and their participants are encoded 
in ontologically grounded scripts written in the metalanguage of the LEIA’s ontology.4 
MVP includes both domain scripts and workflow scripts. Domain scripts describe basic 
physiology, disease progression, and responses to interventions, whereas workflow scripts 
model the way an expert physician would handle a case, thus enabling automatic tutoring.
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8.1.2  An Example: The Disease Model for GERD

GERD—gastroesophageal reflux disease—is one of the most common diseases world-
wide.5 It is any symptomatic clinical condition that results from the reflux of stomach or 
duodenal contents into the esophagus. In laymen’s terms, acidic contents backwash into 
the esophagus because the sphincter between the two—called the lower esophageal sphinc-
ter (LES)—is not functioning properly. The acidity irritates the esophagus, which is not 
designed to withstand such acid exposure.

What follows is a summary of the model for GERD. Even if you choose to skip over the 
details, do notice that the modeling involves an explanatory, interpretive analysis of phys-
iological and pathological phenomena, reflecting the way physicians think about the dis-
ease. This is not merely a compilation of factoids from the medical literature, which would 
not be sufficient to create an end-to-end, simulation-supporting model.

The development of any model begins by selecting the properties that define it. That 
selection process is informed by the descriptions provided by domain experts. The descrip-
tion of GERD begins with its cause: one of two abnormalities of the LES. Either the LES 
has an abnormally low basal pressure (< 10 mmHg) or it is subject to an abnormally large 
number or duration of so-called transient relaxations. Both of these result in the sphincter 
being too relaxed too much of the time, which increases acid exposure to the lining of the 
esophagus. Clinically speaking, it does not matter which LES abnormality gives rise to 
excessive acid exposure; what matters is the amount of time per day this occurs. We re
cord this feature as the property TOTAL-TIME-IN-ACID-REFLUX.

Although TOTAL-TIME-IN-ACID-REFLUX earns its place in the model as the variable that 
holds the results of the test called pH monitoring, it does not capture—for physicians 
or knowledge engineers—relative GERD severity. For that we introduced the abstract 
property GERD-LEVEL. The values for GERD-LEVEL correlate (not by accident) with LES 
pressure:

•	 If GERD is caused by a hypotensive (too loose) LES, then the GERD-LEVEL equals the 
LES pressure. So, a GERD-LEVEL of 5 indicates an LES pressure of 5 mmHg.

•	 If GERD is caused by excessive transient relaxations, then the GERD-LEVEL reflects 
the same amount of acid exposure as would have been caused by the given LES pres-
sure. So a GERD-LEVEL of 5 indicates a duration of transient relaxations per day that 
would result in the same acid exposure as an LES pressure of 5 mmHg.

Key aspects of the model orient around GERD-LEVEL (rather than LES pressure, transient 
relaxations, or TOTAL-TIME-IN-ACID-REFLUX) because this is much easier to conceptualize 
for the humans building and vetting the model. For example, as shown in table 8.1, GERD-

LEVEL is used to determine the pace of disease progression, with lower numbers (think “a 
looser LES”) reflecting more acid exposure and faster disease progression. (The full list 
covers the integers 0–10.)
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The conceptual stages of GERD are listed below. Each stage is associated with certain 
physiological features, test findings, symptom profiles, and anticipated outcomes of medi-
cal interventions. All these allow for variability across patients.

1.	 Preclinical stage: Involves the nonsymptomatic inflammation of the esophagus. It is 
called preclinical because patients do not present to doctors when they have no 
symptoms.

2.	 Inflammation stage: Involves more severe inflammation of the esophagus. Symptoms 
begin.

3.	 Erosion stage: One or more erosions (areas of tissue destruction) occur in the esopha-
geal lining. Symptoms increase.

4.	 Ulcer stage: One or more erosions have progressed to the depth of an ulcer. Symp-
toms increase even more.

5.	 Post-ulcer stage, which takes one of two paths:

a.	 Barrett’s metaplasia: A premalignant condition that progresses to cancer (an addi-
tional stage) in some patients.

b.	 Peptic stricture: An abnormal narrowing of the esophagus due to changes in tis-
sue caused by chronic overexposure to gastric acid. It does not lead to cancer.

Patients differ with respect to the end stage of GERD if it is left untreated. Some lucky 
individuals will never experience more than an inflamed esophagus; their disease process 
simply stops at stage 2. By contrast, other patients will end up with esophageal cancer. For 
those patients progressing to the late stage of the disease, there is a bifurcation in disease 
path—Barrett’s metaplasia versus peptic stricture—for reasons that are unknown.

The ontological scripts that support each stage of simulation include the patient’s basic 
physiological property changes, how the patient will respond to interventions if the user 
(i.e., a medical trainee) chooses to administer them, and the effects of the patient’s life-
style choices. Sparing the reader the code in which scripts are written, here is an example, 

Table 8.1
Sample GERD levels and associated properties

GERD-LEVEL
TOTAL-TIME-IN-ACID-REFLUX  
in hours per day Stage duration in days

10 less than 1.2 a non-disease state

8 1.92 160

5 3.12 110

3 4.08 60
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in plain English, of how GERD progresses in a particular instance of a virtual patient who 
is predisposed to having erosion as the end stage of disease. In this example, the disease 
is left untreated throughout the entire simulation.

•	 During PRECLINICAL-GERD, the value of the property PRECLINICAL-IRRITATION-

PERCENTAGE (an abstract property whose domain is MUCOSA-OF-ESOPHAGUS) increases 
from 0 to 100.6

•	 When the value of PRECLINICAL-IRRITATION-PERCENTAGE reaches 100, the script for 
PRECLINICAL-GERD is unasserted and the script for the INFLAMMATION-STAGE is asserted.

•	 During the INFLAMMATION-STAGE, the mucosal layer of the esophageal lining (recorded 
as the property MUCOSAL-DEPTH applied to the object ESOPHAGEAL-MUCOSA) is eroded, 
going from a depth of 1 mm to 0 mm over the duration of the stage.

•	 When MUCOSAL-DEPTH reaches 0 mm, the script for the INFLAMMATION-STAGE is unas-
serted, with the simultaneous assertion of the script for the EROSION-STAGE.

•	 At the start of the EROSION-STAGE, between one and three EROSION objects are created 
whose DEPTH increases from .0001 mm upon instantiation to .5 mm by the end of the 
stage, resulting in a decrease in SUBMUCOSAL-DEPTH (i.e., the thickness of the submu-
cosal layer of tissue in the esophagus) from 3 mm to 2.5 mm.

•	 When SUBMUCOSAL-DEPTH has reached 2.5 mm., the EROSION-STAGE script remains in 
a holding pattern since the patient we are describing does not have a predisposition to 
ulcer.

Over the course of each stage, property values are interpolated using a linear function, 
though other functions could be used if they were found to produce more lifelike simula-
tions. So, halfway through PRECLINICAL-GERD, the patient’s PRECLINICAL-IRRITATION-

PERCENTAGE will be 50, and three quarters of the way through that stage it will be 75.
The length of each stage depends on the patient’s TOTAL-TIME-IN-ACID-REFLUX (see 

table 8.1). For example, a patient with a GERD-LEVEL of 8 will have a TOTAL-TIME-IN-ACID-

REFLUX of 1.92 hours a day and each stage will last 160 days.
Some lifestyle habits, such as consuming caffeine, mints, and fatty foods, increase GERD-

LEVEL manifestation in patients who are sensitive to those substances. In the model, if a 
patient is susceptible to GERD-influencing lifestyle habits and is engaging in those hab-
its, then the effective GERD-LEVEL reduces by one. This results in an increase in acid expo-
sure and a speeding up of each stage of the disease. If the patient is not actively engaging 
in the habit—for example, he or she might be following the doctor’s advice to stop drink-
ing caffeinated beverages—the GERD-LEVEL returns to its basic level. This is just one exam-
ple of the utility of introducing the abstract property GERD-LEVEL into the model.

Each test that can be run is described in the ontology by the properties it measures, the 
clinically relevant ranges of values it can return, and expert interpretations of the results 
(see table 8.6 in section 8.1.5.2). When tests are launched on the patient at any time during 
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the simulation, their results are obtained by the system accessing the relevant feature val-
ues from the patient’s dynamically changing physiological profile.

We now turn to two aspects of physiological modeling that we incorporated into the 
model after its initial implementation: (a) accounting for why patients have different end 
stages of the disease and (b) modeling partial (rather than all-or-nothing) responses to medi
cations. The fact that we could seamlessly incorporate these enhancements, without per-
turbation to the base model, is evidence of the inherent extensibility of the models developed 
using this methodology.

Enhancement 1. Accounting for why patients have different end stages of GERD. Although 
it is unknown why patients have different end stages of GERD if the disease is left untreated, 
physicians have hypothesized that genetic, environmental, physiological, and even emo-
tional factors could play a role.7 To capture some hypotheses that have both practical and 
pedagogical utility, we introduced three abstract properties into the model:

•	 MUCOSAL-RESISTANCE reflects the hypothesis that patients differ with respect to the 
degree to which the mucosal lining of the esophagus protects the esophageal tissue 
from acid exposure and fosters the healing of damaged tissue. A higher value on the 
abstract {0,1} scale of MUCOSAL-RESISTANCE is better for the patient.

•	 MODIFIED-TOTAL-TIME-IN-ACID-REFLUX combines MUCOSAL-RESISTANCE with the base-
line TOTAL-TIME-IN-ACID-REFLUX to capture the hypothesis that a strong mucosal lining 
can functionally decrease the effect of acid exposure. For example, patients with an 
average MUCOSAL-RESISTANCE (a value of 1) will have the stage durations shown in 
table 8.1. Patients with an above-average MUCOSAL-RESISTANCE (a value of greater than 1) 
will have a lower MODIFIED-TOTAL-TIME-IN-ACID-REFLUX, whereas patients with a 
below-average MUCOSAL-RESISTANCE (a value of less than 1) will have a higher MODIFIED-

TOTAL-TIME-IN-ACID-REFLUX. For example:

•	 If a patient’s TOTAL-TIME-IN-ACID-REFLUX is 3.12 hours, but the patient has a muco-
sal resistance of 1.2, we model that as a MODIFIED- TOTAL-TIME-IN-ACID-REFLUX of 
2.5 hours (3.12 multiplied by .8), and the disease progresses correspondingly slower.

•	 By contrast, if the patient’s TOTAL-TIME-IN-ACID-REFLUX is 3.12 hours, but the patient 
has a MUCOSAL-RESISTANCE of .8, then the MODIFIED-TOTAL-TIME-IN-ACID-REFLUX is 
3.75 hours (3.12 multiplied by 1.2), and disease progression is correspondingly faster.

•	 DISEASE-ADVANCING-MODIFIED-TOTAL-TIME-IN-ACID-REFLUX is the total time in acid 
reflux required for the disease to manifest at the given stage. This variable permits 
us to indicate the end stage of a patient’s disease in a more explanatory way than by 
simply asserting it. That is, for each patient, we indicate how much acid exposure is 
necessary to make the disease progress into each stage, as shown in table 8.2. If the 
acid exposure is not sufficient to support disease progression into a given stage (as 
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shown by cells with gray shading), the patient’s disease will be at its end stage. 
For example, John is a patient whose disease will not progress past the inflamma-
tion stage, even if left untreated, because his MODIFIED-TOTAL-TIME-IN-ACID-REFLUX 
is not high enough to support the erosion stage of GERD. By contrast, Fred’s dis-
ease will advance into the ulcer stage, and Harry’s disease will advance to peptic 
stricture.

Enhancement 2. Modeling complete and partial responses to medication. In order to cap-
ture the contrast between complete and partial responses to medications, medication effects 
are modeled as decreases in MODIFIED-TOTAL-TIME-IN-ACID-REFLUX, as shown in table 8.3.
The table indicates the decrease in acid exposure caused by each medication for each 
patient, along with the resulting MODIFIED-TOTAL-TIME-IN-ACID-REFLUX. Explained in 
plain English:

•	 For each day that John takes an H2 blocker, his MODIFIED-TOTAL-TIME-IN-ACID-REFLUX 
will be 1.42, which is not a disease state. If he already has the disease, healing will 
occur. The other, more potent medication regimens will also be effective for him.

•	 For Fred, the H2 blocker is not sufficient to promote complete healing (it brings the 
MODIFIED-TOTAL-TIME-IN-ACID-REFLUX down to 2.5), but it would be sufficient to not 
permit his disease to progress to the ulcer stage. Or, if Fred were already in the ulcer 
stage, the ulcers would heal to the more benign level of erosions. If Fred took a PPI 
once or twice daily, his MODIFIED-TOTAL-TIME-IN-ACID-REFLUX would be < 1.92, mean-
ing that his esophagus would heal completely over time.

