
Origins of Programming
Relevant for: COMP5711M

Brandon Bennett
School of Computing
University of Leeds

B.Bennett@leeds.ac.uk

Last Updated: August 2019



Learning Goals

• To appreciate that modern computers developed from a variety
of much older devices.

• To recognise that the essential characteristic of a computer is
that it can be programmed to perform different tasks.

• To understand some basic aspects of the nature of
programming languages.

LOG 2



Overview

In today’s lecture we shall cover the following:

• The origins and early development of computing devices.

• Basic theoretical ideas of computation and programming.

• Essentials of machine code and assembly language.

• The inception of more sophisticated languages.

• The idea that different languages are equivalent in their
essential power but differ in style and usability.

LOG 3



How did we get from here ...

LOG slide not in handout



How did we get from here ...

to here?

LOG slide not in handout



Man-Eating Budgies to GuildWars

This is the entire code
for Man-Eating Budgies
(released 1981).

LOG slide not in handout



Man-Eating Budgies to GuildWars

This is the entire code
for Man-Eating Budgies
(released 1981).

GuildWars takes around 500MB of disk space. Although a lot of
this is taken up by graphics, it includes millions of lines of actual
program code (C++ I think?).

LOG slide not in handout



How this Device Changed my Life

The Sinclair ZX-80 (give wistful monologue)

LOG slide not in handout



Early Computational Machines
and Automata

There are many earlier precursors of modern computers.

These include mathematical computing devices, such as the
Abacus and Slide Rule.

Complex devices were constructed, such as the ancient Greek
Antikythera mechanism, an astronomical calculator, and robotic
automata such as Vaucanson’s Digesting Duck.

LOG 4



Programmable Machines

Many machines carry out clever complex tasks; however, most
of them are not comparable to computers because they can only
perform a fixed series of operations.

Computers by contrast can be configured to perform a wide range
of functions — they are programmable.

LOG 5



Programmable Machines

Many machines carry out clever complex tasks; however, most
of them are not comparable to computers because they can only
perform a fixed series of operations.

Computers by contrast can be configured to perform a wide range
of functions — they are programmable.

(But note that certain ‘embedded systems’ are generally
considered to be a kind of computer although they only run a
single fixed program.)

LOG 5



Hero’s Ancient Ropebot

One of the most remarkable ancient machines is an automaton
built by Hero (aka Heron) of Alexandra around 70 AD.

This is a moving, wheeled robot
designed for use in theatrical
entertainment. It is powered
by a heavy weight that slowly
descends pulling a string that is
attached to its axels.

The movement of the robot is truly programmable by an ingenious
system whereby the string is wound round the axels.

See: http://www.youtube.com/watch?v=xyQIo9iS_z0

LOG 6

http://www.youtube.com/watch?v=xyQIo9iS_z0


The Jacquard Programmable Loom

Based on simpler machines
produced by earlier French weavers,
Joseph Marie Jacquard in 1801
constructed a loom which could be
programmed to produce different
patterns of woven cloth.

The loom was programmed using
boards into which holes were
punched to specify the pattern and
configure the machine to produce it.

LOG 7



Early Computers

Charles Babbage was the first (1837) to design a fully
programmable mechanical computer, which he called The
Analytical Engine.

Due to limited finance, and continual revisions to
the design Babbage never actually built a working
computer.
Ada Lovelace is credited with writing the first
computer program, which was a specification of
how to compute Bernoulli numbers using the
Analytical Engine.

(See Wikipedia for lots of interesting information about Babbage
and Lovelace.)

LOG 8



Theories of Computation

The theory of computation and computability was a
subject of intense interest during the 30’s 40’s and
50’s. Several mathematicians (e.g. Turing, Church,
Kleene, Post) proposed different mathematical
models of the process of automated computation.
The best know of these is called the Turing Machine.

LOG 9



Theories of Computation

The theory of computation and computability was a
subject of intense interest during the 30’s 40’s and
50’s. Several mathematicians (e.g. Turing, Church,
Kleene, Post) proposed different mathematical
models of the process of automated computation.
The best know of these is called the Turing Machine.

Subsequently all these models were shown to be essentially
equivalent.

LOG 9



Theories of Computation

The theory of computation and computability was a
subject of intense interest during the 30’s 40’s and
50’s. Several mathematicians (e.g. Turing, Church,
Kleene, Post) proposed different mathematical
models of the process of automated computation.
The best know of these is called the Turing Machine.

Subsequently all these models were shown to be essentially
equivalent.

