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Abstract

The Winograd Schema Challenge (WSC) da-
taset WSC273 and its inference counterpart
WNLI are popular benchmarks for natural lan-
guage understanding and commonsense rea-
soning. In this paper, we show that the perfor-
mance of three language models on WSC273
strongly improves when fine-tuned on a sim-
ilar pronoun disambiguation problem dataset
(denoted WSCR). We additionally generate
a large unsupervised WSC-like dataset. By
fine-tuning the BERT language model both
on the introduced and on the WSCR dataset,
we achieve overall accuracies of 72.2% and
71.9% on WSC273 and WNLI, improving the
previous state-of-the-art solutions by 8.5% and
6.8%, respectively. Furthermore, our fine-tu-
ned models are also consistently more robust
on the “complex” subsets of WSC273, intro-
duced by Trichelair et al. (2018).

1 Introduction

The Winograd Schema Challenge (WSC) (Leves-
que et al., 2012, 2011) was introduced for testing
AI agents for commonsense knowledge. Here, we
refer to the most popular collection of such sen-
tences as WSC273, to avoid confusion with other
slightly modified datasets, such as PDP60 (Davis
et al., 2017) and the Definite Pronoun Resolution
dataset (Rahman and Ng, 2012), denoted WSCR
in the sequel. WSC273 consists of 273 instan-
ces of the pronoun disambiguation problem (PDP)
(Morgenstern et al., 2016). Each is a sentence (or
two) with a pronoun referring to one of the two or
more nouns; the goal is to predict the correct one.
The task is challenging, since WSC examples are
constructed to require human-like commonsense
knowledge and reasoning. The best known solu-
tions use deep learning with an accuracy of 63.7%
(Opitz and Frank, 2018; Trinh and Le, 2018). The
problem is difficult to solve not only because of the
commonsense reasoning challenge, but also due

to the small existing datasets making it difficult to
train neural networks directly on the task.

Neural networks have proven highly effective
in natural language processing (NLP) tasks, out-
performing other machine learning methods and
even matching human performance (Hassan et al.,
2018; Nangia and Bowman, 2018). However, su-
pervised models require many per-task annotated
training examples for a good performance. For
tasks with scarce data, transfer learning is often
applied (Howard and Ruder, 2018; Johnson and
Zhang, 2017), i.e., a model that is already trained
on one NLP task is used as a starting point for
other NLP tasks.

A common approach to transfer learning in
NLP is to train a language model (LM) on large
amounts of unsupervised text (Howard and Ruder,
2018) and use it, with or without further fine-tu-
ning, to solve other downstream tasks. Build-
ing on top of a LM has proven to be very suc-
cessful, producing state-of-the-art (SOTA) results
(Liu et al., 2019; Trinh and Le, 2018) on bench-
mark datasets like GLUE (Wang et al., 2019) or
WSC273 (Levesque et al., 2011).

In this work, we first show that fine-tunning
existing LMs on WSCR is a surprisingly robust
method of improving the capabilities of the LM
to tackle WSC273 and WNLI. Secondly, we in-
troduce a method for generating large-scale WSC-
like examples. We use this method to create an
11M dataset1 from English Wikipedia2, which we
further use together with WSCR for fine-tuning
the pre-trained BERT LM (Devlin et al., 2018).
We achieve accuracies of 72.2% and 71.9% on
WSC273 and WNLI, improving the previous best
solutions by 8.5% and 6.8%, respectively.

1Available at http://tiny.cc/cxar6y
2https://dumps.wikimedia.org/enwiki/
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2 Background

This section contains a detailed description of the
WSC and its relaxed form, the Definite Pronoun
Resolution problem, as well as of the main LM
used in our work, BERT (Devlin et al., 2018).