•	 For Harry, the H2 blocker would barely help at all—he would still progress right 
through the stricture stage. Taking a PPI once a day would heal ulcers and block late 
stages of disease. Taking a PPI twice a day would heal the disease completely, unless 
Harry had already experienced a stricture: there is no nonoperative cure for a peptic 

Table 8.2
Computing, rather than asserting, why patients have different end stages of GERD. Column 2 indicates 
each patient’s MODIFIED-TOTAL-TIME-IN-ACID- REFLUX per day. The cells in the remaining columns indicate 
the total time in acid reflux needed for GERD to advance in that stage. Cells with gray shading indicate that 
the disease will not advance to this stage unless the patient’s MODIFIED-TOTAL- TIME-IN-ACID-REFLUX 
changes—which could occur, for example, if the patient took certain types of medications, changed its 
lifestyle habits, or had certain kinds of surgery.

Patient
MODIFIED-TOTAL-TIME- 

IN-ACID-REFLUX Preclinical Inflammation Erosion Ulcer Peptic stricture

John 1.92 1.92 1.92 2.3 2.5 3.12

Fred 2.8 1.92 1.92 2 2.7 3.12

Harry 4.08 1.92 1.92 3 3.5 4.0
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stricture, a detail that we will not pursue at length here but which is covered in the 
model (the STRICTURE object generated by the simulation remains a part of the patient’s 
anatomy).

To recap, these enhancements to the original GERD model permit each patient’s end 
stage of disease progression to be calculated rather than asserted, and they permit medi
cations to have varying degrees of efficacy.

One important point remains before we wrap up this overview of disease modeling. Any 
disease that has known physiological preconditions will arise any time those preconditions 
are met. For example, say a virtual patient is authored to have the disease achalasia, which 
is caused by a hypertensive LES (the opposite of GERD). And say a system user chooses 
to treat the achalasia using a surgical procedure that cuts the LES, changing it from hyper-
tensive to hypotensive. Then the disease processes of GERD will automatically begin 
because the LES-oriented precondition has been met. There is no need for the person 
authoring the achalasia patient to say anything at all about GERD. This example illustrates 
why physiological models should be as causally grounded as possible, particularly as more 
and more interventions are added to the environment, making available all kinds of side 
effects outside those pertaining to the given disease.

8.1.3  Modeling Cognition

Virtual patients need many cognitive capabilities. Their language understanding capabili-
ties have already been amply described. Their language generation involves two aspects: 
generating the content of what they will say, and generating its form. The content derives 
from reasoning and is encoded in ontologically grounded meaning representations. The 
form is constructed by templates, which proved sufficient for the prototype stage of this 
application but would need to be enhanced for a full-scale application system. Two other 
necessary cognitive capabilities of virtual patients are (a) learning new words and con-
cepts through language interaction and (b) making decisions about action. We consider 
these in turn.

Table 8.3
Modeling complete and partial responses to medications. The reduction in MODIFIED-TOTAL- 
TIME-IN-ACID-REFLUX is listed first, followed by the resulting MODIFIED-TOTAL-TIME-IN-ACID- 
REFLUX in brackets.

Patient MODIFIED-TOTAL-TIME-IN-ACID-REFLUX H2 blocker PPI once daily PPI twice daily

John 1.92 − .5 [1.42] − 1.25 [.67] − 1.5 [.42]

Fred 2.8 − .3 [2.5] − 1 [1.8] − 2.25 [.55]

Harry 4.08 − .1 [3.98] − .8 [3.28] − 2.2 [1.88]
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8.1.3.1  Learning new words and concepts through language interaction  Learning is 
often a prerequisite to decision-making. After all, no patient—real or virtual—should agree 
to a medical procedure without knowing its nature and risks. Table 8.4 shows a brief dialog, 
which was demonstrated in the application system, between a virtual patient (P) and the 
human user playing the role of doctor (D). This dialog features the learning of ontology 
and lexicon through language interaction in preparation for the patient’s decision-making 
about its medical treatment.

When the virtual patient processes each of the doctor’s utterances, it automatically cre-
ates text meaning representations that it then uses for reasoning and learning. The text 
meaning representation for the first sentence is

ACHALASIA-1

	 EXPERIENCER	 HUMAN-1	 (“the virtual patient”)

Table 8.4
Learning lexicon and ontology through language interaction

Dialog Ontological knowledge learned Lexical knowledge learned

D: You have achalasia. The concept ACHALASIA is learned 
and made a child of DISEASE.

The noun achalasia is learned 
and mapped to the concept 
ACHALASIA.8

P: Is it treatable?
D: Yes.

The value for the property 
TREATABLE in the ontological 
frame for ACHALASIA is set to yes.

D: I think you should have a 
Heller myotomy.

The concept HELLER-MYOTOMY is 
learned and made a child of 
MEDICAL-PROCEDURE. Its property 
TREATMENT-OPTION-FOR receives 
the filler ACHALASIA.

The noun Heller myotomy is 
learned and mapped to the 
concept HELLER-MYOTOMY.

P: What is that?
D: It is a type of esophageal 
surgery.

The concept HELLER-MYOTOMY is 
moved in the ontology tree: it is 
made a child of SURGICAL-
PROCEDURE. Also, the THEME of 
HELLER-MYOTOMY is specified as 
ESOPHAGUS.

P: Are there any other options?
D: Yes, you could have a 
pneumatic dilation instead, …

The concept PNEUMATIC-DILATION 
is learned and made a child of 
MEDICAL-PROCEDURE.

The noun pneumatic dilation is 
learned and mapped to the 
concept PNEUMATIC-DILATION.

D: … which is an endoscopic 
procedure.

PNEUMATIC-DILATION is moved 
from being a child of MEDICAL-
PROCEDURE to being a child of 
ENDOSCOPY.

P: Does it hurt?
D: Not much.

The value of the property 
PAIN-LEVEL in PNEUMATIC-DILATION 
is set to .2 (on a scale of 0–1).
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The patient knows to make ACHALASIA a child of DISEASE in the ontology because the lexi-
cal sense it uses to process the input “You have X” asserts that X is a DISEASE. This sense 
is prioritized over other transitive meanings of the verb have because the discourse con-
text is a doctor’s appointment and the speaker is a doctor. A similar type of reasoning sug-
gests that a Heller myotomy is some sort of MEDICAL-PROCEDURE. Our short dialog also 
shows two examples of belief revision: when the virtual patient learns more about the nature 
of the procedures HELLER-MYOTOMY and PNEUMATIC-DILATION, it selects more specific onto-
logical parents for them, thereby permitting the inheritance of more specific property 
values.9

8.1.3.2  Making decisions about action  Virtual patients carry out dynamic decision-
making in a style that approximates human decision-making—at least to the degree that 
we can imagine how human decision-making works. For example, whenever a decision 
needs to be made, the virtual patient first determines whether it has sufficient information 
to make it—an assessment that is based on a combination of what it actually knows, what 
it believes to be necessary for making a good decision, and its personality traits. If it lacks 
some knowledge it needs to make a decision, it can posit the goal of obtaining this knowl-
edge, which is a metacognitive behavior that leads to learning.

Formally speaking, a goal is an ontological instance of a property, whose domain and 
range are specified. Goals can appear on the agent’s goal agenda in four ways:

•	 Perception via interoception. The moment the patient perceives a symptom, the symp-
tom appears in its short-term memory. This triggers the addition of an instance of the 
goal BE-HEALTHY onto the agenda. We assume that achieving the highest possible value 
of BE-HEALTHY (1 on the abstract scale {0,1}) is a universal goal of all humans, and in 
cases in which it seems that a person is not fulfilling this goal, he or she is simply 
prioritizing another goal, such as EXPERIENCE-PLEASURE.

•	 Perception via language. Any user input that requires a response from the virtual 
patient (e.g., a direct or indirect question) puts the goal to respond to it on the agenda.

•	 A precondition of an event inside a plan is unfulfilled. For example, most patients will 
not agree to an intervention about which they know nothing. So, one of the events 
inside the plan of decision-making about an intervention is finding out values for 
whichever features of it are of interest to the individual.

•	 The required period of time has passed since the last instances of the events BE-

DIAGNOSED or BE-TREATED have been launched. This models regular checkups and 
scheduled follow-up visits for virtual patients.

The goal BE-HEALTHY is put on the agenda when a virtual patient begins experiencing a 
symptom. It remains on the agenda and is reevaluated when (a) its intensity or frequency 
(depending on the symptom) reaches a certain level, (b) a new symptom arises, or (c) a 
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certain amount of time has passed since the patient’s last evaluation of its current state of 
health, given that the patient has an ongoing or recurring symptom or set of symptoms: 
that is, “I’ve had this mild symptom for too long. I should see a doctor.”

When making decisions about its health care, the virtual patient considers the follow-
ing types of features, which are used in the decision-making evaluation functions described 
below.

1.	 Its physiological state (particularly the intensity and frequency of symptoms), which 
is perceived via interoception and remembered in its memory. It is important to note 
that neither the patient nor the virtual tutor in the MVP system have omniscient knowl-
edge of the patient’s physiological state. The simulation system knows this, but the 
intelligent agents functioning as humans do not.

2.	 Certain character traits: TRUST, SUGGESTIBILITY, and COURAGE. The inventory can, of 
course, be expanded as needed.

3.	 Certain physiological traits: PHYSIOLOGICAL-RESISTANCE, PAIN-THRESHOLD, and the 
ABILITY-TO-TOLERATE-SYMPTOMS. These convey how intense or frequent symptoms 
have to be before the patient feels the need to do something about them.

4.	 Certain properties of tests and procedures: PAIN, UNPLEASANTNESS, RISK, and EFFEC-

TIVENESS. PAIN and UNPLEASANTNESS are, together, considered typical side effects when 
viewed at the population level. The patient’s personal individual experience of them 
is described below.

5.	 Two time-related properties: the FOLLOW-UP-DATE, that is, the time the doctor told the 
patient to come for a follow-up, and the CURRENT-TIME of the given interaction.

Most of these properties are scalar attributes whose values are measured on the abstract 
scale {0,1}.10 All subjective features are selected for each individual virtual patient by the 
patient author. That is, at the same time as a patient author selects the physiological traits 
of the patient—such as the patient’s response to treatments if they are administered—he or 
she selects certain traits specific to the cognitive agent, as well as the amount of relevant 
world knowledge that the patient has in its ontology. Two evaluation functions, written in 
a simple pseudocode, will suffice for illustration.

Evaluation function 1. SEE-MD-OR-DO-NOTHING. This function decides when a patient goes 
to see the doctor, both initially and for follow-up visits.

IF FOLLOW-UP-DATE is not set
AND SYMPTOM-SEVERITY > ABILITY-TO-TOLERATE-SYMPTOMS

THEN SEE-MD

; This triggers the first visit to the doctor.
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ELSE IF FOLLOW-UP-DATE is not set
AND SYMPTOM-SEVERITY < ABILITY-TO-TOLERATE-SYMPTOMS

AND the SYMPTOM has persisted > 6 months
THEN SEE-MD

; A tolerable symptom has been going on for too long.

ELSE IF there was a previous visit
AND at the time of that visit SYMPTOM-SEVERITY <=.3
AND currently SYMPTOM-SEVERITY >.7
AND (SYMPTOM-SEVERITY − ABILITY-TO-TOLERATE-SYMPTOMS) > 0
THEN SEE-MD

ELSE DO-NOTHING

; There was a big increase in symptom severity from low to high, exceeding the patient’s 
ability to tolerate these symptoms. This triggered an unplanned visit to the doctor.

ELSE IF there was a previous visit
AND at the time of that visit SYMPTOM-SEVERITY is between .3 and .7
AND currently SYMPTOM-SEVERITY >.9
AND [SYMPTOM-SEVERITY − ABILITY-TO-TOLERATE-SYMPTOMS] > 0
THEN SEE-MD

ELSE DO-NOTHING

; There was a big increase in symptom severity from medium to very high, triggering an 
unplanned visit to the doctor.

ELSE IF there was a previous visit
AND at the time of that visit SYMPTOM-SEVERITY >.7
AND currently SYMPTOM-SEVERITY >.9
THEN DO-NOTHING

; Symptom severity was already high at the last visit—do not do an unplanned visit to the 
doctor because of it.

ELSE IF the TIME reaches the FOLLOW-UP-TIME

THEN SEE-MD

; Go to previously scheduled visits.

ELSE DO-NOTHING

As should be clear, patients with a lower ability to tolerate symptoms will see the doc-
tor sooner in the disease progression than patients with a higher ability to tolerate symp-
toms, given the same symptom level. Of course, one could incorporate any number of other 
character traits and lifestyle factors into this function, such as the patient’s eagerness to 
be fussed over by doctors, the patient’s availability to see a doctor around its work schedule, 
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and so on. But even this inventory allows for considerable variability across patients—
plenty, in fact, to support rigorous training of future physicians.

