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Abstract

Pre-training by language modeling has be-

come a popular and successful approach to

NLP tasks, but we have yet to understand

exactly what linguistic capacities these pre-

training processes confer upon models. In

this paper we introduce a suite of diagnos-

tics drawn from human language experi-

ments, which allow us to ask targeted ques-

tions about information used by language

models for generating predictions in con-

text. As a case study, we apply these diag-

nostics to the popular BERT model, finding

that it can generally distinguish good from

bad completions involving shared category

or role reversal, albeit with less sensitivity

than humans, and it robustly retrieves noun

hypernyms, but it struggles with challenging

inference and role-based event prediction—

and in particular, it shows clear insensitivity

to the contextual impacts of negation.

1 Introduction

Pre-training of NLP models with a language mod-

eling objective has recently gained popularity as

a precursor to task-specific fine-tuning. Pre-

trained models like BERT (Devlin et al., 2019)

and ELMo (Peters et al., 2018a) have advanced

the state of the art in a wide variety of tasks, sug-

gesting that these models acquire valuable, gen-

eralizable linguistic competence during the pre-

training process. However, though we have estab-

lished the benefits of language model pre-training,

we have yet to understand what exactly about lan-

guage these models learn during that process.

This paper aims to improve our understanding

of what language models (LMs) know about lan-

guage, by introducing a set of diagnostics target-

ing a range of linguistic capacities, drawn from

human psycholinguistic experiments. Because of

their origin in psycholinguistics, these diagnostics

have two distinct advantages: they are carefully

controlled to ask targeted questions about linguis-

tic capabilities, and they are designed to ask these

questions by examining word predictions in con-

text, which allows us to study LMs without any

need for task-specific fine-tuning.

Beyond these advantages, our diagnostics dis-

tinguish themselves from existing tests for LMs

in two primary ways. First, these tests have been

chosen specifically for their capacity to reveal in-

sensitivities in predictive models, as evidenced by

patterns that they elicit in human brain responses.

Second, each of these tests targets a set of lin-

guistic capacities that extend beyond the primarily

syntactic focus seen in existing LM diagnostics—

we have tests targeting commonsense/pragmatic

inference, semantic roles and event knowledge,

category membership, and negation. Each of our

diagnostics is set up to support tests of both word

prediction accuracy and sensitivity to distinctions

between good and bad context completions. Al-

though we focus on the BERT model here as an

illustrative case study, these diagnostics are appli-

cable for testing of any language model.

This paper makes two main contributions. First,

we introduce a new set of targeted diagnostics for

assessing linguistic capacities in language mod-

els.1 Second, we apply these tests to shed light

on strengths and weaknesses of the popular BERT

model. We find that BERT struggles with chal-

lenging commonsense/pragmatic inferences and

role-based event prediction, that it is generally ro-

bust to within-category distinctions and role rever-

sals, but with lower sensitivity than humans, and

that it is very strong at associating nouns with hy-

pernyms. Most strikingly, however, we find that

BERT fails completely to show generalizable un-

derstanding of negation, raising questions about

the aptitude of LMs to learn this type of meaning.

1All test sets and experi-

ment code are made available here:

https://github.com/aetting/lm-diagnostics

http://arxiv.org/abs/1907.13528v1
https://github.com/aetting/lm-diagnostics


2 Related Work

This paper contributes to a growing effort

to better understand the specific linguistic

capacities achieved by neural NLP models.

Some approaches use fine-grained classification

tasks to probe information in sentence embed-

dings (Adi et al., 2016; Conneau et al., 2018;

Ettinger et al., 2018), or token-level and other

sub-sentence level information in contextual

embeddings (Tenney et al., 2018; Peters et al.,

2018b). Much work has attempted to evaluate

systems’ overall level of “understanding”, of-

ten with tasks such as semantic similarity and

entailment (Wang et al., 2018; Bowman et al.,

2015; Agirre et al., 2012; Dagan et al., 2005;

Bentivogli et al., 2016), and additional work

has been done to design curated versions of

these tasks to test for specific linguistic ca-

pabilities (Dasgupta et al., 2018; Poliak et al.,

2018; McCoy et al., 2019). Our diagnostics

complement this previous work in allowing for

direct testing of language models in their natural

setting—via controlled tests of word prediction in

context—without requiring probing of extracted

representations or task-specific fine-tuning.

Previous work has used word prediction accu-

racy as a test of LMs’ language understanding.

The LAMBADA dataset (Paperno et al., 2016), in

particular, tests models’ ability to predict the final

word of a passage, in cases where the final sen-

tence alone is insufficient for prediction. However,

while LAMBADA presents a challenging predic-

tion task, it is not well-suited to ask targeted ques-

tions about types of information used by LMs for

prediction, as our tests are designed to do.

Some previous work does use targeted tests

to examine specific capacities of LMs—often in-

spired by psycholinguistic methods. However,

the majority of this work has focused on syn-

tactic capabilities of LMs (Linzen et al., 2016;

Gulordava et al., 2018; Marvin and Linzen, 2018;

Wilcox et al., 2018; Futrell et al., 2019). Rele-

vant to our case study here, using several of these

tests Goldberg (2019) shows the BERT model to

perform impressively on such syntactic diagnos-

tics. In the present work, we expand to examine a

more diverse range of linguistic capabilities, while

continuing to use controlled, targeted diagnostics.