BERT. Our work uses the pre-trained Bidirec-
tional Encoder Representations from Transform-
ers (BERT) LM (Devlin et al., 2018) based on
the transformer architecture (Vaswani et al., 2017).
Due to its high performance on natural language
understanding (NLU) benchmarks and the sim-
plicity to adapt its objective function to our fine-
tuning needs, we use BERT throughout this work.

BERT is originally trained on two tasks:
masked token prediction, where the goal is to pre-
dict the missing tokens from the input sequence,
and next sentence prediction, where the model is
given two sequences and asked to predict whether
the second sequence follows after the first one.

We focus on the first task to fine-tune BERT us-
ing WSC-like examples. We use masked token
prediction on a set of sentences that follow the
WSC structure, where we aim to determine which
of the candidates is the correct replacement for the
masked pronoun. We use the PyTorch implemen-
tation3 of Devlin et al.’s (2018) pre-trained model,
BERT-large.

Winograd Schema Challenge. Having introdu-
ced the goal of the Winograd Schema Challenge,
we illustrate it with the following example:

The trophy didn’t fit into the suitcase because it
was too [large/small].

Question: What was too [large/small]?
Answer: the trophy / the suitcase

The pronoun “it” refers to a different noun,
based on the word in the brackets. To correct-
ly answer both versions, one must understand
the meaning of the sentence and relation to the
changed word. More specifically, a text must meet
the following criteria to be considered for a Wino-
grad Schema (Levesque et al., 2011):

1. Two parties must appear in the text.

2. A pronoun appears in the sentence and refers
to one party. It would be grammatically cor-
rect if the pronoun referred to the other.

3. The question asks to determine what party the
pronoun refers to.

3https://github.com/huggingface/
pytorch-pretrained-BERT

4. A “special word” appears in the sentence.
When switched to an “alternative word”, the
sentence remains grammatically intact but
the referent of the pronoun changes.

Additionally, commonsense reasoning must be
required to answer the question.

However, a detailed analysis by Trichelair
et al. (2018) shows that not all WSC273 exam-
ples are equally difficult. They introduce two com-
plexity measures (associativity and switchability)
and, based on them, refine evaluation metrics for
WSC273.

In associative examples, one of the parties is
more commonly associated with the rest of the
question than the other one. Such examples are
seen as “easier” than the rest and represent 13.5%
of WSC273. The remaining 86.5% of WSC273 is
called non-associative.
47% examples are called “switchable”, because

the roles of the parties can be changed, and ex-
amples still make sense. A model is tested on the
original, “unswitched” switchable subset and on
the same subset with switched parties. The con-
sistency between the two results is computed by
comparing how often the model correctly changes
the answer when the parties are switched.

Definite Pronoun Resolution. Since collecting
examples that meet the criteria for WSC is hard,
Rahman and Ng (2012) relax the criteria and
construct the Definite Pronoun Resolution (DPR)
dataset, following the structure of the WSC, but
also accepting easier examples. The dataset, re-
ferred throughout the paper as WSCR, is split into
a training set with 1322 examples and test set with
564 examples. We use them for fine-tuning the
LMs and validation, respectively.

WNLI. One of the 9 GLUE benchmark tasks
(Wang et al., 2019), WNLI is very similar to the
WSC273 dataset but is phrased as an entailment
problem instead. A WSC schema is given as a
premise. The hypothesis is constructed by extract-
ing the sentence part where the pronoun is, and
replacing the pronoun with one candidate. The la-
bel is 1, if the candidate is the correct replacement,
and 0, otherwise.

3 Related Work

There have been several attempts at solving
WSC273. Previous work is based on Google
queries for knowledge (Emami et al., 2018) (58%),

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


sequence ranking (Opitz and Frank, 2018) (63%),
and using an ensemble of LMs (Trinh and Le,
2018) (63%).

A critical analysis (Trichelair et al., 2018)
showed that the main reason for success when us-
ing an ensemble of LMs (Trinh and Le, 2018) was
largely due to imperfections in WSC273, as dis-
cussed in Section 2.