Evaluation function 2. AGREE-TO-AN-INTERVENTION-OR-NOT. Among the decisions a patient 
must make is whether or not to agree to a test or procedure suggested by the doctor, since 
many interventions carry some degree of pain, risks, side effects, or general unpleasantness. 
Some patients have such high levels of trust, suggestibility, and courage that they will 
agree to anything the doctor says without question. All other patients must decide whether 
they have sufficient information about the intervention to make a decision and, once they 
have enough information, they must decide whether they want to (a) accept the doctor’s 
advice, (b) ask about other options, or (c) reject the doctor’s advice. A simplified version 
of the algorithm for making this decision (which suffices for our purposes) is as follows:

IF a function of the patient’s TRUST, SUGGESTIBILITY, and COURAGE is above a threshold OR 
the RISK associated with the intervention is below a threshold (as for a blood test)

THEN the patient agrees to intervention right away.

ELSE [*] IF the patient feels it knows enough about the RISKS, SIDE-EFFECTS, and 
UNPLEASANTNESS of the intervention (as a result of evaluating the function DETERMINE-​

IF-ENOUGH-INFO-TO-EVALUATE)
AND a call to the function EVALUATE-INTERVENTION establishes that the above risks are 
acceptable
THEN the patient agrees to the intervention.

ELSE IF the patient feels it knows enough about the RISKS, SIDE-EFFECTS, and UNPLEAS-

ANTNESS of the intervention
AND a call to the function EVALUATE-INTERVENTION establishes that the above risks are 
not acceptable
THEN the patient asks about other options.

IF there are other options
THEN the physician proposes them and control is switched to [*].
ELSE the patient refuses the intervention.

ELSE IF the patient does not feel it knows enough about the intervention (as a result of 
evaluating the function DETERMINE-IF-ENOUGH-INFO-TO-EVALUATE)

THEN the patient asks for information about the specific properties that interest it, 
based on its character traits (e.g., a cowardly patient will ask about RISKS, SIDE-

EFFECTS, and UNPLEASANTNESS, whereas a brave but sickly person might only ask 
about SIDE-EFFECTS).
IF a call to the function EVALUATE-INTERVENTION establishes that the above RISKS are 
acceptable
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THEN the patient agrees to the intervention.
ELSE the patient asks about other options

IF there are other options
THEN the physician proposes them and control is switched to [*].
ELSE the patient refuses the intervention.

This evaluation function makes use of two functions that we do not detail here, EVALUATE-

INTERVENTION and DETERMINE-IF-ENOUGH-INFO-TO-EVALUATE (see Nirenburg et al., 2008a). 
These details are not needed as our point is to illustrate (a) the kinds of decisions virtual 
patients make, (b) their approach to knowledge-based decision-making, and (c) the kinds 
of dialog that must be supported to simulate the necessary interactions.

8.1.4  An Example System Run

To illustrate system operation, we present a sample interaction between a medical trainee 
named Claire and a virtual patient named Michael Wu. Sample is the key word here, as 
there are several substantially different paths, and countless trivially different paths, that 
this simulation could take based on what Claire chooses to do. She could intervene early 
or late with clinically appropriate or inappropriate interventions, or she could do nothing 
at all; she could ask Mr. Wu to come for frequent or infrequent follow-ups; she could order 
appropriate or inappropriate tests; and she could have the tutor set to intervene frequently, 
only in cases of imminent mistakes, or not at all. However, since Mr. Wu is a particular 
instance of a virtual patient, he has an inventory of property values that define him, which 
put some constraints on the available outcomes of the simulation. His physiological, path-
ological, psychological, and cognitive profile is established before the session begins, using 
the patient-creation interface described in section 8.2.5.1.

Psychological traits: trust [.2], suggestibility [.3], courage [.4]
Physiological traits: physiological resistance [.9], pain threshold [.2], ability to tolerate 
symptoms [.4]
Knowledge of medicine: minimal, meaning that the patient does not know the features of 
any interventions the user might propose
Disease(s) explicitly authored for this patient:11 achalasia
Duration of each stage of the disease: preclinical [7 months], stage 1 [7 months], stage 2 [8 
months], stage 3 [8 months], stage 4 [9 months]
Response to treatments if they are launched: BoTox [effective, wearing off over 12 
months], pneumatic dilation [effective with regression], Heller myotomy [effective 
permanently]

Claire does not have direct access to any of this information and must learn everything 
about Mr. Wu through dialog, tests, and procedures.
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When Claire launches the simulation, she must wait for Mr. Wu to present to the office. 
He makes this decision using the decision function in section 8.1.3.2. We use numbers in 
square brackets to indicate the key points of this simulation run.

[1] Mr. Wu presents with the chief complaint “difficulty swallowing.” This is day 361 of 
the progression of his disease, which includes the preclinical stage and a portion of the first 
symptomatic stage. (Claire, of course, will not know this temporal information.) Mr. Wu 
has had symptoms for some time but until now the evaluation function SEE-DOCTOR-OR-DO-

NOTHING has returned the answer DO-NOTHING.
[2] When Mr. Wu presents at the office, this initiates the first dialog with Claire. She 

types in unconstrained English text (note the extensive use of elliptical expressions). Mr. Wu 
(being a virtual patient) analyzes it into TMRs, makes a decision about how to answer, 
and generates a response. The first interaction runs as follows:

	 Claire	:  So, you have difficulty swallowing?
	 Mr. Wu	:  Yes.
	 Claire	:  Do you have difficulty swallowing solid food?
	 Mr. Wu	:  Yes.
	 Claire	:  Liquids?
	 Mr. Wu	:  No.
	 Claire	:  Do you have chest pain?
	 Mr. Wu	:  Yes, but it’s mild.
	 Claire	:  Any heartburn?
	 Mr. Wu	:  No.
	 Claire	:  Do you ever regurgitate your food?
	 Mr. Wu	:  No.
	 Claire	:  How often do you have difficulty swallowing?
	 Mr. Wu	:  Less than once a week.
	 Claire	:  It’s too early to take any action. Please come back in 9 months.
	 Mr. Wu	:  OK.

As we see, Claire decides to do nothing—an important kind of decision in clinical medi-
cine, and one that is difficult to teach since a doctor’s natural response to a patient asking 
for help is to do something.

[3] After nine months (on day 661 of the disease progression) Mr. Wu comes back for 
his follow-up. The cognitive simulation engine has regularly been running the evaluation 
function SEE-DOCTOR-OR-DO-NOTHING (since he is still symptomatic), but it has always 
returned DO-NOTHING—that is, do not schedule a new appointment before the scheduled 
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follow-up. Claire again asks Mr. Wu about his difficulty swallowing, chest pain, and regur-
gitation, using paraphrases of the original formulations (for variety and, in system dem-
onstrations, to show that this is handled well by the NLU component). Mr. Wu responds 
that he has moderate chest pain, experiences regurgitation a few times a week, and has 
difficulty swallowing solids daily and liquids occasionally. Note that the progression of 
difficulty swallowing from solids to liquids is a key diagnostic point that the user should 
catch: this suggests a motility disorder rather than an obstructive disorder.

[4] Claire posits the hypothesis that Mr. Wu has a motility disorder and advises Mr. Wu 
to have a test called an EGD (esophagogastroduodenoscopy). Mr. Wu evaluates whether 
he will accept this advice using the function EVALUATE-INTERVENTION, described in sec-
tion 8.1.3.2. Since he is concerned about the risks, he asks about them. When Claire assures 
him that they are extremely minimal, he agrees to the procedure.

[5] A lab technician agent virtually runs the test and delivers the results. This involves 
querying the physiological model underlying the simulation at the given point in time. A 
specialist agent returns the results with the interpretation: “Narrowing of LES with a pop 
upon entering the stomach. No tumor in the distal esophagus. Normal esophageal mucosa.” 
These results include both positive results and pertinent negatives.

[6] Claire reviews the test results, decides that it is still too early to intervene, and sched-
ules Mr. Wu for another follow-up in four months.

[7] When Mr. Wu presents in four months and Claire interviews him, the symptom that 
has changed the most is regurgitation, which Mr. Wu now experiences every day. Note 
that throughout the simulation the patient chart is automatically populated with responses 
to questions, results of tests, and so on, so Claire can compare Mr. Wu’s current state with 
previous states at a glance.

[8] Claire suggests having another EGD and Mr. Wu agrees immediately, not bothering 
to launch the evaluation function for EGD again since he agreed to it the last time.

[9] Then Claire suggests having two more tests: a barium swallow and esophageal 
manometry. Mr. Wu asks about their risks (that remains his only concern about medical 
testing), is satisfied that they are sufficiently low, and agrees to the procedures. Lab tech-
nicians and specialist agents are involved in running the tests and reporting results, as 
described earlier. The barium test returns “Narrowing of the lower esophageal sphincter 
with a bird’s beak,” and the manometry returns “Incomplete relaxation of the LES, hyper-
tensive LES, LES pressure: 53.”

[10] Claire decides that these test results are sufficient to make the diagnosis of achala-
sia. She records this diagnosis in Mr. Wu’s chart.

[11] Claire suggests that Mr. Wu have a Heller myotomy. He asks about the risks and 
pain involved. Claire responds that both are minimal. Mr. Wu agrees to have the proce-
dure. Claire tells him to come back for a follow-up a month after the procedure.

[12] Mr. Wu has the procedure.
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[13] Mr. Wu returns in a month, Claire asks questions about symptoms, and there are 
none. She tells Mr. Wu to return if any symptoms arise.

8.1.5  Visualizing Disease Models

If a cognitive modeling strategy and the applications it supports are to be accepted by 
researchers, educators, and domain experts, it is important that the knowledge substrate 
be transparent. We cannot expect professors at medical schools to adopt technologies based 
on opaque knowledge when they are responsible for the competence of the physicians they 
train. In MVP, the need for transparency was addressed in three ways: (a) by encapsulat-
ing each disease model used to author instances of patients with that disease; (b) by organ
izing in human-readable, tabular form the types of knowledge that extend beyond what is 
captured by the patient-authoring interface; and (c) by graphically displaying traces of sys-
tem functioning for purposes of system demonstration. We consider these visualization 
capabilities in turn. (Note that although all of the visualizations to be described were imple-
mented in interactive interfaces, the reproduction quality of those screenshots was subop-
timal, making it preferable to convey the material here using other expressive means. 
Examples of actual interfaces are available in McShane, Jarrell, et al. (2008) and Niren-
burg et al. (2010a), as well as at https://homepages​.hass​.rpi​.edu​/mcsham2​/Linguistics​-for​
-the​-Age​-of​-AI​.html).

8.1.5.1  Authoring instances of virtual patients  The virtual patients that users interact 
with are instances that are spawned from a single, highly parameterizable ontological model 
of patients experiencing the given disease. Authors of patient instances—who could be 
professors in medical schools, system developers, or even students preparing practice cases 
for their study partners—create patient instances by selecting particular values for vari-
able features in the model. All patient models include basic information including name, 
age, gender, height, weight, and select personality traits. Beyond that, the nature of the 
model depends on the nature of the disease being modeled.

To illustrate the patient-authoring process, we use the esophageal disease called achala-
sia, introduced earlier. As a reminder, it involves the opposite physiological abnormality as 
GERD—namely, a hypertensive LES. We switch from GERD to achalasia for two reasons. 
First, this provides a glimpse into a different class of disease: unlike GERD, achalasia has 
an unknown etiology, so the disease model derives from population-level clinical observa-
tions. Second, the achalasia model is more easily encapsulated using visualizations.

Each patient-authoring session opens with a short description of the disease to refresh 
the memory of patient authors. Methods of progressive disclosure—for example, display-
ing a portion of explanatory texts in a relatively small window with scroll bars offering 
the rest—permit users of different profiles to interact with the interface efficiently. The 
explanatory texts are not only remedial reminders. Instead, they describe key aspects of 
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the modeling strategy to everyone interacting with the interface—including, importantly, 
specialists whose mental model might be different from the one implemented in the 
system.

Table 8.5 shows patient-authoring choices involving stage duration, physiological prop-
erties, and symptoms for achalasia. Property values in plain text are fixed across patient 
instances, whereas those in square brackets are variable. The actual value shown in each 
set of brackets is the editable default. In the dynamic interface, the legal range of values 
was shown by rolling over the cell. This amount of variability allows for a wide range of 
patient profiles while still ensuring that disease progression remains within clinically 
observed patterns. However, given other teaching goals or new clinical evidence, the choice 
of variable versus fixed features could be changed with no need to alter the simulation 
engine. There is more variability in symptom profiles than in the physiological model itself, 
reflecting the clinical observation that different patients can perceive a given, test-confirmed 
physiological state in very different ways.