We also deviate from previous work with targeted

diagnostics in not only comparing word probabil-

ities, but also examining word prediction accura-

cies directly, for a richer picture of models’ spe-

cific strengths and weaknesses.

3 Leveraging human studies

The power in our diagnostics stems from their ori-

gin in psycholinguistic studies—the items have

been carefully designed for studying specific as-

pects of language processing, and each test has

been shown to produce informative patterns of re-

sults when tested on humans. In this section we

provide relevant background on human language

processing, and explain how we use this informa-

tion to choose the particular tests used here.

3.1 Background: prediction in humans

To study language processing in humans, psy-

cholinguists often test human responses to words

in context, in order to better understand the infor-

mation that our brains use to generate predictions.

In particular, there are two types of predictive hu-

man responses that are relevant to us here:

Cloze probability The first measure of human

expectation is a measure of the “cloze” response.

In a cloze task, humans are given an incomplete

sentence and tasked with filling their expected

word in the blank. “Cloze probability” of a word

w in context c refers to the proportion of people

who choose w to complete c. We will treat this as

the best available gold standard for human predic-

tion in context—humans completing the cloze task

typically are not under any time pressure, so they

have the opportunity to use all available informa-

tion from the context to arrive at a prediction.

N400 amplitude The second measure of human

expectation is a brain response known as the N400,

which is detected by measuring electrical activ-

ity at the scalp (by electroencephalography). Like

cloze, the N400 can be used to gauge how ex-

pected a word w is in a context c—the amplitude

of the N400 response appears to be sensitive to fit

of a word in context, and has been shown to corre-

late with cloze in many cases (Kutas and Hillyard,

1984). The N400 has also been shown to correlate

with language model probabilities (Frank et al.,

2013). However, the N400 differs from cloze in

being a real-time response that occurs only 400

milliseconds into the processing of a word. Ac-

cordingly, the expectations reflected in the N400

sometimes deviate from the more fully-formed ex-

pectations reflected in the untimed cloze response.



Context Expected Inappropriate

He complained that after she kissed him, he couldn’t get the

red color off his face. He finally just asked her to stop wear-

ing that ____

lipstick mascara | bracelet

He caught the pass and scored another touchdown. There

was nothing he enjoyed more than a good game of ____

football baseball | monopoly

Table 1: Example items from CPRAG-34

3.2 Our diagnostic tests

The test sets that we use here are all drawn from

human studies that have revealed divergences be-

tween cloze and N400 profiles—that is, for each

of these tests, the N400 response suggests a level

of insensitivity to certain information when com-

puting expectations, causing a deviation from the

fully-informed cloze predictions. We choose these

as our diagnostics because they provide built-in

sensitivity tests targeting the types of information

that appear to have reduced effect on the N400—

and because they should present particularly chal-

lenging prediction tasks, tripping up models that

fail to use the full set of available information.

4 Datasets

Each of our diagnostics supports three types of

testing: word prediction accuracy, sensitivity test-

ing, and qualitative prediction analysis. Because

these items are designed to draw conclusions

about human processing, each set is carefully con-

structed to constrain the information relevant for

making word predictions. This allows us to exam-

ine how well LMs use this target information.

For word prediction accuracy, we use the most

expected items from human cloze probabilities as

the gold completions.2 These represent predic-

tions that models should be able to make if they

access and apply all relevant context information

when generating probabilities for target words.

For sensitivity testing, we compare model

probabilities for good versus bad completions—

specifically on comparisons for which the N400

has exhibited reduced sensitivity in the human ex-

periments. This allows us to test whether LMs will

show similar insensitivities with respect to the rel-

evant linguistic distinctions.

Finally, because these items are constructed in

such a controlled manner, qualitative analysis of

2With one exception, NEG-88, for which we use comple-

tion truth, as in the original study.

models’ top predictions can be highly informa-

tive about information being applied for predic-

tion. We leverage this in our experiments below.

In all tests, the target word to be predicted falls

in the final position of the provided context, which

means that these tests should function similarly for

either left-to-right or bidirectional LMs. In antic-

ipation of testing the BERT model, and to facil-

itate fair future comparisons with the present re-

sults, we filter out items for which the expected

word is not in BERT’s single-word vocabulary, to

ensure that all expected words can be predicted.

It is important to acknowledge that these are

small test sets, due to their origin in psycholinguis-

tic studies. However, because these sets have been

hand-designed by cognitive scientists to test pre-

dictive processing in humans, their value is in the

targeted assessment that they provide with respect

to information that LMs use in prediction.

We now we describe each test set in detail.

4.1 CPRAG-34: commonsense and

pragmatic inference

Our first set targets commonsense and prag-

matic inference, and tests sensitivity to differ-

ences within semantic category. The left col-

umn of Table 1 shows examples of these items,

each of which consists of two sentences. These

items come from an influential human study by

Federmeier and Kutas (1999), which tested how

brains would respond to different types of con-

text completions, shown in the right columns of

Table 1.