The Church-Turing Thesis proposed in 1936, is the conjecture that
all computational mechanisms are in fact either more limited than
or equivalent in their computing capabilities to a Turing machine.

LOG 9



Theories of Computation

The theory of computation and computability was a
subject of intense interest during the 30’s 40’s and
50’s. Several mathematicians (e.g. Turing, Church,
Kleene, Post) proposed different mathematical
models of the process of automated computation.
The best know of these is called the Turing Machine.

Subsequently all these models were shown to be essentially
equivalent.

The Church-Turing Thesis proposed in 1936, is the conjecture that
all computational mechanisms are in fact either more limited than
or equivalent in their computing capabilities to a Turing machine.

(CS Students will study this in more detail later in their corse).

LOG 9



Machine Code

(This should be covered in Computer Systems (COMP 1440), so
here is only a brief explanation of machine code.)

LOG 10



Machine Code

(This should be covered in Computer Systems (COMP 1440), so
here is only a brief explanation of machine code.)

Machine Code is a form of digital (binary) information that
is processed by and determines the actions performed by a
computer’s CPU.

LOG 10



Machine Code

(This should be covered in Computer Systems (COMP 1440), so
here is only a brief explanation of machine code.)

Machine Code is a form of digital (binary) information that
is processed by and determines the actions performed by a
computer’s CPU.

This code is normally stored as a sequence of bytes in memory,
and the fundamental functionality of a CPU is to execute this code
as a sequence of instructions.

LOG 10



Machine Code

(This should be covered in Computer Systems (COMP 1440), so
here is only a brief explanation of machine code.)

Machine Code is a form of digital (binary) information that
is processed by and determines the actions performed by a
computer’s CPU.

This code is normally stored as a sequence of bytes in memory,
and the fundamental functionality of a CPU is to execute this code
as a sequence of instructions.

The actions resulting from these instructions include: logical
and arithmetic manipulation of digital data; transfer of data from
one memory location to another (or to/from some peripheral
device); making the sequence of execution jump to a new memory
location.

LOG 10



Z80 Machine Code

To get a flavour of what machine code is and how
it works, we consider the code used on the old
Z80 chip, which was used in the Sinclair ZX80
(one of the first home computers).

LOG 11



Z80 Machine Code

To get a flavour of what machine code is and how
it works, we consider the code used on the old
Z80 chip, which was used in the Sinclair ZX80
(one of the first home computers).

The Z80 CPU has 8 main registers designated A, B, C, D, E, F, H,
L (and some other special registers that we won’t consider).
Each of these can store a Byte — i.e. 8 binary digits.

LOG 11



Z80 Machine Code

To get a flavour of what machine code is and how
it works, we consider the code used on the old
Z80 chip, which was used in the Sinclair ZX80
(one of the first home computers).

The Z80 CPU has 8 main registers designated A, B, C, D, E, F, H,
L (and some other special registers that we won’t consider).
Each of these can store a Byte — i.e. 8 binary digits.

The CPU performs the following kinds of operation:

• load a byte into a register

• copy bytes from one register to another,

• copy bytes from a register to a memory location or vice

LOG 11



versa,

• perform arithmetic operations on register contents.

LOG 12



Example Z80 Instructions

Each machine instruction executed by the chip is also encoded in
one byte. Hence there are 256 different operation codes.
Here are some of the more straightforward operations:

Hex Code Mnemonic Operation
3E LD A, 6 load A with number 6
78 LD A, B copy contents of B into A
67 LD H, A copy contents of A into H
77 LD (HL) A copy contents of A to mem loc HL
7E LD A (HL) load A with the contents of mem loc HL
3C INC A add 1 to contents of A
80 ADD A, B add A to B and put result in A

The registers H and L store the high and low bytes of a two-byte
memory address. Hence the chip can address 64K of memory.

LOG 13



Machine Code Execution

In running a machine code programme the CPU processes a
sequence of bytes stored in memory, interpreting each byte as
an instruction according the operation coding.

LOG 14



Machine Code Execution

In running a machine code programme the CPU processes a
sequence of bytes stored in memory, interpreting each byte as
an instruction according the operation coding.

(Actually, some bytes in machine code will be interpreted as
numerical data rather than instructions. E.g. in executing the
code sequence 3E, 06, the 06 is the number to be loaded into
the A register — see last slide.)

LOG 14



Machine Code Execution

In running a machine code programme the CPU processes a
sequence of bytes stored in memory, interpreting each byte as
an instruction according the operation coding.