The patient author also indicates—using pull-down menus and editable text fields pre-
sented in tables similar to table 8.5—how the virtual patient will respond to treatments, 
should they be administered at each stage of the disease. Details aside, two of the treat-
ment options—pneumatic dilation and Heller myotomy—have three potential outcomes: 
unsuccessful, successful with regression, and successful with no regression. In the case of 
success with regression, the rate of regression is selected by the patient author. The third 
treatment option, BoTox, always involves regression, but the rate can vary across patients. 
These authoring options are provided with extensive explanations because only special-
ists are expected to remember all the details.

To summarize, the patient-authoring interface for each disease provides patient authors 
with an encapsulated version of the disease model along with the choice space for patient 
parameterization. It does not repeat all the information about each disease available in 
textbooks or attempt to elucidate every detail of implementing the simulation engine. The 
grain size of description—including which aspects are made parameterizable and which 
physiological causal chains are included in the model—is influenced by the judgment calls 
of the domain experts participating in system development.

8.1.5.2  The knowledge about tests and interventions  Throughout this chapter, we have 
been presenting ontological knowledge about clinical medicine in tables, which are a 
method of knowledge representation understandable by domain experts, knowledge engi-
neers, and programmers alike. Specifically, such tables are readable enough to be vetted 
by domain experts and formal enough to be converted into the ontological metalanguage 
by knowledge engineers for programmers. Among the kinds of table-based knowledge that 
are not displayed in the patient-creation interface are those shown in tables 8.6–8.8.

Table 8.6 includes the test name (in some cases, multiple tests can measure the same 
property), sample results, and a specialist’s interpretation of those results. Results are 
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Table 8.5
Patient-authoring choices for the disease achalasia

Start t0 t1 t2 t3 t4

Stage duration  
(in months)

[12] [12] [12] [12] [12]

Physiological Properties

Ratio of relaxing to 
contracting neurons 
in the distal 
esophagus

100/100 80/100 60/100 40/100 20/100 10/100

Basal LES pressure 
(torr)

[25] [start-value]
+ 8

[start-value]
+ 16

[start-value]
+ 24

[start-value]
+ 32

[start-value]
+ 40

Residual LES 
pressure (torr)

0 8 16 24 32 40

Residual LES 
diameter (cm)

2.0 1.5 1.0 .5 0.0 0.0

Amplitude of 
contraction during 
peristalsis

80 65 40 30 20 10

Efficacy of 
peristalsis

peristalsis peristalsis peristalsis Intermittent aperistalsis aperistalsis

Diameter of distal 
esophagus (cm)

2 2.8 3.6 4.2 5 6

Retained esophageal 
content (on the 
abstract scale {0,1})

0 [.1] [.3] [.55] [.85] [1]

Emptying delay 
(min)

0 1 5 10 30 35,00012

Symptoms

Difficulty swallowing 
distal

0 0.1 [1] [2] [3] [4]

Do solids stick? No no Yes Yes yes yes

Do liquids stick? No no No Yes yes yes

Weight loss 0 0 [0] [0] [.1] [.2]

Chest pain 0 0 [.1] [.3] [.5] [.7]

Regurgitation 
(times/month)

0 0 [0] [10] [40] [70]

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1891681/9780262363136_c000700.pdf by guest on 28 May 2021



Table 8.6
Examples of ontological knowledge about tests relevant for achalasia

Test Sample results (presented informally) Specialist’s interpretation

EGD or
BARIUM-SWALLOW

LES diameter <= .5 “Narrowing of the LES with a pop 
upon entering the stomach”

EGD or
BARIUM-SWALLOW

LES diameter .5–1.5 “Subtle narrowing of the LES”

EGD or
BARIUM-SWALLOW

Diameter of lower body of esophagus: 
3–4 cm

“Slightly dilated esophagus”

EGD or
BARIUM-SWALLOW

Diameter of lower body of esophagus: 
>=  4 cm

“Moderately dilated esophagus”

ESOPHAGEAL-MANOMETRY LES pressure at rest: > 45 torr “Hypertensive LES”

ESOPHAGEAL-MANOMETRY LES pressure at rest: 35–45 torr “High-normal LES pressure”

BARIUM-SWALLOW Duration of swallowing: 1–5 mins “Slight delay in emptying”

BARIUM-SWALLOW Duration of swallowing: > 5 mins “Moderate-severe delay in emptying”

Table 8.7
Examples of knowledge that supports clinical decision-making about achalasia, which is used by the virtual 
tutor in the MVP system

PROPERTY Values (presented in plain English for readability)

SUFFICIENT-GROUNDS-TO-DIAGNOSE All three of the following conditions:

1. Either a bird’s beak (a visual test finding) or a hypertensive LES

2. Aperistalsis

3. Negative esophagogastroduodenoscopy (EGD) for cancer  
(i.e., a pertinent negative)

SUFFICIENT-GROUNDS-TO-TREAT Definitive diagnosis

Table 8.8
MVP. Knowledge about the test results expected at different stages of the disease achalasia. Used by the 
tutoring agent in MVP. The test results in italics are required to definitively diagnose the disease.

Test Name t1 t2 t3 t4

EGD Dilated esophagus & no tumor at the GI 
junction

Dilated esophagus
& narrowing and pop upon entering LES 
(i.e., a hypertensive LES)
& retained debris
& no tumor at the GI junction

Esophageal 
Manometry

Incomplete 
relaxation of the LES
& high-normal LES 
pressure

Incomplete 
relaxation of the LES
& high-normal or 
hypertensive LES
& intermittent 
peristalsis

Incomplete relaxation of the LES
& hypertensive LES
& aperistalsis
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expressed informally for readability. The actual results are written in the ontological 
metalanguage.

Our point in presenting these tables is to emphasize that it is important to make the col-
laboration between the domain experts, knowledge engineers, and programmers explicit, 
organized, and easily modifiable. In other words, the knowledge representation must serve 
many masters.

8.1.5.3  Traces of system functioning  Dynamic traces of system functioning are shown 
in what we call the under-the-hood panes of MVP. The inventory of panes is shown in 
table 8.9, along with brief descriptions of what they contain. The panes are presented as 
columns since this is how they are rendered in the demonstration system—that is, all of 
them can be viewed at the same time. (As a reminder, sample screenshots are shown at  
https://homepages​.hass​.rpi​.edu​/mcsham2​/Linguistics​-for​-the​-Age​-of​-AI​.html.)

The under-the-hood panes of the MVP environment are key to showing that the simula-
tions are real—there is no hand-waving; nothing is hidden. They can also be used to peda-
gogical ends, for example, by allowing students to view the physiological changes during 
disease progression and the effects of medical interventions.

8.1.6  To What Extent Can MVP-Style Models Be Automatically Learned from Texts?

In the current climate of big data and machine learning, a natural question is, To what extent 
can models like these be automatically learned from texts?14 The answer: Only very par-
tially. Full models cannot be automatically learned, or even cobbled together by diligent 
humans, from the literature because they do not exist in the literature. However, we think 
that some model components could be automatically extracted. We define model com-
ponents as ontologically grounded property value pairs that contribute to full models. 
Learnable properties have the following characteristics:

Table 8.9
Inventory of under-the-hood panes that are dynamically populated during MVP simulation runs

Physiology Interoception Thoughts Knowledge learned TMRs

A list of 
disease-relevant 
property value 
pairs, with values 
being highlighted 
every time they 
change during the 
simulation. 
Reflects an 
omniscient view 
of the patient’s 
physiology.

A list of the virtual 
patient’s perceived 
symptoms as 
property value 
pairs. Every time a 
symptom appears 
or changes, a new 
entry is posted.

Dynamically 
populated traces of 
the patient’s 
decision functions, 
rendered in plain 
English for 
readability. E.g.,  
“I don’t know the 
risks of EGD. I’d 
better ask about 
them.”

Traces of words and 
concepts learned 
through dialog. The 
words are mapped 
to concepts, and the 
concepts are placed 
appropriately in the 
ontological 
hierarchy.

Text meaning 
representations of 
the virtual patient’s 
interpretations of 
the user’s inputs 
during the 
simulated 
doctor-patient 
interactions.13
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•	 They are straightforward and concrete, such as LES-PRESSURE (measurable by a test) and 
SENSITIVITY-TO-CAFFEINE (knowable based on patient reports). Learnable properties can-
not be abstract, like our MODIFIED-TOTAL-TIME-IN-ACID-REFLUX or MUCOSAL-RESISTANCE, 
because abstract properties will certainly have no equivalents in published texts.

•	 They are known to be changeable over time, based on our ontological knowledge of 
the domain. For example, since we know that new medications and tests are constantly 
being invented, we know that the properties TREATED-BY-MEDICATION and ESTABLISHED-

BY-TEST must have an open-ended inventory of values. By contrast, we do not expect 
to have to change the fact that heartburn can be a symptom of GERD or that HEARTBURN-

SEVERITY is best modeled as having values on the abstract scale {0,1}.
•	 They describe newly discovered causal chains that can replace clinical bridges in a 

current model. By contrast, if the model already includes causal chains that fully or 
partially overlap, their modification is likely to be too complex to be learned auto-
matically without inadvertently perturbing the model.15

Table  8.10 shows some examples of properties—associated with their respective 
concepts—whose values we believe could be learned from the literature.

In order for a model component to be fully learned, the property and the fillers for its 
domain and range must be ontological entities, not words of language. LEIAs can, in 
principle, produce these using NLU. For example, all of the following text strings, and 
many more, will result in text meaning representations that include the knowledge 
GASTROESOPHAGEAL-REFLUX-DISEASE (HAS-TREATMENT PROTON-PUMP-INHIBITOR):

•	 A proton pump inhibitor treats <can treat, can be used to treat, can be prescribed to 
treat, is often prescribed to treat> GERD.

•	 GERD is <can be> treated <cured> by (taking) a proton pump inhibitor.
•	 Doctors <Your doctor may> recommend <prescribe> (taking) a proton pump inhibitor 

to treat GERD symptoms.
•	 If you have GERD, you might <may> be advised to take a proton pump inhibitor.

Table 8.10
Examples of properties, associated with their respective concepts, whose values can potentially be automati-
cally learned from the literature

Concept Properties

DISEASE HAS-EVENT-AS-PART, AFFECTS-BODY-PART, CAUSED-BY, HAS-SYMPTOMS,  
HAS-DIAGNOSTIC-TEST, HAS-TREATMENT

DIAGNOSTIC-TEST MEASURES-PROPERTY, NORMAL-RESULT, ABNORMAL-RESULT, SIDE-EFFECTS, 
PAIN-INDUCED

MEDICAL-TREATMENT HAS-EVENT-AS-PART, EFFICACY, HAS-RISKS, PAIN-INDUCED
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Establishing the functional equivalence of these strings would not be done by listing. 
Instead, it would be done by combining our general approach to natural language under-
standing with methods for paraphrase detection and ontologically grounded reasoning.16

Let us consider just three examples of how natural language understanding could sup-
port the automatic learning of disease model components. Assume that the LEIA is seek-
ing to automatically learn or verify the correctness of the previously discussed fact 
GASTROESOPHAGEAL-REFLUX-DISEASE (HAS-TREATMENT PROTON-PUMP-INHIBITOR). As we 
said, all the inputs above provide this information, albeit some more directly than others. 
The input GERD is treated by a proton pump inhibitor perfectly matches the lexical 
sense for the verb treat that is defined by the structure DISEASE is treated by MEDICATION, 
and the analyzer can generate exactly the text meaning representation we are seeking: 
GASTROESOPHAGEAL-REFLUX-DISEASE (HAS-TREATMENT PROTON-PUMP-INHIBITOR).

In other cases, the basic text meaning representation includes additional information that 
does not affect the truth value of the main proposition. For example, the potential modal-
ity scoping over the proposition GERD can be treated by a proton pump inhibitor does 
not affect the truth value of the main proposition, which is the same as before and matches 
the expectation we seek to fill.

In still other cases, the meaning we are looking for must be inferred from what is actually 
written. For example, the input Your doctor may recommend a proton pump inhibitor does 
not explicitly say that a proton pump inhibitor treats GERD, but it implies this based on the 
general ontological knowledge that a precondition for a physician advising a patient to take a 
medication is DISEASE (HAS-TREATMENT MEDICATION). Because a LEIA’s language under-
standing system has access to this ontological knowledge, it can be taught to make the needed 
inference and fill in our slot as before. It should be noted that these types of reasoning rules 
are not spontaneously generated—they must be recorded, like any other knowledge. How-
ever, once recorded, they can be used for any applicable reasoning need of the agent.

When we were investigating what information could be extracted from medical texts in 
service of disease-model development, we focused on two genres that offer different oppor-
tunities for knowledge extraction: case studies and disease overviews.

Case studies do not present all disease mechanisms. Instead, they typically begin with 
a broad overview of the disease to serve as a reminder to readers who are expected to be 
familiar with it. Then they focus on a single new or unexpected aspect of the disease as 
manifest in one or a small number of patients. For example, Evsyutina et al.’s (2014) case 
study reports that a mother and daughter both suffer from the same rare disease, achala-
sia, and suggests that this case supports previous hypotheses of a genetic influence on dis-
ease occurrence. The new findings are typically repeated in the abstract, case report, and 
discussion sections, offering useful redundancy to improve system confidence.