Information needed for prediction Accurate

prediction on this set requires use of commonsense

to infer what is being described in the first sen-

tence, and pragmatic reasoning to determine how

the second sentence relates. For instance, in Ta-

ble 1, commonsense informs us that red color left

by kisses suggests lipstick, and pragmatic reason-

ing allows us to infer that the thing to stop wear-



ing is related to the complaint. As in LAMBADA,

the final sentence is generic, not supporting pre-

diction on its own. Unlike LAMBADA, the con-

sistent structure of these items allows us to tar-

get specific model capabilities,3 and additionally,

none of these items contain the target word in con-

text,4 forcing models to use commonsense infer-

ence rather than coreference. Human cloze prob-

abilities show a high level of agreement on appro-

priate completions for these items—average cloze

probability for expected completions is .74.

Sensitivity test The Federmeier and Kutas

(1999) study found that while the inappropriate

completions (e.g., mascara, bracelet) had cloze

probabilities of virtually zero (average cloze .004

and .001, respectively), the N400 showed some

expectation for completions that shared a semantic

category with the expected completion (e.g., mas-

cara, by relation to lipstick). Our sensitivity test

targets this distinction, testing whether LMs will

favor inappropriate completions based on shared

semantic category with expected completions.

Data The authors of the original study make

available 40 of their items—we filter out six items

to accommodate BERT’s single-word vocabulary,

for a final set of 34 items.5

4.2 ROLE-88: event knowledge and semantic

role sensitivity

Our second set targets event knowledge and se-

mantic role interpretation, and tests sensitivity to

impact of role reversals. Table 2 shows an exam-

ple item pair from this set. These items come from

a human experiment by Chow et al. (2016), which

tested the brain’s sensitivity to role reversals.

Information needed for prediction Accurate

prediction on this set requires a model to inter-

pret semantic roles from sentence syntax, and ap-

ply event knowledge about typical interactions be-

tween types of entities in the given roles. The set

has reversals for each noun pair (shown in Table 2)

so models must distinguish roles for each order.

3To highlight this advantage, as a supplement for this test

set we provide specific annotations of each item, indicating

the knowledge/reasoning required to make the prediction.
4More than 80% of LAMBADA items contain the target

word in the preceding context.
5For a couple of items, we also replace an inappropri-

ate completion with another inappropriate completion of the

same semantic category to accommodate BERT’s vocabulary.

Context Compl.

the restaurant owner forgot which

customer the waitress had ____

served

the restaurant owner forgot which

waitress the customer had ____

served

Table 2: Example items from ROLE-88 (Compl = Con-

text Completion)

Sensitivity test The Chow et al. (2016) study

found that although each completion (e.g., served)

is good for only one of the noun orders and not the

reverse, the N400 shows a similar level of expecta-

tion for the target completions regardless of noun

order. Our sensitivity test targets this distinction,

testing whether LMs will show similar difficulty

distinguishing appropriate continuations based on

word order and semantic role. Human cloze prob-

abilities show strong sensitivity to the role rever-

sal, with average cloze difference of .233 between

good and bad contexts for a given completion.

Data The authors provide 120 sentences (60

pairs)—which we filter to 88 final items, remov-

ing pairs for which the best completion of either

context is not in BERT’s single-word vocabulary.

4.3 NEG-88: negation

Our third set targets understanding of the mean-

ing of negation, along with knowledge of category

membership. Table 3 shows examples of these

test items, which involve absence or presence of

negation in simple sentences, with two different

completions that vary in truth depending on the

negation. These test items come from a human

study by Fischler et al. (1983), which examined

how human expectations change with the addition

of negation.

Context Match Mismatch

A robin is a ____ bird tree

A robin is not a ____ bird tree

Table 3: Example NEG-88-SIMP items, with targets

matching and mismatching category of subject noun

Information needed for prediction Because

the negative contexts in these items are highly un-

constraining (A robin is not a ____ ?), prediction

accuracy is not a useful measure for the negative

contexts. We test prediction accuracy for affirma-

tive contexts only, which allows us to test models’



use of hypernym information (robin = bird). Tar-

geting of negation happens in the sensitivity test.

Sensitivity test The Fischler et al. (1983) study

found that although the N400 shows preference

for true completions in affirmative sentences (e.g.,

A robin is a bird), it fails to adjust to negation,

preferring the false continuations in negative sen-

tences (e.g., A robin is not a bird). Our sensitivity

test targets this distinction, testing whether LMs

will show similar insensitivity to impacts of nega-

tion. Note that unlike in the previous sections, here

we use truth judgments rather than cloze probabil-

ity as an indication of the quality of a completion.

Data Fischler et al. provide the list of 18 subject

nouns and 9 category nouns that they use for their

sentences, which we use to generate a comparable

dataset, for a total of 72 items.6 We refer to these

72 simple sentences as NEG-88-SIMP. All target

words are in BERT’s single-word vocabulary.