(Actually, some bytes in machine code will be interpreted as
numerical data rather than instructions. E.g. in executing the
code sequence 3E, 06, the 06 is the number to be loaded into
the A register — see last slide.)

The effect of running the program arises from its reading and
modification of memory locations. Some locations may hold
values resulting from keyboard input or may be used to determine
the monitor screen display.

LOG 14



Languages on top of Languages

We have seen how machine code is a language which directly
controls the operation of a computer’s CPU. Such a language is
called low-level.

The evolution of programming languages is primarily driven by a
desire to rise above the nitty-gritty details of machine operations
to a higher-level of specification.

LOG 15



Languages on top of Languages

We have seen how machine code is a language which directly
controls the operation of a computer’s CPU. Such a language is
called low-level.

The evolution of programming languages is primarily driven by a
desire to rise above the nitty-gritty details of machine operations
to a higher-level of specification.

High-level languages are intended to provide natural modes of
expressing computational functionality, which are geared towards
conceptualisation of problems and articulation of how they should
be solved.

We shall later see how the processes of interpretation and
compilation allow high-level languages to be implemented by
translation into low-level machine code.

LOG 15



Machines within Machines

How can we describe the nature of programming?

LOG 16



Machines within Machines

How can we describe the nature of programming?

A program is like a machine operating within another machine.

LOG 16



Machines within Machines

How can we describe the nature of programming?

A program is like a machine operating within another machine.

Programming is like building a machine.

LOG 16



Machines within Machines

How can we describe the nature of programming?

A program is like a machine operating within another machine.

Programming is like building a machine.

The machine (i.e. program) is constructed from a basic
components which can be combined in specific ways (according
to the syntax of a programming language).

LOG 16



Machines within Machines

How can we describe the nature of programming?

A program is like a machine operating within another machine.

Programming is like building a machine.

The machine (i.e. program) is constructed from a basic
components which can be combined in specific ways (according
to the syntax of a programming language).

The program itself is just a specification of how the machine
works. It’s implementation is achieved by a compiler or interpreter
translating the program into a form that is executable by the CPU.

LOG 16



All Languages are the Same (?)

According to the Church-Turing Thesis, all programming
languages capable of certain fundamental processing capabilities
are equivalent to Turing Machines, and so have essentially the
same computing power (they can perform the same calculations).

LOG 17



All Languages are the Same (?)

According to the Church-Turing Thesis, all programming
languages capable of certain fundamental processing capabilities
are equivalent to Turing Machines, and so have essentially the
same computing power (they can perform the same calculations).

However, languages differ greatly in the way computations are
specified and executed.

LOG 17



All Languages are the Same (?)

According to the Church-Turing Thesis, all programming
languages capable of certain fundamental processing capabilities
are equivalent to Turing Machines, and so have essentially the
same computing power (they can perform the same calculations).

However, languages differ greatly in the way computations are
specified and executed.

Thus, the difference between programming languages is one of
style, not of content.

Or, in other words, the difference is in how things can be done,
not in what can be done.

LOG 17



Conclusions

• Computing has a long history.

LOG 18



Conclusions

• Computing has a long history.

• At the level of CPU function, programs are reduced to the
execution of simple machine code instructions.

LOG 18



Conclusions

• Computing has a long history.

• At the level of CPU function, programs are reduced to the
execution of simple machine code instructions.

• Programs are like machines within machines, and programming
languages provide toolkits to build them.

LOG 18



Conclusions

• Computing has a long history.

• At the level of CPU function, programs are reduced to the
execution of simple machine code instructions.

• Programs are like machines within machines, and programming
languages provide toolkits to build them.

• Machine code provides a foundation upon which more
sophisticated programming languages can be built (you will
learn more in subsequent lectures).

LOG 18



Conclusions

• Computing has a long history.

• At the level of CPU function, programs are reduced to the
execution of simple machine code instructions.

• Programs are like machines within machines, and programming
languages provide toolkits to build them.

• Machine code provides a foundation upon which more
sophisticated programming languages can be built (you will
learn more in subsequent lectures).

• Different language are equivalent in their essential power, but
vary greatly in style and usability (again, you will hear more).

LOG 18



Follow-Up Work

• Check out details of early computing machines and of Allan
Turing’s life and work on Wikipedia.

• Look at the material on the module web site at:
https://teaching.bb-ai.net/PythonCoding/PracticalProgramming.html

LOG 19

https://teaching.bb-ai.net/PythonCoding/PracticalProgramming.html