A LEIA could set to the task of comparing the information in a case study with the onto-
logically grounded computational model as follows. First it could semantically analyze 
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the case study, focusing on the TMR chunks representing the types of learnable property 
values listed above. (This focusing means that the system need not achieve a perfect analy
sis of every aspect of the text: it knows what it is looking for.) Then, it could compare the 
learned property values with the values in the model. Continuing with our example of 
mother-daughter achalasia, our current model of achalasia has no filler for the value of 
CAUSED-BY since, when we developed the model, the cause was not definitively known (it 
still is not; the genetic influence remains to be validated). Automatically filling an empty 
slot with a new filler can be carried out directly, with no extensive reasoning necessary. 
However, the nature of that slot filler must be understood: in the context of a case study, it 
represents an instance, not a generic ontological fact. The system has two sources of evi-
dence that this information is an instance: (a) the individuals spoken about are instances, 
so the features applied to them are also instances (compare this with assertions about people 
in general), and (b) the genre of case study sets up the expectation that reported informa-
tion will be at the level of an instance.

Such analysis could, for example, be folded into an application to alert clinicians to new 
findings in a snapshot formalism like the one shown below (invented for illustration):

Journal article: “Meditation as medication for GERD”

Contribution type:	 Case study
Author:	 Dr. Joseph Physician
Date:	 Some future date

GERD Therapies:
	 Non-medical: lifestyle modifications, MEDITATION-new
	 Mild: H2 blocker, PPI QD
	 Severe: PPI BID

This presentation style encapsulates the following expectations:

1.	 Clinicians know, without explanation, that one of the ontological properties of dis-
eases is that they have therapies.

2.	 When providing new information, it is useful to provide old information as the back-
drop, with a clear indication of whether the new information adds to or overwrites the 
old information.

3.	 Clinicians understand that information provided in case studies represents instances 
and not across-the-board generalizations.

4.	 Modern-day users understand that entities can be clicked on for more information (e.g., 
which lifestyle modifications are being referred to).

5.	 Terseness is appreciated by busy people operating within their realm of specialization.
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Let us turn now to the other genre from which model information can be extracted: dis-
ease overviews. Disease overviews typically present a stable inventory of properties of 
interest, often even introduced by subheadings, such as causes of the disease, risk factors, 
physiological manifestations, symptoms, applicable tests and procedures, and so on. Not 
surprisingly, these categories align well with the knowledge elements we seek to extract 
from texts, shown in table 8.10. The natural language processing of disease overviews 
would proceed as described for case studies. However, we envision applications for this 
processing to be somewhat different. For example, an application could respond to a clini-
cian’s request for a thumbnail sketch of a disease by reading overviews, populating the 
inventory of key property values, and presenting them in a semiformal manner, such as a 
list of concept-property-value triples.

To wrap up this section on learning components of disease models, note how different 
the sketched approaches are from statistically oriented knowledge extraction. Our goal 
would be to speed up, and dynamically enhance, cognitively inspired disease models, not 
extract uninterpreted text strings into templates that have no connection to ontologies or 
related cognitive models.

8.1.7  To What Extent Can Cognitive Models Be Automatically Elicited from People?

Text processing is only one of the available methods of reducing the role of knowledge 
engineers in the process of domain modeling. Another is to guide domain experts through 
the process of recording components of disease models using a mixed-initiative computer 
system.17 The results can then seed the collaborative process between the experts and 
knowledge engineers.18

The strategy for the methodology we describe below, OntoElicit, was informed by two 
things: lessons learned from developing the first several disease models for MVP through 
unstructured and semistructured interviews with domain experts, and our past work on a 
mixed-initiative knowledge elicitation system in a different domain—machine translation.

Let us present just a passing introduction to the latter. The Boas system (McShane et al., 
2002; McShane & Nirenburg, 2003) was designed to quickly gather machine-tractable 
knowledge about lesser-studied languages from native speakers of those language with-
out the assistance of linguists or system developers. The results of the knowledge-elicitation 
process had to directly feed into a machine translation system from that language into 
English. By “directly feed into” we mean that, once the user supplied the requested infor-
mation, he or she pushed a button, waited a minute, and ended up with a translation system. 
Since developers were completely out of the loop once they delivered the environment to 
the user, the elicitation process and associated interface had to ensure that the necessary 
knowledge would get recorded in the right way and that the environment itself provided 
users with sufficient pedagogical support. The informants, for their part, were not expected 
to have any formal linguistic knowledge, just the ability to read and write the language in 
question, as well as a functional knowledge of English. The automatically elicited knowledge 
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was not identical to what could be crafted if knowledge engineers were involved in the pro
cess, but it was sufficient to enable basic machine translation capabilities to be configured 
in this way. Change the domain from language to medicine, the experts from native speak-
ers to physicians, and the goal from machine translation to seeding ontological models for 
clinical medicine, and Boas smoothly morphs into OntoElicit.

The knowledge elicitation methods of OntoElicit, shown below, will look familiar to 
readers as they share much in common with the patient-authoring interfaces and knowl-
edge representation schemes described earlier.

In OntoElicit, domain experts are asked to divide the disease into any number of concep-
tual stages correlating with important events, findings, symptoms, or the divergence of dis-
ease paths among patients. They are also asked to indicate the typical duration of each stage 
as a range (x–y in table 8.11) with a default value (d). Next, they are led through the process of 
describing the relevant physiological and symptom-related properties during each stage. They 
can either record all information directly in a table like table 8.11 or be led through a more 
step-by-step process that results in a summary like table 8.11. Following a practice we inven
ted for Boas, we call the former the fast lane and the latter the scenic route. Both paths offer 
links explaining the why and how of the associated decision-making, as well as examples.

In describing tests and their results, the expert indicates the test name, alternative names, 
which physiological properties are measured, clinically relevant ranges of results, the spe-
cialist’s interpretation of those ranges (e.g., “Suggestive of disease X”), clinical guidelines 
regarding ordering the test, and diseases for which the test is appropriate.

For interventions, including medications, the expert indicates which properties and/or 
symptoms are affected by the intervention, the possible outcomes of the intervention, pos
sible side effects, and, if known, the percentage of the population expected to have each 
outcome and side effect.

Table 8.11
Fast-lane elicitation strategy for recording information about physiology 
and symptoms

Properties Start value Stage 1 Stage 2 …

Duration x–y (d) x–y (d)

Physiology P1 x–y (d) x–y (d) x–y (d)

P2 x–y (d) x–y (d) x–y (d)

…

Symptoms S1 x–y (d) x–y (d) x–y (d)

S2 x–y (d) x–y (d) x–y (d)

…

Note: “x–y” indicates the acceptable range of values; (d) indicates the 
default. If “x” and “y” are nonnumerical, they are presented as a list.
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As concerns recording knowledge about clinical practices—that is, the knowledge to 
support automatic tutoring—two different functionalities must be supported: checking the 
validity of a clinical move, which is relatively simple and relies on the knowledge of pre-
conditions of good practice, and advising what to do next, which can range from simple 
to very complex.

The knowledge about preconditions of good practice is readily encoded using ontologi-
cal properties. For example, for each disease, we record values for properties such as 
SUFFICIENT-GROUNDS-TO-SUSPECT, SUFFICIENT-GROUNDS-TO-DIAGNOSE, and SUFFICIENT-

GROUNDS-TO-TREAT (e.g., clinical diagnosis or definitive diagnosis). Similar inventories of 
properties are used for tests, treatments, making definitive diagnoses, and so on. The con-
tent of this knowledge is both broader and deeper than that available in published “best 
practices” guides. OntoElicit uses tables for eliciting this information (see table 8.12), with 
the experts providing prose descriptions of property fillers. These descriptions are then 
converted—like all other aspects of acquired knowledge—into formal, ontologically 
grounded structures by knowledge engineers and programmers.

As concerns clinical knowledge about what to do next, things can get complicated 
quickly. Many clinical moves must be decided (a) in the face of competing conditions, 
(b) with different preferences of different stakeholders (e.g., the patient, the physician, 
the insurance company), and (c) using incomplete knowledge of relevant property values. 
For those cases, we have experimented with the use of Bayesian networks that are con-
structed with the help of influence diagrams.19 The knowledge encoded in influence dia-
grams represents an expert’s opinion about the utility scores (i.e., the preference level, or 
“goodness”) of different combinations of property values associated with each possible 
decision. One of the main reasons why we chose to work with influence diagrams is that 
the kind of information required of experts is of a nature that they can readily conceptual-
ize. In essence, they are asked: Given this combination of property values, how good is 
solution Y? Given this other combination of property values, how good is solution Z? and 
so on. The properties and values are familiar to our experts because they are the same 

Table 8.12
Sample precondition of good practice. Domain experts supply the descriptive fillers and 
knowledge engineers convert it into a formal representation.

DISEASE ACHALASIA

PROPERTY SUFFICIENT-GROUNDS-TO-SUSPECT

Descriptive filler solid and liquid dysphagia or regurgitation

Formal encoding (or
(and ((SOLIDS-STICK HUMAN YES)

(LIQUIDS-STICK HUMAN YES))
(REGURGITATION-FREQUENCY HUMAN (> 0)))))
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ones used to build the other models in the system. Knowledge engineers help experts to 
organize the problem space into subproblems, as applicable, and to develop a case-specific 
methodology of filling out the utility tables in the most efficient way.

Although the nature of information required of experts in an influence-diagram-driven 
methodology is straightforward, one problem is that the number of features involved in 
making a complex decision can be large, easily driving the number of feature-value per-
mutations into the tens or hundreds of thousands. As in all aspects of modeling, we approach 
this problem using realistic strategies including the following:

1.	 We organize the knowledge optimally—for example, covering as many variables as 
possible using local decisions whose output contributes to a more general decision.

2.	 We simplify the problem space and judge whether the results are sufficient to yield real-
istic, accurate functioning—for example, not including every property we can think of 
but, instead, focusing on those considered to have the most impact by clinicians.

3.	 We work toward automating the process of knowledge acquisition—for example, using 
functions to provide values for many of the feature-value combinations once a pat-
tern of utility scores has been recognized.20

As regards incorporating aspects of influence diagram creation into OntoElicit, our 
thinking is that experts could, in fact, be led through the process of decomposing the prob
lem into the main variables in the decision versus the variables in local decisions.

We have not yet experimented with how far we can push a mixed-initiative elicitation 
strategy in the domain of clinical medicine. However, considering that we covered a lot of 
ground with the Boas predecessor, and considering that the realm of language description 
is arguably no easier than clinical medicine, we believe that this approach has great poten-
tial to be useful.

This wraps up our discussion of the MVP application which was, as we mentioned, 
implemented at a prototype level. We now move to a model that has not yet been imple-
mented but relies largely on the same knowledge substrate as MVP.

8.2  A Clinician’s Assistant for Flagging Cognitive Biases

Cognitive bias is a term used in the field of psychology to describe distortions in human 
reasoning that lead to empirically verified, replicable patterns of faulty judgment. Cogni-
tive biases result from the inadvertent misapplication of necessary human abilities: the abil-
ity to simplify complex problems, make decisions despite incomplete information (called 
decision-making under uncertainty), and generally function under the real-world constraints 
of limited time, information, and cognitive capacity (cf. Simon’s [1957] theory of bounded 
rationality). Factors that contribute to cognitive biases include, nonexhaustively: overreli-
ance on one’s personal experience as heuristic evidence; misinterpretations of statistics; 
overuse of intuition over analysis; acting from emotion; the effects of fatigue; considering 
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too few options or alternatives; the illusion that the decision-maker has more control over 
how events will unfold than he or she actually does; overestimation of the importance of 
information that is easily obtainable over information that is not readily available; fram-
ing a problem too narrowly; and not recognizing the interconnectedness of multiple deci-
sions. (For further discussion see, e.g., Kahneman, 2011; Korte, 2003.)

Even if one recognizes that cognitive biases could be affecting decision-making, their 
effects can be difficult to counteract. As Heuer (1999, Chapter 9) writes, “Cognitive biases 
are similar to optical illusions in that the error remains compelling even when one is fully 
aware of its nature. Awareness of the bias, by itself, does not produce a more accurate per-
ception. Cognitive biases, therefore, are, exceedingly difficult to overcome.”

However, the fact that a problem is difficult does not absolve us from responsibility for 
solving it. Biased thinking can have detrimental consequences, particularly in a high-stakes 
domain like clinical medicine. We hypothesize that at least some errors in judgment caused 
by some cognitive biases could be reduced if LEIAs serving as clinician advisors were 
able to detect potentially biased decisions and generate explanatory alerts to their human 
collaborators. Even such partial solutions to very difficult problems have the potential to 
offer rewards at the societal level.