The only dataset similar to WSC273 is an eas-
ier but larger (1886 examples) variation published
by Rahman and Ng (2012) and earlier introduced
as WSCR. The sequence ranking approach uses
WSCR for training and attempts to generalize to
WSC273. The gap in performance scores between
WSCR and WSC273 (76% vs. 63%) implies that
examples in WSC273 are much harder.

Another important NLU benchmark is GLUE
(Wang et al., 2019), which gathers 9 tasks and is
commonly used to evaluate LMs. The best score
has seen a huge jump from 0.69 to over 0.82 in a
single year. However, WNLI is a notoriously diffi-
cult task in GLUE and remains unsolved by the ex-
isting approaches. None of the models have beaten
the majority baseline at 65.1, while human perfor-
mance lies at 95.9 (Nangia and Bowman, 2018).

4 Our Approach

WSC Approach. We approach WSC by fine-
tuning the BERT LM (Devlin et al., 2018) on the
WSCR training set and further on a very large
Winograd-like dataset that we introduce. Below,
we present our fine-tuning objective function and
the introduced dataset.

Given a training sentence s, the pronoun to be
resolved is masked out from the sentence, and
the LM is used to predict the correct candidate.
Let c1 and c2 be the two candidates. BERT for
Masked Token Prediction is used to find P(c1|s)
and P(c2|s). If a candidate consists of several
tokens, the corresponding number of [MASK]
tokens is used in the masked sentence. Then,
logP(c|s) is computed as the average of log-
probabilities of each composing token. If c1 is
correct, and c2 is not, the loss is:

L = − logP(c1|s) + (1)

+ α ·max(0, logP(c2|s)− logP(c1|s) + β)

where α and β are hyperparameters.

MaskedWiki Dataset. To get more data for
fine-tuning, we automatically generate a large-
scale collection of sentences similar to WSC.

More specifically, our procedure searches a large
text corpus for sentences that contain (at least) two
occurrences of the same noun. We mask the sec-
ond occurrence of this noun with the [MASK] to-
ken. Several possible replacements for the masked
token are given, for each noun in the sentence dif-
ferent from the replaced noun. We thus obtain
examples that are structurally similar to those in
WSC, although we cannot ensure that they fulfill
all the requirements (see Section 2). We partially
address this challenge by using the BERT WSCR
LM, i.e., BERT fine-tuned on WSCR. Details
on fine-tuning are given in Section 5. We rank
the likelihoods of sentences obtained with the
various possible replacements. We aim to only
keep the “hard” examples, i.e., examples with
the most likely alternative candidate, according to
BERT WSCR. The details of the filtering process
are described in the supplementary material.

To generate such sentences, we choose the En-
glish Wikipedia as source text corpus, as it is a
large-scale and grammatically correct collection
of text with diverse information. We use the Stan-
ford POS tagger (Manning et al., 2014) for finding
nouns. After filtering, the generated dataset con-
sists of 11, 700, 317 examples.

WNLI Approach. For format consistency rea-
sons, we transform WNLI examples from the
premise–hypothesis format into the masked words
format. The description of the transformation can
be found in the supplementary material.

5 Evaluation

The training procedure differs from the training of
BERT (Devlin et al., 2018) in a few points. The
model is only trained with a single epoch of the
MaskedWiki dataset, using batches of size 64 (dis-
tributed on 8 GPUs), learning rate of 3.0 · 10−5,
and hyperparameter values α = 5 and β = 0.1
in the loss function (Eq. (1)). The values were
selected manually from α ∈ {2.5, 5, 10, 20} and
β ∈ {0.05, 0.1, 0.2, 0.4} by comparing the train-
ing accuracy on a subset of size 2, 000, 000.

Both BERT and BERT Wiki are fine-tuned on
the WSCR train dataset to create BERT WSCR
and BERT Wiki WSCR.