Supplementary items In a subsequent study,

Nieuwland and Kuperberg (2008) followed up on

the Fischler et al. (1983) experiment, creating af-

firmative and negative sentences chosen to be

more “natural ... for somebody to say”, and con-

trasting these with affirmative and negative sen-

tences chosen to be less natural. “Natural” items

include examples like Most smokers find that quit-

ting is (not) very (difficult/easy), while items de-

signed to be less natural include examples like

Vitamins and proteins are (not) very (good/bad).

The authors share 16 items, which we add to the

72 above for additional comparison. We refer to

these supplementary 16 items, designed to test ef-

fects of naturalness, as NEG-88-NAT.

5 Experiments

As a case study, we use these three diagnostics

to examine the predictive capacities of the pre-

trained BERT model (Devlin et al., 2019), which

has been the basis of impressive performance

across a wide range of tasks. BERT is a deep

bidirectional transformer network (Vaswani et al.,

2017) pre-trained on tasks of masked language

modeling (predicting masked words given bidirec-

tional context) and next-sentence prediction (bi-

6The one modification that we make to the original con-

crete noun list is a substitution of the word salmon for bass

within the category of fish—this was done because bass cre-

ated lexical ambiguity in a way that was not interesting for

our purposes here.

nary classification of whether two sentences are

a sequence). We test two versions of the pre-

trained model: BERTBASE and BERTLARGE (un-

cased). These versions have the same basic archi-

tecture, but BERTLARGE has more parameters—

in total, BERTBASE has 110M parameters, and

BERTLARGE has 340M. We use the PyTorch BERT

implementation with masked language modeling

parameters for generating word predictions.7

For testing, we process our sentence contexts to

have a [MASK] token—also used during BERT’s

pre-training—in the target position of interest. We

then measure BERT’s predictions for this [MASK]
token’s position. Following Goldberg (2019), we

also add a [CLS] token to the start of each sentence

to mimic BERT’s training conditions.

BERT differs from traditional left-to-right

language models, and from real-time human

predictions, in being a bidirectional model able to

use information from both left and right context.

This difference should be neutralized by the fact

that our items provide all information in the left

context—however, in our experiments here, we do

allow one advantage for BERT’s bidirectionality:

we include a period and a [SEP] token after each

[MASK] token, to indicate that the target position

is followed by the end of the sentence. We do this

in order to give BERT the best possible chance of

success, by maximizing the chance of predicting a

single word rather than the start of a phrase. Items

for these experiments thus appear as follows:

[CLS] The restaurant owner forgot which

customer the waitress had [MASK] . [SEP]

Logits produced by the language model for the

target position are softmax-transformed to obtain

probabilities comparable to human cloze probabil-

ity values for those target positions.8

6 Results for CPRAG-34

First we report BERT’s results on the CPRAG-34

test targeting commonsense, pragmatic reasoning,

and sensitivity within semantic category.

7PyTorch BERT: https://github.com/huggingface/pytorch-

pretrained-BERT
8Human cloze probabilities are importantly different from

true probabilities over a vocabulary, making these values

not directly comparable. However, cloze provides impor-

tant indication—the best indication we have—of how much a

context constrains human expectations toward a continuation,

so we do at times loosely compare these two types of values.



Orig Shuf Trunc Shuf + Trunc

BERTBASE k = 1 23.5 14.1 ± 3.1 14.7 8.1 ± 3.4

BERTLARGE k = 1 35.3 17.4 ± 3.5 17.6 10.0 ± 3.0

BERTBASE k = 5 52.9 36.1 ± 2.8 35.3 22.1 ± 3.2

BERTLARGE k = 5 52.9 39.2 ± 3.9 32.4 21.3 ± 3.7

Table 4: CPRAG-34 word prediction accuracies (with and without sentence perturbations)

6.1 Word prediction accuracies

We define accuracy as percentage of items for

which the “expected” completion is among the

model’s top k predictions, with k = 1 and k = 5.

Table 4 (“Orig”) shows the accuracies of

BERTBASE and BERTLARGE . For accuracy at k =
1, BERTLARGE soundly outperforms BERTBASE

with correct predictions on just over a third of

items. When we expand to k = 5, the models

converge on the same accuracy, identifying the ex-

pected completion in approximately half of items.

Because commonsense and pragmatic reason-

ing are non-trivial concepts to pin down, it is worth

asking to what extent BERT can achieve this per-

formance based on simpler cues like word identi-

ties or n-gram context. To test importance of word

order, we shuffle the words in each item’s first sen-

tence, garbling the message but leaving all individ-

ual words intact (“Shuf” in Table 4). To test ade-

quacy of truncated context, we remove all words

of the second sentence but the two words preced-

ing the target word (“Trunc”). This gives gener-

ally enough syntactic context to identify the part

of speech, as well as some sense of semantic cate-

gory, but removes other information from that sec-

ond sentence. We also test with both perturbations

together (“Shuf + Trunc”). Because different shuf-

fled word orders give rise to different results, for

the “Shuf” and “Shuf + Trunc” settings we show

mean and standard deviation from 100 runs.