The bias-related functionalities we will address and the psychological phenomena they 
target are summarized in table 8.13.21

Table 8.13
Functionalities of a bias-detection advisor in clinical medicine

Advisor functionalities Targeted decision-making biases

Memory support: Supplying facts the clinician requests using text 
generation, structured presentation of knowledge (e.g., check-
lists), process simulation, and so on

• Depletion effects

Detecting and flagging potential clinician biases • Illusion that more features are better

• False intuitions

• Jumping to conclusions

• Small sample bias

• Base-rate neglect

• Illusion of validity

• Exposure effect

Detecting and flagging potential patient biases • Framing sway

• Halo effect

• Exposure effect

• Effects of evaluative attitudes
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In discussing each class of bias, we will present (a) a theory of how to model cognitive 
support to avoid the bias, which involves the selection of properties and values to be treated 
(e.g., bias types), detection heuristics, decision functions, and knowledge support, and (b) 
the descriptive realization of the theory as a set of models compatible with LEIA model-
ing overall.

8.2.1  Memory Support for Bias Avoidance

Memory lapses are unavoidable in clinical medicine due to not only the large amount of 
knowledge that physicians must manipulate but also depletion effects—that is, the effects 
of fatigue. We believe that depletion effects could be decreased with timely, ergonomically 
presented reminders, cribs, and checklists (Gawande, 2009) that reflect particular aspects 
of the knowledge already available in a LEIA’s expert models. This type of cognitive assis-
tance would be user initiated, meaning that the user must recognize his or her own poten-
tial to misremember or misanalyze something in the given situation, as might happen under 
conditions of sleep deprivation (Gunzelmann et al., 2009). Consider just a few situations 
in which a LEIA’s knowledge could be leveraged to counter clinician memory lapses. Let 
us use as our example primary care physician Dr. Allegra Clark.
Example 1. It’s the end of the day, Dr. Clark is tired, and she forgets some basic ontological 
properties of a disease or treatment. She queries the LEIA with an English string such as, 
What are the symptoms of achalasia? The LEIA semantically analyzes this input, con-
verting it into the following text meaning representation.

REQUEST-INFO-1

	 AGENT		 PHYSICIAN-1

	 THEME		 ACHALASIA.CAUSES-SYMPTOM-1

This TMR says that this input is requesting the fillers of the CAUSES-SYMPTOM property of 
ACHALASIA. The LEIA can answer the question by looking up the needed information in 
its ontology, the relevant portion of which is shown below.

ACHALASIA

	 CAUSES-SYMPTOM	 sem	 CHEST-PAIN, DYSPHAGIA, REGURGITATE, WEIGHT-LOSS

Example 2. Dr. Clark wants to order the test called EGD (esophagogastroduodenoscopy) 
but forgets what preconditions must hold to justify this. She queries the LEIA with What’s 
needed to diagnose achalasia? As before, the LEIA translates the input into a TMR and 
understands that the answer will be the filler of the property SUFFICIENT-GROUNDS-TO-

DIAGNOSE in the ontological concept ACHALASIA. Table 8.14 shows a subset of properties of 
the disease ACHALASIA that relate to diagnosis and treatment. For presentation purposes, 
the property values in the right-hand column are presented in plain English rather than the 
ontological metalanguage.
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Example 3. Dr. Clark knows that the disease achalasia can have different manifestations in 
different patients but forgets the details and asks the LEIA to display the ontologically 
grounded disease model for achalasia. As explained earlier, all disease models are avail-
able in the human-inspectable formats shown in section 8.1.5.1, which the LEIA displays.
Example 4. A patient asks Dr. Clark for a prognosis, but she is too tired, too rushed, or not 
familiar enough with the disease to provide a well-motivated answer. The LEIA could 
help by permitting her to run one or more simulations of virtual patients that are constrained 
by the known features of the human in question. This will make the sample simulations as 
predictive as possible given the coverage and accuracy of the underlying models.

The above four examples should suffice to convey our main point: the knowledge struc-
tures and simulation capabilities already developed for the MVP application can be directly 
reused to help clinicians to counteract memory lapses or knowledge gaps. For this cate-
gory of phenomena, developing models that take into account biases involves anticipating 
the requests of clinicians and optimizing the presentation of already available knowledge 
to make it easily interpretable by them. The initiative for seeking this class of bias-avoidance 
support lies in the hands of the clinician-users. By contrast, solutions for the remaining 
two groups of phenomena will proactively seek to detect decision-making biases on the 
part of both participants in clinician-patient interactions.

Table 8.14
Four clinical properties of the esophageal disease achalasia, with values written in plain English  
for readability

PROPERTY Values

SUFFICIENT-GROUNDS-TO-DIAGNOSE All three of the following:

1. �Either a bird’s beak (a visual test finding) or a hypertensive lower 
esophageal sphincter (LES)

2. Aperistalsis

3. �Negative esophagogastroduodenoscopy (EGD) for cancer  
(i.e., a pertinent negative)

SUFFICIENT-GROUNDS-TO-SUSPECT Either:

1. Dysphagia (difficulty swallowing) to solids and liquids

2. Regurgitation

SUFFICIENT-GROUNDS-TO-TREAT Definitive diagnosis

PREFERRED-ACTION-WHEN-DIAGNOSED Either:

1. HELLER-MYOTOMY (a surgical procedure)

2. PNEUMATIC-DILATION (an endoscopic procedure)
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8.2.2  Detecting and Flagging Clinician Biases

Diagnosing a patient typically begins with a patient interview and a physical examination. 
Next, the clinician posits a hypothesis and then attempts to confirm it through medical test-
ing or trial therapy (e.g., lifestyle changes or medication). Confirming a hypothesis by 
testing leads to a definitive diagnosis, whereas confirming a hypothesis by successful ther-
apy leads to a clinical diagnosis. Unintentionally biased decision-making by the clinician 
can happen at any point in this process.

The “need more features” bias. When people, particularly domain experts, make a deci-
sion, they tend to think that it will be beneficial to include more variables to personalize 
or narrowly contextualize it. As Kahneman (2011, p. 224) writes, “Experts try to be clever, 
think outside the box, and consider complex combinations of features in making their pre-
dictions. Complexity may work in the odd case, but more often than not it reduces valid-
ity. Simple combinations of features are better.”22 One point at which clinicians might 
erroneously—and at great expense—believe that more feature values are necessary is dur-
ing diagnosis: they might not recognize that they already have sufficient information to 
diagnose a disease. For many diseases, clear diagnostic criteria exist, like that shown in 
the first row of table 8.14. If the patient chart shows sufficient evidence to diagnose a dis-
ease, but the clinician has not posited the diagnosis and has ordered more tests, a LEIA 
could issue an alert about the possible oversight.

Jumping to conclusions. The opposite of seeking too many features is jumping to con-
clusions, as by diagnosing a disease without sufficient evidence. Typically, each disease 
has a constellation of findings that permit a clinician to definitively diagnose it. For exam-
ple, the disease achalasia can be definitely diagnosed by the combination of italicized test 
results shown in the third and fourth disease stages shown in table 8.15. Positing a diagno-
sis prior to obtaining the full set of definitive values could be incorrect. Whenever a clini-
cian posits a diagnosis, a LEIA could double-check the patient’s chart for the known 
property values and issue an alert if not all expected property values are attested.

False intuitions. Without entering into the nuanced debate about the nature and formal 
validation of expert intuition—as pursued, for example, in Kahneman and Klein (2009)—
we define skilled intuition as the recognition of constellations of highly predictive property 
values based on sufficient past experience. Nobody can have reliable intuitions (a) about 
unknowable situations, (b) in the absence of reliable feedback, or (c) without sufficient 
experience.

We can operationalize the notion of intuition in at least two ways. The simpler way is to 
leverage only and exactly the knowledge recorded in tables like the ones above, which 
would assume that they exhaust valid medical knowledge. A more sophisticated approach 
would be to incorporate a LEIA’s knowledge of the past history of the physician into its 
decision-making about the likelihood that the clinician is acting on the basis of false intu-
ition. If a clinician has little past experience, then the LEIA will be justified in flagging 
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seemingly false moves. However, if a clinician who has vast past experience with patients 
of a similar profile starts to carry out what appears to be an unsubstantiated move, the LEIA 
might better query him about the reason for the move and potentially learn this new con-
stellation of findings and their predictive power. This aspect of system-initiated learning 
by being told is a core functionality of LEIAs.

The illusion of validity. The illusion of validity describes a person’s clinging to a belief 
despite evidence that it is unsubstantiated. Kahneman (2011, p. 211) reports that the dis-
covery of this illusion occurred as a result of his practical experience with a particular 
method of evaluating candidates for army officer training. A study demonstrated that the 
selected method was nonpredictive—that is, the results of the evaluation had no correla-
tion with the candidate’s ultimate success in officer training—but the evaluators still clung 
to the idea that the method was predictive because they believed that it should be 
predictive.

The illusion of validity can be found in clinical medicine when a physician refuses to 
change an early hypothesis despite sufficient counterevidence. (He or she might, for exam-
ple, rerun tests or continue a failed medication trial.) The definition of sufficient counter-
evidence depends on (a) the strength of the constellation of features suggesting the diagnosis; 
(b) the strength of the constellation of features suggesting a different diagnosis, recorded 
in corresponding tables for other diseases; and (c) the trustworthiness of tests, whose error 

Table 8.15
Knowledge about expected test results during progression of achalasia

Stage 1 Stage 2 Stage 3 Stage 4

EGD Dilated esophagus
& no tumor at the GI junction

Dilated esophagus
& narrowing and pop upon 
entering LES (i.e., hypertensive 
LES)
& retained debris
& no tumor at the GI junction

Esophageal manometry Incomplete 
relaxation of the LES
& high-normal LES 
pressure

Incomplete relaxation 
of the LES
& high-normal or 
hypertensive LES
& intermittent 
peristalsis

Incomplete relaxation of the 
LES
& hypertensive LES
& aperistalsis

Barium swallow Delayed emptying Bird’s beak
& dilated esophagus
& retained debris
& retained barium

Note: The combination of italicized results is sufficient to posit a definitive diagnosis of this disease.
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rates must be recorded in the ontology. A LEIA could detect overzealous pursuit of a 
hypothesis using decision functions that combine these three factors.

Base-rate neglect. Base-rate neglect is a type of decision-making bias that, applied to 
clinical medicine, can refer to losing sight of the expected probability of a disease for a 
given type of patient in a given circumstance. For example, a patient presenting to an emer-
gency room in New York is highly unlikely to have malaria, whereas that diagnosis would 
be very common in sub-Saharan Africa. Although physicians are trained to think about 
the relative likelihood of different diagnoses, remembering all of the relative probabilities 
of given different constellations of signs and symptoms can be quite challenging. A LEIA 
could help with this by flagging situations in which a clinician is pursuing a diagnostic 
hypothesis that is unlikely given the available data.

For example, esophageal carcinoma can result from gastroesophageal reflux disease 
(GERD) but typically only if GERD is not sufficiently treated for a long time and if the 
person smokes, drinks alcohol, lives or works in an industrial environment, or has had 
exposure to carcinogenic materials. These likelihood conditions are recorded in the ontol-
ogy as complex fillers for the property SUFFICIENT-GROUNDS-TO-SUSPECT for the disease 
ESOPHAGEAL-CARCINOMA, as pretty-printed below.

ESOPHAGEAL-CARCINOMA

SUFFICIENT-GROUNDS-TO-SUSPECT

Both
- (GERD (EXPERIENCER MEDICAL-PATIENT-1) (DURATION (> 5 (measured-in YEAR)))

- At least one of
• (MEDICAL-PATIENT-1 (AGENT-OF SMOKE))

• (MEDICAL-PATIENT-1 (AGENT-OF (DRINK (THEME ALCOHOL) (FREQUENCY (> .3)))))

• (MEDICAL-PATIENT-1 (AGENT-OF (RESIDE (LOCATION INDUSTRIAL-PLACE))))

• (MEDICAL-PATIENT-1 (AGENT-OF (WORK (LOCATION INDUSTRIAL-PLACE))))

• (MEDICAL-PATIENT-1 (EXPERIENCER-OF (EXPOSE (THEME CARCINOGEN) (FREQUENCY 

(> .3)))))

If a clinician hypothesizes esophageal carcinoma for a twenty-year-old person with a 
three-month history of GERD, the LEIA should issue a warning that there appears to be 
insufficient evidence for this hypothesis, and it will show the clinician the conditions under 
which the hypothesis is typically justified.