The WSCR test set was used as the validation
set. The fine-tuning procedure was the same as
the training procedure on MaskedWiki, except that
(i) 50 epochs combined with early stopping were
used, (ii) the hyperparameters α and β were se-



WSC273 non-assoc. assoc. unswitched switched consist. WNLI
BERT Wiki 0.546 0.525 0.676 0.473 0.489 0.252 0.644
BERT Wiki WSCR 0.722 0.716 0.757 0.748 0.725 0.611 0.719

BERT 0.601 0.589 0.676 0.580 0.573 0.443 0.651
BERT WSCR 0.703 0.708 0.676 0.733 0.701 0.595 0.705

BERT-base 0.564 0.551 0.649 0.527 0.565 0.443 0.630
BERT-base WSCR 0.656 0.636 0.784 0.687 0.649 0.489 0.651

GPT 0.553 0.525 0.730 0.595 0.519 0.466 0.432
GPT WSCR 0.674 0.653 0.811 0.664 0.580 0.641 0.432

BERT Wiki WSCR no pairs 0.604 0.606 0.595 0.611 0.611 0.420 –
BERT Wiki WSCR pairs 0.678 0.674 0.703 0.695 0.687 0.519 –
LM ensemble 0.637 0.606 0.838 0.634 0.534 0.443 –
Knowledge Hunter 0.571 0.583 0.5 0.588 0.588 0.901 –

Table 1: Results on WSC273 and its subsets. Comparison between each language model and its WSCR-tuned
model is given. For each column, the better result of the two is in bold. The best result in the column overall is
underlined. Results for LM ensemble and Knowledge Hunter are taken from Trichelair et al. (2018). All models
consistently improve their accuracy when fine-tuned on the WSCR dataset.

lected with grid search from the same sets, and
(iii) the learning rate 2.0 · 10−5 was used.

For comparison, experiments are also con-
ducted on two other LMs, BERT-base (BERT with
less parameters) and General Pre-trained Trans-
former (GPT) by Radford et al. (2018). The train-
ing on BERT-base was conducted in the same way
as for other models. When using GPT, the proba-
bility of a word belonging to the sentence P(c|s)
is computed as partial loss in the same way as by
Trinh and Le (2018).

Due to WSC’s “special word” property, exam-
ples come in pairs. A pair of examples only differs
in a single word (but the correct answers are dif-
ferent). The model BERT Wiki WSCR no pairs
is the BERT Wiki model, fine-tuned on WSCR,
where only a single example from each pair is
retained. The size of WSCR is thus halved.
The model BERT Wiki WSCR pairs is obtained
by fine-tuning BERT Wiki on half of the WSCR
dataset. This time, all examples in the subset come
in pairs, just like in the unreduced WSCR dataset.

We evaluate all models on WSC273 and the
WNLI test dataset, as well as the various partitions
of WSC273, as described in Section 2. The results
are reported in Table 1 and will be discussed next.

Discussion. We note that models that are fine-
tuned on the WSCR dataset consistently out-
perform their non-fine-tuned counterparts. The
BERT Wiki WSCR model outperforms other lan-
guage models on 5 out of 7 sets that they are com-
pared on. In comparison to the LM ensemble by
Trinh and Le (2018), the accuracy is more consis-

tent between associative and non-associative sub-
sets and less affected by the switched parties.
However, it remains fairly inconsistent, which is
a general property of LMs.

The results of BERT Wiki seem to indicate
that this dataset is hurting BERT. However, when
additionally fine-tuned to WSCR, the accuracy
strongly and consistently improves. The results of
BERT Wiki no pairs and BERT Wiki pairs show
that the existence of WSC-like pairs in the training
data affects the performance of the trained model.
MaskedWiki does not contain such pairs.

Summary and Outlook. This work achieves
new SOTA results on the WSC and WNLI datasets
by fine-tuning the BERT language model on the
WSCR dataset and a newly introduced Masked-
Wiki dataset. The previous SOTA results on WSC
and WNLI are improved by 8.5% and 6.8%, re-
spectively. To our knowledge, this is the first
model that beats the majority baseline on WNLI.