Table 4 shows the accuracies as a result of these

perturbations. One thing that is immediately clear

is that the BERT model is indeed making use of in-

formation provided by the word order of the first

sentence, and by the more distant content of the

second sentence, as each of these individual per-

turbations causes a notable drop in accuracy. It

is worth noting, however, that with each perturba-

tion there is a subset of items for which BERT’s

accuracy remains intact. Unsurprisingly, many

of these items are those containing particularly

distinctive words associated with the target, such

as checkmate (chess), touchdown (football), and

stone-washed (jeans). This suggests that some of

BERT’s success on these items may be attributable

to simpler lexical or n-gram information. In Sec-

tion 6.3 we take a closer look at some more diffi-

cult items that seemingly avoid such loopholes.

6.2 Completion sensitivity

Next we test BERT’s ability to prefer expected

completions over inappropriate completions of the

same semantic category. We first test this by sim-

ply measuring the percentage of items for which

BERT assigns a higher probability to the good

completion (e.g., lipstick from Table 1) than to ei-

ther of the inappropriate completions (e.g., mas-

cara, bracelet). Table 5 shows the results. We see

that BERTBASE assigns the highest probability to

the expected completion in 73.5% of items, while

BERTLARGE does so for 79.4%—a solid majority,

but with a clear portion of items for which an inap-

propriate, semantically-related target does receive

a higher probability than the appropriate word.

Prefer good w/ .01 thresh

BERTBASE 73.5 44.1

BERTLARGE 79.4 58.8

Table 5: Percent of CPRAG-34 items with good com-

pletion assigned higher probability than bad

We can make our criterion slightly more strin-

gent if we introduce a threshold on the probabil-

ity difference. The average cloze difference be-

tween good and bad completions is about .74 for

the data from which these items originate, reflect-

ing a very strong human sensitivity to the differ-

ence in completion quality. To test the proportion

of items in which BERT assigns more substan-

tially different probabilities, we filter to items for

which the good completion probability is higher

by greater than .01—a threshold chosen to be very

generous given the significant average cloze dif-

ference. With this threshold, the sensitivity drops



Context BERTLARGE predictions

Pablo wanted to cut the lumber he had bought to make

some shelves. He asked his neighbor if he could borrow

her ____

car, house, room, truck, apartment

The snow had piled up on the drive so high that they

couldn’t get the car out. When Albert woke up, his fa-

ther handed him a ____

note, letter, gun, blanket, newspaper

At the zoo, my sister asked if they painted the black and

white stripes on the animal. I explained to her that they

were natural features of a ____

cat, person, human, bird, species

Table 6: BERTLARGE predictions on selected CPRAG-34 items

noticeably—BERTBASE shows sensitivity in only

44.1% of items, and BERTLARGE shows sensitivity

in only 58.8%. These results tell us that although

the models are able to prefer good completions to

same-category bad completions in a majority of

these items, the difference is in many cases very

small, suggesting that this sensitivity falls short of

what we see in human cloze responses.

6.3 Qualitative examination of predictions

We see above that the BERT models are able to

identify the correct word completions in approx-

imately half of CPRAG-34 items, and that the

models are able to prefer good completions to

semantically-related inappropriate completions in

a majority of items, though with notably weaker

sensitivity than humans. To better understand the

models’ weaknesses, in this section we examine

predictions made when the models fail.

Table 6 shows three example items along with

the top five predictions of BERTLARGE. In each

case, BERT provides completions that are sensi-

ble in the context of the second sentence, but that

fail to take into account the context provided by

the first sentence—in particular, the predictions

show no evidence of having been able to infer the

relevant information about the situation or object

described in the first sentence. For instance, we

see in the first example that BERT has correctly

zeroed in on things that one might borrow, but

it fails to infer that the thing to be borrowed is

something to be used for cutting lumber. Simi-

larly, BERT’s failure to detect the snow-shoveling

theme of the second item makes for an amusing set

of non sequitur completions. Finally, the third ex-

ample shows that BERT has identified an animal

theme (unsurprising, given the words zoo and an-

imal), but it is not applying the phrase black and

white stripes to identify the appropriate comple-

tion of zebra. Altogether, these examples illus-

trate that with respect to the target capacities of

commonsense inference and pragmatic reasoning,

BERT fails in these more challenging cases.

7 Results for ROLE-88

Next we turn to the ROLE-88 test of semantic role

sensitivity and event knowledge.

7.1 BERT prediction accuracy

We again define accuracy by presence of a top

cloze item within the model’s top k predic-

tions. Table 8 (“Orig”) shows the accuracies for

BERTLARGE and BERTBASE. For k = 1, accura-

cies are very low, with BERTBASE slightly outper-

forming BERTLARGE. When we expand to k = 5,

accuracies predictably increase, and BERTLARGE

now outperforms BERTBASE by a healthy margin.

To test the extent to which BERT is relying on

the individual nouns in the context, we try two dif-

ferent perturbations of the contexts: removing the

information from the object (which customer the

waitress ...), and removing the information from

the subject (which customer the waitress...), in

each case by replacing the noun with a generic

substitute. In order to make the nouns highly

generic, we choose one and other as the substi-

tutions for the object and subject, respectively.