The small sample bias. A person’s understanding of the frequency or likelihood of an 
event can be swayed from objective measures by the person’s own experience and by the 
ease with which an example of a given type of situation—even if objectively rare—comes 
to mind (Kahneman 2011, p. 129). The small sample bias can lead to placing undue faith 
in personal experience. For example, if the widely preferred medication for a condition hap-
pens to fail one or more times in a physician’s personal experience, the physician is prone to 
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give undue weight to those results—effectively ignoring population-level statistics—and 
prefer a different medication instead. This is where the art of medicine becomes fraught with 
complexity. While personal experience should not be discounted, its importance should not 
be inflated since it could be idiosyncratic. As Kahneman (p. 118) writes, “The exaggerated 
faith in small samples is only one example of a more general illusion—we pay more attention 
to the content of messages than to information about their reliability, and as a result end up 
with a view of the world around us that is simpler and more coherent than the data justify.”

A LEIA could automatically detect the small sample bias in clinicians’ decisions by com-
paring three things: (a) the clinician’s current clinical decision, (b) the LEIA’s memory of the 
clinician’s past decisions when dealing with the particular disease, and (c) the objective, 
population-level preference for the selected decision compared to other options. For exam-
ple, suppose that three of a clinician’s recent patients with a particular disease did not 
respond sufficiently to the preferred treatment or developed complications from it. If the 
clinician then stops recommending that treatment and, instead, opts for a less preferred one, 
the LEIA can issue a reminder of the population-level preference for the originally selected 
treatment and point out there is a danger of a small sample bias. Of course, the actual reason 
for the switch in treatment preferences might be legitimate. For example, if the treatment 
involves a procedure carried out by a specialist, then perhaps a highly skilled specialist was 
replaced by a less skilled one—which is an eventuality that must be modeled as well.

The exposure effect. The exposure effect describes people’s tendency to believe fre-
quently repeated statements even if they are false because, as Kahneman (2011, p. 62) 
says, “familiarity is not easily distinguished from truth.” This is biologically grounded in 
the fact that if you have encountered something many times and are still alive, it is prob
ably not dangerous (p. 67). The LEIA can detect potential cases of the exposure effect using 
a function whose arguments include the following.

•	 A new ontological property, HYPE-LEVEL, that applies to interventions—drugs and pro-
cedures. Its values reflect the amount of advertising, drug company samples, and so 
on to which a clinician is exposed. If this is unknown for a particular clinician, a 
population-level value will be used, based on the amount of overall advertising and 
sample distribution.

•	 The objective “goodness” of an intervention, as compared with alternatives, at the level 
of population, which is a function of its relative efficacy, side effects, cost, and so on.

•	 The objective “goodness” of an intervention, as compared with alternatives, for the spe-
cific patient, which adds patient-specific features, if known, to the above calculation.

•	 The actual selection of an intervention for this patient in this case.
•	 The clinician’s past history of prescribing, or not prescribing, this intervention in rel-

evant circumstances. For example, a clinician might (a) be continuing to prescribe an 
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old medication instead of a better new one due to engrained past experience, (b) insist 
on a name brand if a generic has been made available, or (c) prefer one company’s 
offering over a similar offering from another company despite high additional costs 
to the patient; and so on.

8.2.3  Detecting and Flagging Patient Biases

The gold standard of modern medical care is patient-centered medicine. In the patient-
centered paradigm, the physician does not impose a single solution on the patient but, rather, 
instructs, advises, and listens to the patient with the purpose of jointly arriving at an opti-
mum solution. The patient’s goals might be summarized as “Talk to me, answer my ques-
tions, and solve my problem in a way that suits my body, my personal situation, and my 
preferences.” The doctor’s goals might be summarized as “Make an accurate diagnosis. 
Have a compliant patient who is informed about the problem and makes responsible deci-
sions. Launch an effective treatment.”

To best serve the patient, the doctor should be aware of psychological effects on decision-
making that might negatively impact the patient’s decisions. If a patient makes a decision 
that the doctor considers suboptimal, the doctor can attempt to understand why by model-
ing what he or she believes the patient knows, believes, fears, prioritizes, and so on and by 
hypothesizing the decision function that might have led to the given decision. For example, 
imagine that a doctor suggests that a patient, Matthew, take a medication that the doctor 
knows to be highly effective and that has infrequent, mild side effects about which the doc-
tor informs Matthew. In response to the doctor’s suggestion, Matthew refuses, saying he 
doesn’t want to take that kind of medication. When the doctor asks why, Matthew responds 
in a vague manner, saying that he just has a bad feeling about it. Rather than try to force 
Matthew or badger him for a better explanation, the doctor—in the role of psychologist 
gumshoe—can break down the decision process into inspectable parts and constructively 
pursue them in turn. Let us consider the process in more detail.

A person who is considering advice to take a medication will likely consider things like 
the following: the list of potential benefits, risks, and side effects; the cost, in terms of 
money, time, emotional drain; the patient’s trust in the doctor’s advice; and the patient’s 
beliefs in a more general sense—about medication use overall, being under a doctor’s care, 
and so on.

Returning to our example, suppose the drug that the doctor recommended was hypo
thetical drug X, used for headache relief. Suppose also that the doctor describes the drug 
to Matthew as follows: “It is very likely that this drug will give you significant relief from 
your headaches and it might also improve your mood a little. The most common side effect 
is dry mouth, and there is a small chance of impotence. Unfortunately, the drug has to be 
injected subcutaneously twice a day.” From this, Matthew will have the following 
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information to inform his decision-making. We include conditional flags (described 
below) in the structures as italicized comments.

HEADACHE-RELIEF	 [intensity: high, likelihood: high]
MOOD-LIFT	 [intensity: low, likelihood: moderate]
IMPOTENCE	 [likelihood: low]	 FLAG for male patients
DRY-MOUTH	 [likelihood: high]	 FLAG for wind instrument players
COST-EFFORT	 [high]	 FLAG because injectable
COST-EMOTIONAL	 [potentially high]	 FLAG if needle-phobic

In addition, both patients and doctors know that the following can affect health care 
decisions:

COST-FINANCIAL	 FLAG if no health insurance
TRUST-IN-PHYSICIAN	 FLAG if the doctor feels the patient doesn’t trust him
MEDICATION-AVERSION	 FLAG for certain individuals and socio-ethnic groups

Finally, doctors know that patients can be affected by various decision-making biases such 
as the following, each of which can be considered a standing (always available) flag for the 
doctor as he or she attempts to understand the patient’s thought processes:

•	 The exposure effect. People are barraged by drug information on the internet and in 
TV and radio ads, with the latter rattling off potential side effects at a pace. From this, 
the patient’s impression of a medication might involve a vague but lengthy inventory 
of side effects that the doctor did not mention, and these might serve as misinforma-
tion for the patient’s decision-making.

•	 The effect of small samples. The patient might know somebody who took this medi
cation and had a bad time with it, thus generalizing that it is a bad drug, despite the 
doctor’s description of it.

•	 The effect of evaluative attitudes. The patient might not like the idea of taking any 
medication, or some class of medications, due to a perceived stigma (e.g., against anti-
depressants). Or the patient might be so opposed to a given type of side effect that its 
potential overshadows any other aspect of the medication.

•	 Depletion effects. The patient might be tired or distracted when making a decision 
and therefore decide that refusing a proposed intervention is the least-risk option. Or 
fatigue might have caused lapses in attention so that the patient misremembers the 
doctor’s description of the medication.

A LEIA could assist the physician in trying to understand the patient’s decision-making 
by making the relevant flags explicit. For example, if our patient, Matthew, has good health 
insurance and a medical history of having given himself allergy injections for years, it is 
possible that the impotence side effect is an issue, but it is unlikely that the financial cost 
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or fear of injections is a detractor. Since the LEIA will have access to Matthew’s online 
medical records, it can make such contextual judgment calls and give the doctor advice 
about which features might be best to pursue first. Even things like a patient’s trust in the 
doctor can, we believe, be detected to some degree by the doctor-patient dialog. For exam-
ple, if Matthew argues with the doctor, or asks a lot of questions, or frequently voices dis-
agreement, it is possible that low trust is affecting his decision-making.

Another factor that might affect a patient is the halo effect, which is the tendency to 
make an overall positive or negative assessment of a person on the basis of a small sample 
of known positive or negative features. For example, you might believe that a person who 
is kind and successful will also be generous, even though you know nothing about this 
aspect of the person’s character. As Kahneman (2011, p. 83) says, “The halo effect increases 
the weight of first impressions, sometimes to the point that subsequent information is mostly 
wasted.” We will suggest that an extended notion of the halo effect—in which it can apply 
also to objects and events—can undermine good decision-making by patients. On the one 
hand, our patient Matthew might like his doctor so much he agrees to the latter’s advice 
before learning a sufficient amount about what is recommended to make a responsible, 
informed decision. On the other hand, he might dislike his doctor so much that he refuses 
advice that would actually be beneficial. Extending the halo effect to events, Matthew might 
be so happy that a procedure has few risks that he assumes that it will not involve any pain 
and will have no side effects—both of which might not be true. By contrast, Matthew might 
be so influenced by the knowledge that the procedure will hurt that he loses sight of its 
potential benefits. Doctors should detect halo effects in order to ensure that patients are 
making the best, most responsible decisions for themselves. It would be no better for Mat-
thew to blindly undergo surgery because he likes his doctor than for him to refuse lifesav-
ing surgery because he is angry with him or her.

In order to operationalize the automatic detection of halo effects, we can construct halo-
property nests like the ones shown in table 8.16. These are inventories of properties that 
form a constellation with respect to which a person might evaluate another person, thing, 
or event.

Each value or range of values for a property has a positive-halo, negative-halo, or neutral-
halo score. If a patient knows about a given property value that has a positive-halo score 

Table 8.16
Example of halo-property nests

OBJECT or EVENT Nest of PROPERTIES

MEDICAL-PROCEDURE RISK, PAIN, SIDE-EFFECTS, BENEFITS

PHYSICIAN INTELLIGENCE, SKILL-LEVEL, AFFABILITY, KINDNESS, TRUSTWORTHINESS
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(e.g., low risk) but doesn’t know about any of the other property values in the nest, it is 
possible that he or she will assume that the values of the other properties have the same 
halo-polarity score (e.g., low pain, low side effects, high benefits). This can explain why a 
patient who knows little about a procedure might accept or decline it out of hand. Under-
standing this potential bias can help a doctor to tactfully continue a knowledge-providing 
conversation until the patient actually has all the information needed to make a good deci-
sion. The agent’s role in the process is to trace the hypothetical decision-making process 
of the patient, determine whether or not he or she knows enough feature values to make a 
good decision, and, if not, notify the doctor.

The final class of decision-making biases to which a patient might be subject pertains 
to the nature of the doctor-patient dialog. The way a situation is presented or a question is 
asked can impact a person’s perception of it and subsequently affect related decision-
making. For example, if someone is asked, “I imagine you hurt right now?” they will have 
a tendency to seek corroborating evidence by noticing something that hurts, even if just a 
little (the confirmation bias). If someone is asked, “Your pain is very bad, isn’t it?” they 
are likely to overestimate the perceived pain, having been primed with a high pain level 
(the priming effect). And if someone is told, “There is a 20% chance that this will fail,” 
they are likely to interpret it more negatively than if they were told, “There’s an 80% chance 
that this will succeed” (the framing sway).

The agent could help doctors be aware of, and learn to avoid, the negative consequences 
of such effects by automatically detecting and flagging relevant situations. The detection 
methods involve recording constructions in the lexicon that can predictably lead to biased 
thinking. Table 8.17 shows some examples.

The semantic descriptions of such constructions (recorded in the lexicon) must include 
the information that the DISCOURSE-FUNCTION of the construction is the listed bias (e.g., 
SEEK-CONFIRMATION). So, for example, the semantic representation of tag-question con-
structions like “You don’t VP, do you?” will be

Table 8.17
Examples of constructions that can lead to biased thinking

Example Associated bias

You don’t smoke, do you?
I assume you don’t eat before sleeping.

SEEK-CONFIRMATION

Do you have sharp pain in your lower abdomen? SUGGESTIVE-YES/NO

Do you drink between 2 and 4 cups of coffee a day? PRIME-WITH-RANGE

There’s a 10% chance the procedure will fail. NEGATIVE-FRAMING-SWAY

There’s a 90% chance the procedure will succeed. POSITIVE-FRAMING-SWAY
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REQUEST-INFO

	 AGENT	 HUMAN	 (“speaker”)
	 BENEFICIARY	 HUMAN	 (“hearer”)
	 THEME		 ^main-clause	 (the meaning of the main clause)
	 DISCOURSE-FUNCTION	 SEEK-CONFIRMATION	

The values of DISCOURSE-FUNCTION can be incorporated into rules for good clinical nego-
tiation. For example, a doctor is more likely to convince a patient to agree to a lifesaving 
procedure by framing the side effects, risks, and so on using a positive framing sway rather 
than a negative one. Similarly, a doctor is more likely to get a patient to provide maxi-
mally objective ratings of symptom severity by asking neutral questions (“Do you have 
any chest pain?”) rather than questions framed as SUGGESTIVE-YES/NO or PRIME-WITH-RANGE. 
The agent can match the most desired utterance types with its assessment of the doctor’s 
goal in the given exchange using the tracking of hypothesized goals and plans (e.g., “con-
vince patient to undergo procedure”).