We show that by fine-tuning on WSC-like
data, the language model’s performance on WSC
strongly improves. In future work, other uses of
the MaskedWiki dataset and applications to dif-
ferent tasks will be investigated. Furthermore, to
further improve the results on WSC273, the filter-
ing procedure can be improved to generate harder
WSC-like examples.
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Appendix

Dataset Filtering Procedure

We filter the dataset to reduce the number of “sim-
ple” examples, while capturing the “harder” ones.
Let s denote a masked sentence, and let c1, c2 be
the correct and incorrect candidate, respectively.
For each example, logP(c1|s) and logP(c2|s) are
computed using BERT WSCR. We observe the
value v = logP(c2|s)− logP(c1|s).

We manually observe 1000 randomly selected
examples to determine how v relates to the qual-
ity of the example. More specifically, examples
where one option is grammatically incorrect or is
visibly a better choice than the other, are consid-
ered “easy”, and the examples where reasoning or
understanding is needed to solve them are consid-
ered “hard”. A more detailed description of this
criterion is included below.

We pick the examples with −0.075 ≤ v ≤
0.30, where at least 90% of WordPiece tokens
(Wu et al., 2016) represent whole words. The up-
per bound was necessary, because BERT WSCR
scored some incorrect examples as having high
P(c2|s), just because the correct solution was a
really rare word, for example, a non-English sur-
name with non-ASCII characters (hence, its pre-
dicted P(c1|s) was low). The boundary values
were selected manually to retain hard examples
and filter out the easy ones, based on manual in-
spection of the mentioned random subset. After
filtering, the final dataset consists of 11, 700, 317
out of a total of 129, 852, 279 examples, i.e., we
kept 9% of the initially generated dataset.

To determine the quality of the dataset, 200 ran-
dom examples are manually categorized into 4 cat-
egories:

• Unsolvable: the masked word cannot be un-
ambiguously selected with the given context.
Example: Mostly shot in Australia and South
Africa, the film is based on the controversy
regarding the allegedly racial attacks on In-
dian students in [MASK] between 2007 and
2010. [Australia/South Africa]

• Hard: the answer is not trivial to figure out,
but we do not require it to pass the Google
test. Example: The heavy grazing by the cat-
tle resulted stoppage of regeneration of new
grasses due to no seeding of seeds and tram-
pling of new [MASK]. [grasses/seeds]

• Easy: The alternative sentence is grammati-
cally incorrect or is very visibly an inferior
choice. Example: “Stay on These Roads”
achieved Platinum status in Brazil and Gold
in the UK, Switzerland, the Netherlands and
Germany and Double [MASK] in France.
[Platinum Status/Switzerland]

• Noise: The example is a result of a parsing
error.

In the analyzed subset, 12% of examples were un-
solvable, 53% were hard, 34% were easy, and 1%
fell into the noise category.

Evaluation on WNLI
Models are additionally tested on the test partition
of the WNLI dataset. To use the same evaluation
approach as for the WSC273 dataset, the exam-
ples in WNLI have to be transformed from the
premise–hypothesis format into the masked words
format. Since each hypothesis is just a sub-string
of the premise with the pronoun replaced for the
candidate, finding the replaced pronoun and one
candidate can be done by finding the hypothesis
as a sub-string of the premise. All other nouns in
the sentence are treated as alternative candidates.
The Stanford POS-tagger (Manning et al., 2014) is
used to find the nouns in the sentence. The proba-
bility for each candidate is computed to determine
whether the candidate in the hypothesis is the best
match. Only the test partition of the WNLI dataset
is used, because it does not overlap with WSC273.
We do not train or validate on the WNLI training
and validation sets, because some of the examples
share the premise. Indeed, when upper rephrasing
of the examples is used, the training, validation,
and test sets start to overlap.