Table 8 shows the results with each of these per-

turbations individually and together. We observe

several notable patterns. First, removing either the

object (“-Obj”) or the subject (“-Subj”) has rela-

tively little effect on the accuracy of BERTBASE for

either k = 1 or k = 5. This is quite different from

what we see with BERTLARGE, the accuracy of



Context BERTBASE predictions BERTLARGE predictions

the camper reported which girl the

bear had ____

taken, killed, attacked, bitten,

picked

attacked, killed, eaten, taken,

targeted

the camper reported which bear the

girl had ____

taken, killed, fallen, bitten,

jumped

taken, left, entered, found,

chosen

the restaurant owner forgot which

customer the waitress had ____

served, hired, brought, been,

taken

served, been, delivered, men-

tioned, brought

the restaurant owner forgot which

waitress the customer had ____

served, been, chosen, or-

dered, hired

served, chosen, called, or-

dered, been

Table 7: BERTBASE and BERTLARGE predictions on selected ROLE-88 sentences

Orig -Obj -Sub -Both

BERTBASE k=1 14.8 12.5 12.5 9.1

BERTLARGE k=1 13.6 5.7 6.8 4.5

BERTBASE k=5 27.3 26.1 22.7 18.2

BERTLARGE k=5 37.5 18.2 21.6 14.8

Table 8: ROLE-88 word prediction accuracies (with

and without sentence perturbations)

≤.17 ≤.23 ≤.33 ≤.77

BERTBASE k=1 12.0 17.4 17.4 11.8

BERTLARGE k=1 8.0 4.3 17.4 29.4

BERTBASE k=5 24.0 26.1 21.7 41.1

BERTLARGE k=5 28.0 34.8 39.1 52.9

Table 9: Accuracy of predictions in unperturbed

ROLE-88 sentences, by max cloze bins

which drops substantially when the object or sub-

ject information is removed. These patterns sug-

gest that BERTBASE is less dependent upon the full

detail of the subject-object structure, instead rely-

ing primarily upon one or the other of the partici-

pating nouns for its verb predictions. BERTLARGE,

on the other hand, appears to make heavier use

of both nouns, such that loss of either one causes

non-trivial disruption in the predictive accuracy.

It should be noted that the items in this set are

overall less constraining than those in Section 6—

humans converge less clearly on the same predic-

tions, resulting in lower average cloze values for

the best completions. To investigate the effect of

constraint level, we divide items into four bins by

top cloze value per sentence. Table 9 shows the re-

sults. With the exception of BERTBASE at k = 1,

for which accuracy in all bins is fairly low, it is

clear that the highest cloze bin yields much higher

model accuracies than the other three bins, sug-

Prefer good w/ .01 thresh

BERTBASE 75.0 31.8

BERTLARGE 86.4 43.2

Table 10: Percent of ROLE-88 items with good com-

pletion assigned higher probability than role reversal

gesting some alignment between how constraining

contexts are for humans and how constraining they

are for BERT. However, even in the highest cloze

bin, when at least a third of humans converge on

the same completion, even BERTLARGE at k = 5
is only correct in half of cases, suggesting substan-

tial room for improvement.9

7.2 Completion sensitivity

Next we test BERT’s sensitivity to role reversals

by comparing model probabilities for a given com-

pletion (e.g., served) in the appropriate versus

role-reversed contexts. We again start by testing

the percentage of items for which BERT assigns

a higher probability to the appropriate than to the

inappropriate completion. As we see in Table 10,

BERTBASE prefers the good continuation in 75%

of items, while BERTLARGE does so for 86.4%—

comparable to the proportions for CPRAG-34.

However, when we apply our threshold of .01—

still generous given the average cloze difference

of .233—sensitivity drops more dramatically than

on CPRAG-34, to 31.8% and 43.2%.

Overall, these results suggest that BERT is, in

a majority of cases of this kind, able to use noun

position to prefer good verb completions to bad—

however, it is again less sensitive than humans

to these distinctions, and it fails to match human

9This analysis is made possible by the authors’ generous

provision of the cloze data for these items, which was not

originally made public with the items themselves.



word predictions on a strong majority of cases.

The model’s ability to choose good completions

over role reversals (albeit with weak sensitivity)

suggests that the failures on word prediction accu-

racy are not due to inability to distinguish word or-

ders, but rather to a weakness in event knowledge

or understanding of semantic role implications.

7.3 Qualitative examination of predictions

Table 7 shows predictions of BERTBASE and

BERTLARGE for some illustrative examples. For

the girl/bear items, we see that BERTBASE favors

continuations like killed and bitten with bear as

subject, but also includes these continuations with

girl as subject. BERTLARGE, by contrast, excludes

these continuations when girl is the subject.

In the second pair of sentences we see that the

models choose served as the top continuation un-

der both word orders, even though for the second

word order this produces an unlikely scenario. In

both cases, the model’s assigned probability for

served is much higher for the appropriate word

order than the inappropriate one—a difference of

.6 for BERTLARGE and .37 for BERTBASE—but it

is noteworthy that no more semantically appropri-

ate continuation is identified by either model for

which waitress the customer had ____.

