
Control
Relevant for: COMP5711M

Brandon Bennett
School of Computing
University of Leeds

B.Bennett@leeds.ac.uk

Last Updated: August 2019

Learning Goals

After this lecture you should:

• Understand the meaning and purpose of a conditional
command.

• Know how to form a conditional command in Python using the
if keyword.

• Understand the purpose of loops in computer programs.

• Know how to construct while and for loops in Python.

PP 2

Conditionals — if

A conditional statement specifies that a certain block of code
should be executed if and only if certain condition is true.

Here is a simple example:

if (1+1 == 2):

print("Your computer can do sums.")

PP 3

Conditionals — if

A conditional statement specifies that a certain block of code
should be executed if and only if certain condition is true.

Here is a simple example:

if (1+1 == 2):

print("Your computer can do sums.")

if (1+1 == 3):

print("You computer is faulty.")

PP 3

Code Blocks and Indentation

Following a conditional (if) statement or other control construct,
we usually get an indented code block. This specifies 1 or more
lines of code to be executed.

if (x == 1):

print("Choice 1:")

print("Go to park")

if (x == 2):

print("Choice 2:")

print("Go swimming")

if (x == 3):

print("Choice 3:")

print("Visit museum")

Python is unusual in specifying code blocks by indentation.

PP 4

Using if with else

It is common in programming that we want the program to do one
think if a condition is true and another thing if it is not true.

This type of choice is implemented in most programming
languages using the keyword else.

Here is an example:

x = input("Enter your favourite number: ")

if (x == 7):

print("That’s my lucky number!")

else:

print("What’s so good about number", x, "?")

Note that the else needs to be at the same indentation level as
the corresponding if

PP 5

Negated Conditions

Sometimes you want to execute a command if something is not
true.

One way of doing this is by using the negation operator ‘not’,
which reverses the truth of the test operation.

For example:

if not (x == 7):

print("That’s NOT my lucky number!")

You can read the ‘not’ operator as:
It is not the case that ...

PP 6

and and or

Sometimes we want to employ more complex test conditions that
are logical combinations of two or more separate tests.

if (x > 10 and x < 20):

print("The value is in the correct range")

if (x == 13 or x < 0):

print("The value is unacceptable")

PP 7

Boolean Values and Variables

A test operation such as 7 > 5 has a value of type Boolean — in
other words, its value is either True or False.

x = 1000

isHigh = x > 100

if isHigh:

print("The value is too high!")

print(isHigh)

PP 8

Loops

Python provides a wide range of looping constructs.

Here are some basic examples:

x = 1

while (x < 100):

print(x)

x = x + 1

The indented block following the while statement’s condition, will
be executed repeatedly as long as the condition remains true.

PP 9

The break Statement

The break command allows you to abandon a loop at a point
within it.
It is normally used within an if statement (within the loop).

while (True): Use True for a condition that is always true
instring = input()

if (instring == "b"):

print("Breaking out of loop!")

break

print("Your input was", len(instring),

"characters long.")

PP 10

Using for and the range function

for i in range(10):

print("Hello")

for i in range(5,12):

print("The value of i is", i)

print("----------")

To see exactly what values will be returned by the range function
you can use the list function to get an actual list of numbers:

>>> list(range(400, 0, -17))

[300, 283, 266, 249, 232, 215, 198, 181, 164, 147,

130, 113, 96, 79, 62, 45, 28, 11]

PP 11

A More Complex Looping Example

The following code illustrates nested use of for loops.

A multiplication table is printed, where the outer loop controls
the generation of each row, and the inner loop prints individual
numbers for each column of the row.

for i in range(12):

for j in range(10):

print("{:3d}".format(i*j), end = ’’)

print()

Take note of the string formatting operation using the
.format(str) method. This can be used to insert information
within a string. This has many uses. There are wide variety of
different ways this operation can be used.

PP 12