When considering the utility of LEIAs in advising doctors, it is important to remember 
that the psychological effects we have been discussing are typically not recognized by 
people in the course of normal interactions. So it is not that we expect LEIAs to discover 
anything that doctors do not already know or could not learn in principle. Instead, we think 
that LEIAs could point out aspects of decision-making and interpersonal interactions that, 
for whatever reason, the doctor is unaware of in the heat of the moment. We think that 
LEIAs could be particularly useful to doctors who have less experience overall, who have 
little experience with a particular constellation of findings, who are under the pressures of 
time and/or fatigue, or who are dealing with difficult nonmedical aspects of a case, such 
as a noncompliant patient.

8.3  LEIAs in Robotics

It is broadly recognized that progress in social robotics is predicated on improving robots’ 
ability to communicate with people. But there are different levels of communication. While 
robots have, for example, been able to react to vocal commands for quite some time, this 
ability does not invoke the kind of fundamental, broad-coverage NLU described through-
out this book. Instead, the language utterances understood by robots have been tightly con-
strained, with most research efforts focused on enabling robots to learn skills through 
demonstration (e.g., Argall et al., 2009; Zhu & Hu, 2018). The robotics community has not 
willfully disregarded the promise of language-endowed robots; rather, it has understand-
ably postponed the challenge of NLU, which, in an embodied application, must also incor-
porate extralinguistic context (what the robot sees, hears, knows about the domain, thinks 
about its interlocutor’s goals, and so on). Integrating the language capabilities of LEIAs 
into robotic systems is the obvious next step forward.
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Typical robots have some inventory of physical actions they can perform, as well as 
objects they can recognize and manipulate. A LEIA-robot hybrid can acquire a mental 
model of these actions and objects through dialog with human collaborators. That is, people 
can help LEIA-robots to understand their world by naming objects and actions; describ-
ing actions in terms of their causal organization, prerequisites, and constraints; listing the 
affordances of objects; and explaining people’s expectations of the robots. This kind of 
understanding will enhance LEIA-robots’ ability to understand their own actions and the 
actions of others and to become more humanlike collaborators overall. Clearly, this kind 
of learning relies on semantically interpreting language inputs, and it mirrors a major mode 
of learning in humans—learning through language. In this section we describe our work 
on integrating a LEIA with a robot in an application system.

The system we describe is a social robot collaborating with a human user to learn com-
plex actions. The experimental domain is the familiar task of furniture assembly that is 
widely accepted as useful for demonstrating human-robot collaboration on a joint activ-
ity. Roncone et al. (2017) report on a Baxter robot supplied with high-level specifications 
of procedures implementing chair-building tasks, represented in the hierarchical task net-
work (HTN) formalism (Erol et al., 1994). In that system, the robot uses a rudimentary 
sublanguage to communicate with the human in order to convert these HTN representa
tions into low-level task planners capable of being directly executed by the robot. Since 
the robot does not have the language understanding capabilities or the ontological knowl-
edge substrate of LEIAs, it cannot learn by being told or reason explicitly about the HTN-
represented tasks. As a result, those tasks have the status of uninterpreted skills stored in 
the robot’s procedural memory.

We undertook to develop a LEIA-robot hybrid based on the robot just described. The 
resulting system was able to

•	 learn the semantics of the initially uninterpreted basic actions;
•	 learn the semantics of operations performed by the robot’s human collaborator from 

natural language descriptions of them;
•	 learn, name, and reason about meaningful groupings and sequences of actions;
•	 organize those sequences of actions hierarchically; and
•	 integrate the results of learning with knowledge stored in the LEIA-robot’s semantic 

and episodic memories.

To make clear how all this happens, we must start from the beginning. The LEIA-robot 
brings to the learning process the functionalities of both the LEIA and the robot. Its robotic 
side can (a) visually recognize parts of the future chair (e.g., the seat) and the tools to be 
used (e.g., screwdriver) and (b) perform basic programmed actions, which are issued as 
non-natural-language commands such as GET(LEFT-BRACKET), HOLD(SCREWDRIVER), 
RELEASE(LEFT-BRACKET). The hybrid system’s LEIA side, for its part, can generate 

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1891681/9780262363136_c000700.pdf by guest on 28 May 2021



Agent Applications	 345

ontologically grounded meaning representations (MRs) from both user utterances and 
physical actions.23 The interactive learning process that combines these capabilities is 
implemented in three modules.

Learning module 1: Concept grounding. The LEIA-robot learns the connection between 
its basic programmed actions and the meaning representations of utterances that describe 
them. This is done by the user verbally describing a basic programmed action at the same 
time as launching it. For example, he or she can say, “You are fetching a screwdriver” 
while launching the procedure GET(SCREWDRIVER). The LEIA-robot generates the fol-
lowing TMR while physically retrieving the screwdriver.

CHANGE-LOCATION-1

	 THEME		 SCREWDRIVER-1

	 AGENT		 ROBOT-1

	 TIME		  find-anchor-time
	 EFFECT		 BESIDE-1

	 textstring	 fetch
	 lex-sense	 get-v1

BESIDE-1

	 DOMAIN	 SCREWDRIVER-1

	 RANGE		 HUMAN-1

Learning module 2: Learning legal sequences of known basic actions. The robot learns 
legal sequences of known basic actions by hierarchically organizing the TMRs for sequen-
tial event descriptions. It recognizes these sequences as new complex actions (ontological 
events), which it names and records in its ontology. Since the full process of chair assem-
bly is far too long to present here (see Nirenburg & Wood, 2017, for details), we illustrate 
this process (in table 8.18) by tracing the robot’s learning how to assemble the third of the 
four chair legs.

Learning module 3: Memory management for newly acquired knowledge. Newly learned 
process sequences (e.g., ASSEMBLE-RIGHT-BACK-LEG) and objects (e.g., RIGHT-BACK-LEG) must 
be incorporated in the LEIA-robot’s long-term semantic and episodic memories. For each 
newly learned concept, the memory management module first determines whether this con-
cept should be (a) added to the LEIA-robot’s semantic memory or (b) merged with an exist-
ing concept. To make this choice, the agent uses an extension of the concept-matching 
algorithm reported in English and Nirenburg (2007) and Nirenburg et al. (2007). This algo-
rithm is based on unification, with the added facility for naming concepts and determining 
their best position in the ontological hierarchy. Details aside, the matching algorithm works 
down through the ontological graph—starting at the PHYSICAL-OBJECT or PHYSICAL-EVENT 
node, as applicable—and identifies the closest match that does not violate any recorded 
constraints. Nirenburg et al. describe the eventualities that this process can encounter.

To recapitulate, the system described here concentrates on robotic learning through lan-
guage understanding. This learning results in extensions to and modifications of the three 
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Table 8.18
Learning while assembling the right back leg

The user says, “We are building the right back leg.”

The LEIA-robot carries out a mental action: It generates a TMR for that utterance.

The user says, “Get another foot bracket.”

The user launches the associated robotic action by 
inputting

GET(BRACKET-FOOT)

The LEIA-robot carries out a sequence of physical 
actions:

First, it undertakes the asserted GET(BRACKET-FOOT) 
action. Then it carries out the action it typically performs 
next: RELEASE(BRACKET-FOOT).

The LEIA-robot carries out a mental action: It learns to associate this complex event with the TMR for 
“Get another foot bracket.”

The user says, “Get the right back bracket.”

The user launches the associated robotic action by 
inputting

GET(BRACKET-BACK-RIGHT)

The LEIA-robot performs the associated physical and learning actions, as before.

The user says, “Get and hold another dowel.”

The user launches the associated robotic actions by 
inputting

GET(DOWEL), HOLD(DOWEL)

The LEIA-robot performs the associated physical and learning actions.

The user says, “I am mounting the third set of brackets on a dowel.”

The LEIA-robot carries out a mental action: It generates a meaning representation of this utterance.

The user carries out a physical action: He affixes the foot and the right back brackets to the dowel.

The LEIA-robot learns through demonstration: It observes this physical action and generates a meaning 
representation of it.

The user says, “Finished.”

The LEIA-robot carries out a mental action: It generates a meaning representation of this utterance.

The user says, “Release the dowel.”

The user launches the associated robotic action by 
inputting

RELEASE(DOWEL)

The LEIA robot performs the associated physical and learning actions.

The user says, “Done assembling the right back leg.”

The LEIA robot carries out a sequence of mental 
actions:

(a) It generates a meaning representation for that utterance.
(b) It learns the action subsequence for 
ASSEMBLE-RIGHT-BACK-LEG.
(c) It learns the following ontological concepts in their 
meronymic relationship: RIGHT-BACK-LEG (HAS-OBJECT-AS-
PART BRACKET-FOOT, BRACKET-BACK-RIGHT, DOWEL)

(d) It learns that RIGHT-BACK-LEG fills the HAS-OBJECT-AS-
PART slot of CHAIR.
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kinds of memory in a LEIA-robot: explicit semantic memory (i.e., ontology); explicit epi-
sodic memory (i.e., a recollection of what happened during the learning session); and the 
implicit (skill-oriented) procedural memory. We expect these capabilities to allow the robot 
to (a) perform complex actions without the user having to spell out a complete sequence of 
basic and complex actions; (b) reason about task allocation between itself and the human 
user; and (c) test and verify its knowledge through dialog with the user, avoiding the need 
for the large number of training examples often required when learning is carried out by 
demonstration only.

The work on integrating linguistically sophisticated cognitive agents with physical robots 
offers several advantages over machine learning approaches. First, LEIA-robots can explain 
their decisions and actions in human terms, using natural language. Second, their opera-
tion does not depend on the availability of big-data training materials; instead, we model 
the way people learn, which is largely through natural language interactions. Third, our 
work overtly models the LEIA-robot’s memory components, which include the implicit 
memory of skills (the robotic component), the explicit memory of concepts (objects, events, 
and their properties), and the explicit memory of concept instances, including episodes, 
which are represented in our system as hierarchical transition networks. The link estab-
lished between the implicit and explicit layers of memory allows the robot to reason about 
its own actions.

Scheutz et al. (2013) discuss methodological options for integrating robotic and cognitive 
architectures and propose three “generic high-level interfaces” between them—the percep-
tual interface, the goal interface, and the action interface. In our work, the basic interaction 
between the implicit robotic operation and explicit cognitive operation is supported by 
interactions among the three components of the memory system of the LEIA-robot.

There are several natural extensions to this work. After the robot’s physical actions are 
grounded in ontological concepts, the robot should be able to carry out commands or learn 
new action sequences by acting directly on the user’s utterances, without the need for direct 
triggering of those physical actions through software function calls. In addition, the incor-
poration of text generation and dialog management capabilities would allow the robot to 
take a more active role in the learning process (as by asking questions) as well as enrich 
the verisimilitude of interactions with humans during joint task performance. Yet another 
direction of work, quite novel for the robotics field, would be to enable the robot to adapt 
to particular users, leveraging the sort of mindreading discussed earlier in this chapter.

8.4  The Take-Home Message about Agent Applications

We expect that some readers will have skipped over the details of the applications pre-
sented in this chapter. That is fine as long as the point behind all those details is not lost.

The main argument against developing deep NLU systems, particularly using knowledge-
based methods, has been that it requires deep and broad, high-quality knowledge, which 
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is expensive to acquire. Yes, it is expensive to acquire, but it is needed not only for lan-
guage processing but also to enable virtual and robotic agents to function intelligently in 
many kinds of applications. That is, the knowledge problem is not restricted to matters of 
language; it is at the core of many of AI’s most imposing challenges.

The program of knowledge-based AI presented in this book has not infrequently been 
dubbed ambitious—a term that tends to carry at least some degree of skepticism. That skep-
ticism is not surprising: if very few people are pursuing one of the most compelling prob
lems science has to offer, there must be some reason why. We hypothesize that a substantial 
contributing factor is that people simply don’t enjoy, and/or don’t receive sufficient per-
sonal and professional benefits from, doing the kinds of knowledge engineering we illus-
trate. However, personal preferences and personal cost-benefit analyses should not be 
confused with more objective assessments of the potential for knowledge engineering to 
foster progress in the field of AI at large.

We do not expect that this book will turn every reader into an optimistic champion of 
knowledge-based NLU or, more broadly, knowledge-based AI. However, as we have shown 
in this chapter and those that precede it, it would be unsound to dismiss our commitment 
to this paradigm as deriving from unrealistic ideas about how much work it requires. Only 
time will tell how AI will unfold over the decades to come, but we are making our bets 
with eyes wide open.
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