As a final note, although the continuations

are generally impressively grammatical, we see

exceptions in the second bear/girl sentence—

both models produce completions of questionable

grammaticality (or at least questionable use of

selection restrictions), with sentences like which

bear the girl had fallen from BERTBASE, and

which bear the girl had entered from BERTLARGE.

8 Results for NEG-88

Finally, we turn to the NEG-88 test of negation

and category membership.

8.1 BERT prediction accuracy

We start by testing the ability of BERT to predict

correct category continuations for the affirmative

contexts in NEG-88-SIMP. Table 11 shows the ac-

curacy results for these affirmative sentences.

We see that for k = 5, the correct category is

predicted for 100% of affirmative items, suggest-

ing an impressive ability of both BERT models to

associate nouns with their correct immediate hy-

pernyms. We also see that the accuracy drops sub-

stantially when assessed on k = 1. Examination

Accuracy

BERTBASE k = 1 38.9

BERTLARGE k = 1 44.4

BERTBASE k = 5 100

BERTLARGE k = 5 100

Table 11: Accuracy of word predictions in NEG-88-

SIMP affirmative sentences

of predictions reveals that these errors consist ex-

clusively of cases where BERT completes the sen-

tence with a repetition of the subject noun, e.g.,

A daisy is a daisy—which is certainly true, but

which is not a likely or informative sentence.

8.2 Completion sensitivity

We next assess BERT’s sensitivity to the meaning

of negation, by measuring the proportion of items

in which the model assigns higher probabilities to

true completions than to false ones.

Affirmative Negative

BERTBASE 100 0.0

BERTLARGE 100 0.0

Table 12: Percent of NEG-88-SIMP items with true

completion assigned higher probability than false

Table 12 shows the results, and the pattern is

stark. When the statement is affirmative (A robin

is a ____), the models assign higher probability

to the true completion in 100% of items. Even

with the threshold of .01—which eliminated many

comparisons on CPRAG-34 and ROLE-88—all

items pass but one (for BERTBASE), suggesting a

robust preference for the true completions.

However, in the negative statements (A robin is

not a ____), BERT prefers the true completion in

0% of items, assigning the higher probability to

the false completion in every case. This shows

a strong insensitivity to the meaning of negation,

with BERT preferring the category match comple-

tion every time, despite its falsity.

8.3 Qualitative examination of predictions

Table 13 shows examples of the predictions made

by BERTLARGE in positive and negative contexts.

We see a clear illustration of the phenomenon sug-

gested by the results above: for affirmative sen-

tences, BERT produces generally true completions

(at least in the top two)—but these completions re-

main largely unchanged after negation is added,



Context BERTLARGE predictions

A robin is a ____ bird, robin, person, hunter, pigeon

A daisy is a ____ daisy, rose, flower, berry, tree

A hammer is a ____ hammer, tool, weapon, nail, device

A hammer is an ____ object, instrument, axe, implement, explosive

A robin is not a ____ robin, bird, penguin, man, fly

A daisy is not a ____ daisy, rose, flower, lily, cherry

A hammer is not a ____ hammer, weapon, tool, gun, rock

A hammer is not an ____ object, instrument, axe, animal, artifact

Table 13: NEG-88-SIMP predictions by BERTLARGE

resulting in many blatantly untrue completions.

Another interesting phenomenon that we can

observe in Table 13 is BERT’s sensitivity to the

nature of the determiner (a or an) preceding the

masked word. This determiner varies depend-

ing on whether the upcoming target begins with

a vowel or a consonant (for instance, our mis-

matched category paired with hammer is insect)

and so the model can potentially use this cue

to filter the predictions to those starting with ei-

ther vowels or consonants. How effectively does

BERT use this cue? The predictions indicate that

BERT is for the most part extremely good at using

this cue to limit to words that begin with the right

type of letter. There are certain exceptions (e.g.,

An ant is not a ant), but these are in the minority.

8.4 Increasing naturalness

The supplementary NEG-88-NAT items allow us

to examine further the model’s handling of nega-

tion, with items designed to test the effect of “nat-

uralness”. When we present BERT with this new

set of sentences, the model does show an apparent

change in sensitivity to the negation. BERTBASE

assigns true statements higher probability than

false for 75% of natural sentences (“NT”), and

BERTLARGE does so for 87.5% of natural sen-

tences. By contrast, the models each show pref-

erence for true statements in only 37.5% of items

designed to be less natural (“LN”). Table 14 shows

these sensitivities broken down by affirmative and

negative conditions. Here we see that in the nat-

ural sentences, BERT prefers true statements for

both affirmative and negative contexts—by con-

trast, the less natural sentences show the pat-

tern exhibited on NEG-88-SIMP, in which BERT

prefers true statements in a high proportion of af-

firmative sentences, and in 0% of negative sen-

tences, suggesting that once again BERT is de-

faulting to category matches with the subject.

Aff.

NT

Neg.

NT

Aff.

LN

Neg.

LN

BERTBASE 62.5 87.5 75.0 0.0

BERTLARGE 75.0 100 75.0 0.0

Table 14: Percent of NEG-88-NAT with true continua-

tion given higher probability than false. Aff = affirma-

tive, Neg = negative. NT = natural, LN = less natural.

Table 15 contains BERTLARGE predictions on

two pairs of sentences from the “Natural” sentence

set. It is worth noting that even when BERT’s

first prediction is appropriate in the context, the

top candidates often contradict each other (e.g.,

difficult and easy). We also see that even with

these natural items, sometimes the negation is not

enough to reverse the completions, as with the sec-

ond pair of sentences, in which the fast food dinner

both is and isn’t a romantic first date.

9 Discussion

Our three diagnostics allow for a clarified picture

of the types of information used for predictions by

pre-trained BERT models. On CPRAG-34, we see

that both models can predict the best completion

approximately half the time (at k = 5), and that

both models rely non-trivially on word order and

full sentence context. However, successful predic-

tions in the face of perturbations also suggest that

some of BERT’s success on these items may ex-

ploit certain loopholes, and when we examine pre-

dictions on challenging items, we see clear weak-

nesses in the commonsense and pragmatic infer-

ences targeted by this set. Sensitivity tests show

that BERT can also prefer good completions to

bad semantically-related completions in a major-

ity of items, but many of these probability differ-



Context BERTLARGE predictions

Most smokers find that quitting is very ____ difficult, easy, effective, dangerous, hard

Most smokers find that quitting isn’t very ____ effective, easy, attractive, difficult, succcessful

A fast food dinner on a first date is very ____ good, nice, common, romantic, attractive

A fast food dinner on a first date isn’t very ____ nice, good, romantic, appealing, exciting

Table 15: NEG-88-NAT predictions by BERTLARGE

ences are very small, suggesting that the model’s

sensitivity is much less than that of humans.

On ROLE-88, BERT’s accuracy in match-

ing top human predictions is much lower, with

BERTLARGE at only 37.5% accuracy—and only

53% even on the most constraining contexts. Per-

turbations reveal interesting model differences,

suggesting that BERTLARGE has more sensitivity

than BERTBASE to the interaction between subject

and object nouns. Sensitivity tests reveal that both

models are able to use noun position to prefer good

completions to role reversals, but the differences

are on average even smaller than for CPRAG-34,

indicating again that model sensitivity to the dis-

tinctions is far less than that of humans. The

models’ general ability to distinguish role rever-

sals suggests that the low word prediction accura-

cies are not due to insensitivity to word order per

se, but rather to weaknesses in event knowledge or

understanding of semantic role implications.

Finally, NEG-88 allows us to zero in with par-

ticular clarity on a divergence between BERT’s

predictive behavior and what we might expect

from a model using all available information about

word meaning and truth/falsity. When presented

with simple sentences describing category mem-

bership, BERT shows a complete inability to pre-

fer true over false completions for negative sen-

tences. The model shows an impressive ability to

associate subject nouns with their hypernyms, but

when negation reverses the truth of those hyper-

nyms, BERT continues to predict them nonethe-

less. By contrast, when presented with sentences

that are more “natural”, BERT does reliably prefer

true completions to false, with or without nega-

tion. Although these latter sentences are designed

to differ in naturalness, in all likelihood it is not

naturalness per se that drives the model’s relative

success on them—but rather a higher frequency of

these types of statements in the training data.

The latter result in particular serves to high-

light a stark, but ultimately unsurprising, observa-

tion about what these pre-trained language mod-

els bring to the table. While the function of lan-

guage processing for humans is to compute mean-

ing and make judgments of truth, language models

are trained as predictive models—they will simply

leverage the most reliable cues in order to opti-

mize their predictive capacity. For a phenomenon

like negation, which is often not conducive to clear

predictions, such models may not be equipped to

learn the implications of this word’s meaning.

10 Conclusion

In this paper we have introduced a suite of di-

agnostic tests for language models, to better our

understanding of the linguistic competencies ac-

quired by pre-training via language modeling. We

draw our tests from psycholinguistic studies, al-

lowing us to target a range of linguistic capacities

by testing word prediction accuracies and sensi-

tivity of model probabilities to linguistic distinc-

tions. As a case study, we apply these tests to

analyze strengths and weaknesses of the popular

BERT model, finding that it shows sensitivity to

role reversal and same-category distinctions, al-

beit less than humans, and it succeeds with noun

hypernyms, but it struggles with challenging in-

ferences and role-based event prediction—and it

shows clear failures with the meaning of negation.

The capacities targeted by these test sets are

by no means comprehensive, and future work can

build on the foundation of these datasets to ex-

pand to other aspects of language processing. Be-

cause these sets are small, we must also be conser-

vative in the strength of our conclusions—future

work can expand to verify the generality of these

results. In parallel, we hope that the weaknesses

highlighted by these diagnostics can help to iden-

tify areas of need for establishing robust and gen-

eralizable models for language understanding.
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